

INVERTER Plug-in option

FR-A7N-WIE INSTRUCTION MANUAL

PRE-OPERATION INSTRUCTIONS

INSTALLATION

INVERTER SETTINGS

Multiprotocol Communication Interface

FINDER APPLICATION

WEB SERVER

PARAMETER NUMBERING

FILESYSTEM & FIRMWARE

PROTOCOL-SPECIFIC INFO

June, 2011 ICC #10707-1.100-000

Wireless Ethernet

Thank you for choosing this ICC, Inc. plug-in option for the Mitsubishi 700 Series Inverter. This instruction manual provides handling information and precautions for use of this equipment. Incorrect handling may cause unexpected failures or damage. In order to ensure optimal performance, please read this manual carefully prior to use of the equipment. Please forward this manual to the end user of the equipment.

This section pertains specifically to safety issues

Do not attempt to install, operate, maintain or inspect this product until you have read through this instruction manual and any related documents carefully, and can use the equipment properly. Do not use this product until you have a full working knowledge of the equipment, safety information and instructions. In this instruction manual, the safety instruction levels are classified into "WARNING" and "CAUTION" levels.

Assumes that incorrect handling may cause hazardous conditions resulting in death or severe injury.

Assumes that incorrect handling may cause hazardous conditions resulting in moderate or slight injury, or may cause physical damage only.

Please note that even the A CAUTION level may lead to serious consequence depending on conditions. Please be sure to follow the instructions of both levels as they are critical to personnel safety.

SAFETY INSTRUCTIONS

1. Electrical Shock Prevention

WARNING

- Do not open the front cover of the inverter while power is on or while the inverter is running, as an electrical shock may result.
- Do not operate the inverter with the front cover or wiring cover removed, as accidental contact with exposed high-voltage terminals and internal components may occur, resulting in an electrical shock.
- If power is off, do not remove the front cover except when necessary for wiring or periodic inspection. While the front cover is removed, accidental contact with exposed highvoltage terminals and internal components may occur, resulting in an electrical shock.
- Prior to starting wiring or inspection, confirm that input power
 to the inverter has been switched off via observation of the
 inverter's display panel. Additionally, wait for at least 10
 minutes after removal of input power, and then confirm that all
 residual voltage has been dissipated by using a voltage meter.
 Internal DC bus capacitors may contain high voltages for
 several minutes after removal of input power, resulting in a
 dangerous situation should anything come into contact with
 them.
- All personnel involved in the installation or inspection of this
 equipment should be fully competent to perform the required
 work.
- · Always install plug-in options prior to wiring main power.
- . Do not touch the plug-in option with wet hands.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching.

2. Injury Prevention

/!\ CAUTION

- . To prevent explosions or similar damage, apply only the voltages specified in the instruction manual to each terminal.
- . To prevent explosions or similar damage, ensure that all cables are properly connected to the correct terminals.
- To prevent explosions or similar damage, observe all wiring polarity indicators.
- To prevent burns from hot components, do not touch the inverter while power is on, or for some time after power is removed.

3. Additional Instructions

Please note the following points to prevent equipment damage, injury or electrical shock.

1) Transportation and Mounting

!\ CAUTION

- Do not install or operate the plug-in option if it is damaged or has parts missing.
- . Do not stand on or rest heavy objects on the equipment.
- . Check that the mounting orientation is correct.
- Prevent conductive items such as screws and metal fragments, or flammable substances such as oil from entering the inverter.

2) Trial Run

!\ CAUTION

. To prevent unexpected equipment movement, confirm and adjust all required parameters prior to starting operation.

3) Usage

WARNING

- · Do not modify the equipment.
- Do not remove any inverter or option parts unless specifically instructed to do so in this manual.

- Performing a "parameter clear" or "all parameter clear" will reset all inverter parameters to their factory default settings. After performing one of these operations, remember to reenter any custom parameter values prior to starting operation.
- To prevent damage from electrostatic discharge, always touch a grounded piece of metal prior to touching any equipment.

4) Maintenance, Inspection and Parts Replacement

!\ CAUTION

. Do not perform hi-pot tests on the equipment.

5) Disposal

✓!\ CAUTION

. Contact the local or state environmental agency in your area for details on the disposal of electrical components and packaging.

6) General Instructions

For clarity purposes, illustrations in this manual may be drawn with covers or safety guards removed. Ensure all covers and safety guards are properly installed prior to starting operation.

- CONTENTS -

1	PRE-OPERATION INSTRUCTIONS	1
1.1	Product Overview	1
1.2	Unpacking and Product Confirmation	5
	1.2.1 Shipment Confirmation	5
	1.2.2 Component Overview	
1.3	LED Indicators	7
1.4	Environmental Specifications	9
2	INSTALLATION	10
2.1	Pre-Installation Instructions	10
2.1 2.2	Installation Procedure	11
	Installation Procedure	11
2.2	Installation Procedure Antenna Options	11 14
2.2	Installation Procedure	11 14 14
2.2	Installation Procedure Antenna Options	111414
2.2	Installation Procedure Antenna Options 2.3.1 Standard Dipole Antenna 2.3.2 Optional #10694 Antenna Extension Cable 2.3.3 Optional #10693 Desktop/Magnetic Antenna	111415
2.2 2.3	Installation Procedure Antenna Options 2.3.1 Standard Dipole Antenna 2.3.2 Optional #10694 Antenna Extension Cable 2.3.3 Optional #10693 Desktop/Magnetic Antenna	11141516

3	INVERTER	SETTINGS

3.1	RS-485 Communication Settings	24
	3.1.1 RS-485 Communication Station (Pr. 331)	
	3.1.2 RS-485 Communication Speed (Pr. 332)	
	3.1.3 RS-485 Communication Parity Check Selection (Pr. 334)	25
	3.1.4 Protocol Selection (Pr. 549)	
3.2	Operation Mode Setting	27
	3.2.1 Operation Mode Indication	27
	3.2.2 Operation Mode Switching & Comm. Startup Mode (Pr. 79, Pr. 340)	28
3.3	Operation & Speed Command Source (Pr.338, Pr.339, Pr.550)	32
3.4	Communication EEPROM Write Selection (Pr. 342)	36
4	FINDER APPLICATION	37
4.1	Overview	37
4.2	Configuring the IP Address	39
	4.2.1 Via the Finder Utility	
	4.2.2 Via the Web Page	
5	EMBEDDED WEB SERVER	41

5.2	Αι	ıthenticationthentication	44
5.3	Pa	ge Select Tabs	45
5.4	Мс	onitor Tab	46
	5.4.1	Information Window	46
	5.4.2	Parameter Group Selection List	46
	5.4.3	Parameter List	48
	5.4.4	Parameter List Filter	50
	5.4.5	Non-Scanned Parameter Refresh	51
	5.4.6	Radix Selection	52
5.5	ME	ELSEC Tab	53
	5.5.1	Information Window	54
	5.5.2	TCP Port	54
	5.5.3	Submitting Changes	55
5.6	BA	ACnet Tab	56
	5.6.1	Information Window	57
		Device Identifiers	
		Submitting Changes	
5.7		onfig Tab	
	5.7.1	Information Window	60
	5.7.2	Authentication Configuration	60
	5.7.3	IP Address Configuration	61
	5.7.4	MAC Address Configuration	61
	5.7.5	Wireless Settings	62

	5.7.6	Timeout Configuration	65
	5.7.7	Submitting Changes	67
5.8	Etl	herNet/IP Tab	68
	5.8.1	Information Window	69
	5.8.2	Device Identification	69
	5.8.3	Run/Idle Flag Behavior	69
	5.8.4	Class 1 (I/O) Data Configuration Arrays	70
	5.8.5	Submitting Changes	72
5.9	Ala	arm Tab	73
	5.9.1	Information Window	74
	5.9.2	Email Configuration	75
	5.9.3	Alarm Configuration	77
	5.9.4	Submitting Changes	79
5.1	0 Mc	odbus Tab	81
	5.10.1	I Information Window	82
		2 Supervisory Timer Selection	
	5.10.3	Register Remap Configuration	83
	5.10.4	4 Submitting Changes	85
5.1	1 Da	shboard Tab	86
	5.11.1	I Information Window	87
		2 Gauge Window Navigation	
		Gauge Window Configuration	
		4 Submitting Changes	

6	PARAMETER NUMBERING AND BEHAVIOR	94
6.1	Register Numbers	94
6.2	Scanned and Non-Scanned Registers	94
6.3		
6.4	Inverter Operation Mode Setting and Status Register	98
6.5		
	6.5.1 Overview	
	6.5.2 Universal Access Reads	101
	6.5.3 Universal Access Writes	102
	6.5.4 Disabling	103
7	FILESYSTEM & FIRMWARE	104
7.1		
7.2	Initiating FTP via the Finder Utility	106
7.3	Using FTP with Windows Explorer	108
7.4	Using FTP with a Windows Command Prompt	110
7.5	Using FTP With Core FTP LE	112
7.6	Loading New Application Firmware	114
8	PROTOCOL-SPECIFIC INFORMATION	116

8.1	Me	odbus/TCP	116
	8.1.1	Overview	116
	8.1.2	Coil & Discrete Input Mappings	118
8.2	Et	herNet/IP	120
	8.2.1	Overview	120
	8.2.2	ODVA AC/DC Drive Profile	122
	8.2.3	ControlLogix Examples: Setup	130
	8.2.4	ControlLogix Example: I/O Messaging	132
	8.2.5	ControlLogix Example: Generic Default I/O Add-On Instruction	137
	8.2.6	ControlLogix Example: AC/DC Drive Profile Add-On Instruction	141
	8.2.7	Explicit Messaging Tag Reference	145
	8.2.8	ControlLogix Example: Read a Register Block	148
	8.2.9	ControlLogix Example: Read a Single Register	156
	8.2.10	ControlLogix Example: Multiple MSG Instructions	156
	8.2.11	ControlLogix Example: Reading and Writing	158
8.3	ΑI	len Bradley CSP	160
	8.3.1	Overview	160
	8.3.2	Tag Reference	160
	8.3.3	SLC-5/05 Example: Read a Register Block	163
	8.3.4	SLC-5/05 Example: Read a Single Register	170
	8.3.5	SLC-5/05 Example: Multiple MSG Instructions	171
	8.3.6	SLC-5/05 Example: Reading and Writing	172
8.4	BA	ACnet/IP	174

9	TRO	UBLESHOOTING	193
	8.5.1	Overview	190
8.5	М	ELSEC	190
	8.4.3	Supported Object Details	185
	8.4.2	Supported Objects	181
	8.4.1	Protocol Implementation Conformance Statement	174

1 PRE-OPERATION INSTRUCTIONS

1.1 Product Overview

The FR-A7N-WiE wireless Ethernet multiprotocol communication interface allows information to be transferred seamlessly between a 700-series inverter and several different wired or wireless Ethernet-based fieldbus networks with minimal configuration requirements. The interface installs directly onto the inverter's control board, and presents a standard 802.11b wireless Ethernet (Wi-Fi) antenna port for connection to the wireless network. In addition to the supported fieldbus protocols, the interface also hosts an embedded web server, which provides access to inverter information via a standard web browser for remote monitoring, configuration and control.

The option card communicates to the inverter via its built-in RS-485 communication port, located in the upper-left hand corner of the inverter's control board. Note that because the inverter's RS-485 port is used by the FR-A7N-WiE card, it is therefore unavailable for use by any other network when the FR-A7N-WiE interface is installed.

Before using the interface, please familiarize yourself with the product and be sure to thoroughly read the instructions and precautions contained in this manual. In addition, please make sure that this instruction manual is delivered to the end user of the interface, and keep this instruction manual in a safe place for future reference or unit inspection.

PRE-OPERATION INSTRUCTIONS

Note that different interface firmware versions may provide varying levels of support for the various protocols. When using this manual, therefore, always keep in mind that the firmware version running on your interface must match this manual's respective revision in order for all documented aspects to apply.

The primary features of the FR-A7N-WiE are as follows:

Wireless Ethernet

IEEE 802.11b wireless Ethernet compliant, operating in the 2.4GHz band with data rates up 11Mbit/s. Supports multiple simultaneous protocols, and allows a variety of encryption options, such as WEP, WPA and WPA2.

Supported Protocols

The interface currently provides server support for the following fieldbus protocols:

- Modbus/TCP
- EtherNet/IP
- Allen Bradley CSP (also known as "PCCC" and "AB Ethernet")
- BACnet/IP

Antenna Options

The interface includes a detachable 2.4GHz omni-directional fully articulating dipole antenna with RP-SMA connector. The antenna can be rotated 360 degrees at its connection point and from 0 to 90 degrees at its knuckle. An optional desktop/magnetic base antenna (ICC part #10693) and 30cm antenna extension cable (ICC part #10694) are also available. Refer to section 2.3.

Adobe® Flash-Enabled Embedded Web Server

Interface configuration and real-time inverter parameter monitoring & control are provided via an embedded web server. The interface's web server feature provides direct data access and control via standard web browsers such as Microsoft Internet Explorer and Mozilla Firefox. The latest version of Adobe Flash Player browser plug-in is required. Refer to section 5.

XML Configuration File Upload/Download

All interface configuration files are stored in the unit's internal filesystem in XML format. These files can be transferred to/from a PC via the FTP protocol, which provides the capability for PC-based file backup and easy configuration copying to multiple units. Configuration files can also be viewed and edited via standard text editors, XML editors and web browsers. Refer to section 7.

Email-Based Alarm Notifications

Up to 20 configurable alarm conditions can be programmed into the interface. Value, logical comparison and time-based conditions can be provided for the interface to autonomously monitor any available inverter register. When an alarm condition is triggered, a notification email can be sent to up to four destination email addresses. Refer to section 5.9.

Dashboard GUI

A dashboard tab on the embedded web server provides 10 gauge windows, each of which can be configured to display any available scanned inverter register in a variety of meter, graph and gauge formats. Refer to section 5.11.

PRE-OPERATION INSTRUCTIONS

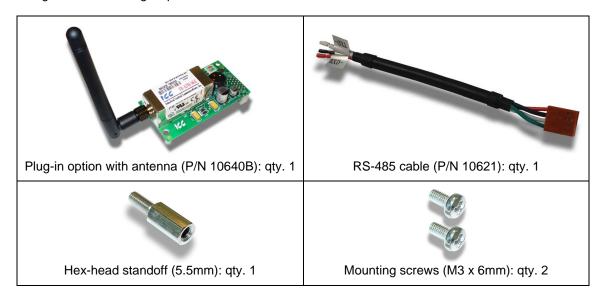
Network Timeout Action

A configurable network timeout action can be programmed that allows parameters to have their own unique "fail-safe" conditions in the event of a network interruption. Refer to section 5.7.6.

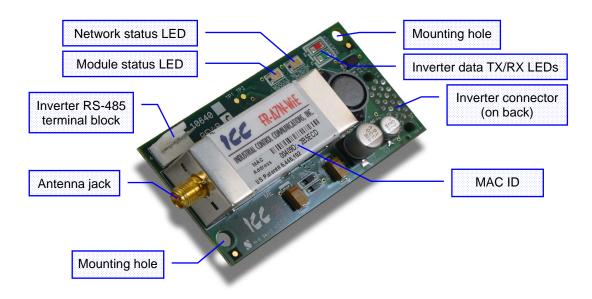
Field-Upgradeable

As new firmware becomes available, the interface can be upgraded in the field by the end-user. Refer to section 7.6 for more information.

EtherNet/IP Data Access Options


The EtherNet/IP protocol provides access to inverter data via explicit messaging, user-defined I/O assembly instances, and the ODVA AC/DC drive profile. Refer to section 8.2 for more information.

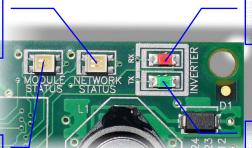
1.2 Unpacking and Product Confirmation


1.2.1 Shipment Confirmation

Check the enclosed items. Confirm that the correct quantity of each item was received, and that no damage occurred during shipment.

1.2.2 Component Overview

1.3 LED Indicators


The upper right-hand corner of the option board contains several LEDs that provide a visual indication of the unit's overall status and communications activity with the inverter.

Network Status LED

Conforms to the prescribed "network status LED" behavior as dictated in the EtherNet/IP specification, Volume 2, Chapter 9.

Module Status LED

- Conforms to the prescribed "module status LED" behavior as dictated in the EtherNet/IP specification, Volume 2, Chapter 9.
- Contact ICC technical support if a blinking red error code is observed.

Inverter Data RX

Blinks when the interface board receives data from the inverter

Inverter Data TX

Blinks when the interface board transmits data to the inverter

PRE-OPERATION INSTRUCTIONS

The module housing also contains two embedded LEDs that provide insight into the wireless Ethernet network.

Link Integrity LED

This yellow LED:

- . Is on solid whenever a connection (link integrity) has been established between the interface card and an access point (infrastructure mode.)
- · Blinks slowly whenever the interface card in ad hoc mode.
- · Blinks quickly whenever the interface card is scanning for a network.

Ethernet Activity LED

This green LED blinks when network packets are sent or received.

1.4 Environmental Specifications

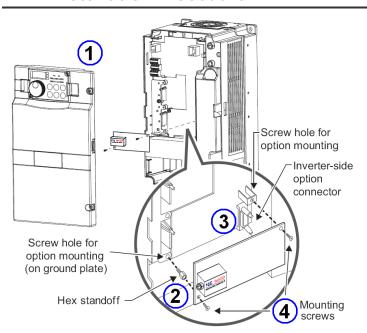
Item	Specification
Operating Environment	Indoors, less than 1000m above sea level, do not expose to direct sunlight or corrosive / explosive gasses
Operating Temperature	-10 ~ +50°C (+14 ~ +122°F)
Storage Temperature	-40 ~ +85°C (-40 ~ +185°F)
Relative Humidity	20% ~ 90% (without condensation)
Vibration	5.9m/s ² (0.6G) or less (10 ~ 55Hz)
Grounding	Referenced to inverter's 24V power supply / isolated from inverter control power common
Power supply	Supplied from inverter
Cooling Method	Self-cooled
Communication Speed	Up to 11Mbps with automatic fallback

This device is lead-free / RoHS-compliant.

2 INSTALLATION

2.1 Pre-Installation Instructions

Make sure that the inverter's input power is off.



To avoid damage to the inverter or plug-in option card, never install or remove a plugin option card while the inverter's input power is on.

Physical installation of the option card is a two-step process. First, the card will be mounted onto an available option connector on the inverter's control board. Second, the card will be connected to the inverter's RS-485 communication port via the included #10621 RS-485 cable.

2.2 Installation Procedure

- 1) Remove the inverter's front cover.
- 2) Locate an open option connector and screw the included 5.5mm hex standoff into the corresponding ground plate screw hole (rated torque 0.56N·m to 0.75N·m).
- 3) Securely attach the option card to the inverter's option connector. Ensure that the option card is fully seated on the inverter's option connector and the hex standoff.
- 4) Secure the upper-right and lower-left corners of the option card with the included M3x6mm mounting screws. If the screw holes do not line up, the option card connector may not be fully seated on the inverter's option connector and the hex standoff.

INSTALLATION

5) Connect the stripped-wire end of the #10621 RS-485 cable to the inverter's RS-485 terminal blocks, and set the termination switch located on the inverter's control board to the "OPEN" position. Each of the wires is individually labeled with the name of the terminal signal to which they must be connected, and are pre-stripped for ease of installation. Connect the TXD+ (green) and TXD- (white) wires to the "TXD" terminal block, positions 1 & 2, respectively. Then connect the RXD+ (black) and RXD- (red) wires to the "RXD" terminal block, positions 1 & 2, respectively. Refer to the following picture for a post-connection view of the wiring connections.

6) Connect the 4-position plug end of the #10621 RS-485 cable to connector CN1 in the upper-left corner of the option board. Note that the connector is keyed to prevent the possibility of reverse installation. Refer to the following picture for a post-connection view.

REMOVAL

First disconnect the #10621 RS-485 cable from connector CN1 on the option board. Next, remove the two M3x6mm mounting screws. Lastly, remove the option board by grasping it on its left and right side and pulling it straight away from the inverter. Note that the removal process may be easier by first removing the inverter's control circuit terminal block.

2.3 Antenna Options

Depending on the capacity of the inverter, the installation environment and required signal strength/range, different antenna options are available to minimize routing issues and maximize signal integrity.

2.3.1 Standard Dipole Antenna

The interface card comes standard with one detachable 2.4GHz omni-directional fully articulating dipole antenna with RP-SMA connector (refer to Figure 1.) This antenna can be rotated 360 degrees at its connection point and from 0 to 90 degrees at its knuckle. In addition to being installable directly on the interface card, the standard antenna can also be used in conjunction with the optional #10694 antenna extension cable (refer to section 2.3.2.)

Specifications

Frequency	2.4~2.5 GHz
Power Output	
DB Gain	
VSWR	< or = 2.0

Figure 1: Standard Dipole Antenna

2.3.2 Optional #10694 Antenna Extension Cable

ICC part #10694 is a 30cm-long antenna extension cable (refer to Figure 2). The #10694 antenna extension cable can be used with the optional #10693 desktop antenna (refer to section 2.3.3), but it is most commonly applied in conjunction with the standard dipole antenna (refer to section 2.3.1.) For this scenario, the dipole antenna is first disconnected from the interface card, the #10694 antenna extension cable inserted into the card's RP-SMA connector, and then the dipole antenna is reconnected to the end of the extension cable (refer to Figure 3.) For strain relief, the antenna must typically then be attached to some fixed object (such as a ventilation slot on the inverter's enclosure) with a plastic tie wrap.

Figure 2: Antenna Extension Cable

Figure 3: Extension Cable with Dipole Antenna

2.3.3 Optional #10693 Desktop/Magnetic Antenna

ICC part #10693 is a desktop/magnetic mount antenna with a 1m-long extension cable (refer to Figure 4.) This antenna can be used in place of the standard dipole antenna for situations where mechanical clearances or environmental obstructions prohibit the successful application of the standard antenna.

The desktop/magnetic antenna allows convenient mounting on any flat surface (Velcro® or double-sided tape may be required to prevent tipping or falling.) Its strong magnetic base even allows reliable vertical mounting on metallic surfaces.

Specifications

Frequency	2.4~2.5 GHz
Power Output	
DB Gain	
VSWR	1.92 max.

Figure 4: Desktop/Magnetic Antenna

2.4 Antenna Installation

Due to the diversity of inverter chassis layouts, installation environments and antenna options, a wide variety of antenna installation scenarios are possible. This section will present some of the most common scenarios and general guidelines.

Small inverters (FR-A720-00900-NA / FR-A740-00440-NA and smaller) have a snap-on plastic cover with a wiring access knockout on the left side. Remove this knockout and trim any excess flashing that may cause clearance issues or antenna/cable damage (refer to Figure 5.) Note: when the front cover wiring access knockout is removed, the protective structure (JEM1030) changes to open type (IP00).

If the standard dipole antenna is to be used, then it may also be helpful to snip away a small triangle of material from the center of the access knockout, to provide ample clearance for the antenna as it exits the inverter's enclosure (refer to Figure 6.) This step is not required if the #10694 antenna extension cable or #10693 desktop/magnetic antenna is to be used, as the cables are thinner than the dipole antenna and therefore already have adequate mechanical clearance once the wiring access knockout is removed. The inverter's cover can then be reinstalled, and the antenna rotated to a convenient position (refer to Figure 7.)

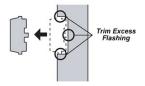


Figure 5: Wiring Access Knockout



Figure 6: Snip for Clearance

Figure 7: Dipole Antenna Installation on Small Inverter

Depending on the internal layouts, <u>large inverters</u> may allow the use of the standard dipole antenna (with no external protrusion), or may require the connection of an antenna extension cable or desktop/magnetic antenna. If the extension cable or desktop antenna is to be used, space is typically available adjacent to the inverter's control circuit terminal block through which the cable can be routed on its way out of the inverter's enclosure.

Regardless of the inverter's capacity, when using the antenna extension cable or desktop/magnetic antenna, simply connect the cable to the interface card's RP-SMA jack, and route the cable/antenna through a convenient access port (such as the wiring access knockout on a small inverter, or a control signal access port on a large inverter). Refer to Figure 8. The antenna can then be externally mounted in any convenient manner (refer to Figure 9).

Figure 8: Optional Antenna Connection

Figure 9: External Antenna

2.5 Initial Wireless Settings

In order to initially connect to a wireless device, the network's wireless access point or router must be configured such that it is compatible with the interface card's initial wireless settings. While these settings can be changed after initial connection, the interface card's factory-default wireless settings are:

"Connect"
Infrastructure
United States
AUTO
Disabled
AUTO
AUTO
012345ABCD
"wpapassphrase"

For further explanation regarding the above wireless configuration settings, refer to section 5.7.5.

2.6 Resetting the Wireless Settings to Factory Defaults

In rare situations, it may become necessary to reset the wireless configuration to factory-default values. This typically occurs if the wireless settings have been customized and subsequently forgotten, and the interface can therefore no longer be associated with a wireless network. Performing this operation will return all of the settings mentioned in section 2.5 to their indicated values, with the exception of the WPA/WPA2 passphrase (which is not modified by this procedure). Because of this, it is recommended that initial contact with the interface after performing this procedure be performed with either no encryption or 64-bit WEP encryption.

Resetting the wireless settings can be accomplished via the following procedure:

- With the inverter unpowered, locate test points TP1 and TP2 on the top side of the interface card, and short them together with a tool such as a flat-bladed screwdriver (refer to Figure 10).
- Apply power to the inverter and observe the interface card's Module Status and Network Status LEDs. These LEDs should initially perform their standard red/green startup sequence. After this, both LEDs will simultaneously turn solid green for one second, then the Module Status LED turns solid red and the Network Status LED turns off.

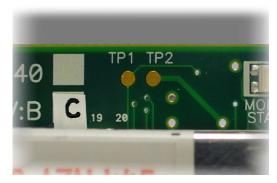


Figure 10: TP1 and TP2

INSTALLATION

3. Remove the short between TP1 and TP2 and cycle power to the inverter. Upon boot-up, the interface card's wireless settings (again, with the exception of the WPA/WPA2 passphrase) will now be at their factory-default values.

At this point, the wireless router's configuration can be modified to be compatible with the interface card's default settings, the interface card can be located with the Finder utility, and the wireless settings can once again be customized via the web interface.

3 INVERTER SETTINGS

The inverter parameters listed in the following table are critical for overall operation of the end-to-end communication system. Some of these parameters must be set to specific values, and some may have multiple allowable settings depending on the desired operation of the overall application. Although there may be many other inverter parameters that will require configuration for your specific application, it is important to understand the manner in which the following parameters will impact successful communications with, and control of the inverter.

Parameter Number	Name	Setting Range	Default Value	Refer to Page
79	Operation mode selection	0 to 4, 6, 7	0	28
331	RS-485 communication station	0 to 247	0	24
332	RS-485 communication speed	3, 6,12, 24, 48, 96, 92, 384	96	25
334	RS-485 communication parity check selection	0 to 2	2	25
338	Communication operation command source	0, 1	0	33
339	Communication speed command source	0, 1, 2	0	33
340	Communication startup mode selection	0, 1, 2, 10, 12	0	28
342	Communication EEPROM write selection	0, 1	0	36
549	Protocol selection	0, 1	1	26
550	NET mode control source selection	0, 1, 9999	9999	32

3.1 RS-485 Communication Settings

Because the FR-A7N-WiE option card communicates with the inverter via the inverter's on-board RS-485 port, certain RS-485 -related inverter parameters must be set appropriately in order to allow the option card to successfully exchange data with the inverter. If any one of these parameters is not correctly configured, the FR-A7N-WiE card will not be able to communicate with the inverter.

REMARKS

Whenever any of the RS-485 communication setting parameters is changed, power to the inverter must be cycled to validate the changes and allow the inverter to begin communicating at the new settings.

3.1.1 RS-485 Communication Station (Pr. 331)

Typically, *Pr. 331* would set the inverter's station number on an RS-485 network. When using the FR-A7N-WiE option card, however, *Pr. 331* must be set to a specific value so that the option card can communicate with the inverter.

Parameter Number	Name	Default Value	Setting Range	Description
331	RS-485 communication station	0	0 to 247	Must be set to a value of "1" in order to allow the option card to communicate with the inverter.

3.1.2 RS-485 Communication Speed (Pr. 332)

Pr. 332 determines the data rate at which the option card will communicate with the inverter.

Parameter Number	Name	Default Value	Setting Range	Description
332	RS-485 communication speed	96	3, 6,12, 24, 48, 96, 92, 384	Must be set to a value of "384" (38.4kbaud), which will allow the option card to communicate with the inverter at the fastest possible rate.

3.1.3 RS-485 Communication Parity Check Selection (Pr. 334)

Pr. 334 determines the parity & stop bit(s) which the inverter and option card will use when communicating with each other.

Parameter Number	Name	Default Value	Setting Range	Description
334	RS-485 communication parity check selection	2	0 to 2	Must be set to a value of "2" (even parity, 1 stop bit)

3.1.4 Protocol Selection (Pr. 549)

Pr.549 determines whether the inverter's RS-485 port will communicate using the Mitsubishi computer-link protocol, or the Modbus RTU protocol (default).

Parameter Number	Name	Default Value	Setting Range	Description
549	Protocol selection	1	0, 1	Must be set to a value of "1" to enable the option card to communicate to the inverter via the Modbus RTU protocol.

3.2 Operation Mode Setting

Three operation modes are available when a communication option card is installed into an inverter.

- 1. PU operation [PU] The inverter is controlled by the operating panel (FR-DU07).
- 2. External operation [EXT] ... The inverter is controlled by the ON/OFF switching of external signals connected to the control circuit terminals (factory default.)
- 3. Network operation [NET]... The inverter is controlled from the network via the communication option card (the operating commands and frequency command can be input via the control circuit terminals depending on the settings of *Pr. 338***Communication operation command source and *Pr. 339 Communication speed command source*. Refer to page 33.)

3.2.1 Operation Mode Indication

FR-DU07

Operation mode indication (the inverter operates in accordance with the indicated LED.)

PU: PU operation mode

EXT: External operation mode NET: Network operation mode

3.2.2 Operation Mode Switching & Comm. Startup Mode (Pr. 79, Pr. 340)

(1) Operation mode switching conditions

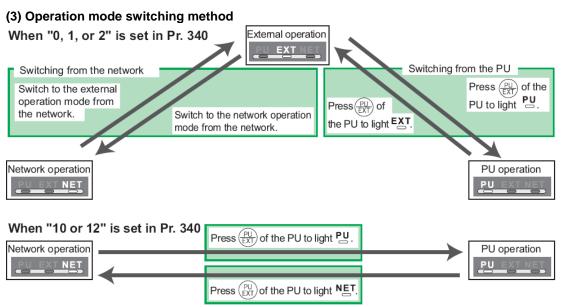
Prior to switching the operation mode, confirm that:

- 1) The inverter is stopped
- 2) Both the STF and STR signals are off
- 3) The *Pr. 79 Operation mode selection* setting is correct. Refer to the appropriate inverter *user's manual (applied)* for further information regarding *Pr. 79*.
- **(2)** Operation mode selection at power on and after recovery from a momentary power failure The operation mode at power on and after recovery from a momentary power failure can be selected via *Pr. 340*. A value other than "0" will select network operation mode. After activating network operation mode, parameter writes from the network are enabled.

REMARKS

- 1. When Pr. 340 is changed, the new setting is validated after powering on or resetting the inverter.
- 2. Pr. 340 can be changed via the operation panel regardless of the operation mode.

Pr. 340 Setting	Pr. 79 Setting	Operation Mode at Power-On or Power Recovery	Operation Mode Switchover				
	0 (default)	External operation mode	Switching among external, PU, and NET operation modes is enabled 1				
	1	PU operation mode	PU operation mode fixed				
	2	External operation mode	Switching between external and NET operation modes is enabled, switching to PU operation mode is disallowed				
0	3, 4	External/PU combined operation mode	Operation mode switching is disallowed				
(default)	6	External operation mode	Switching among external, PU, and NET operation modes is enabled while running.				
	7	X12 (MRS) signal ONexternal operation mode	Switching among external, PU, and NET operation modes is enabled 1				
	,	X12 (MRS) signal OFFexternal operation mode	External operation mode fixed (forcibly switched to external operation mode.)				
	0	NET operation mode					
	1	PU operation mode					
	2	NET operation mode					
1,2	3, 4	External/PU combined operation mode	Same as when <i>Pr. 340</i> = "0"				
	6	NET operation mode					
	7	X12 (MRS) signal ONNET operation mode					
	7	X12 (MRS) signal OFFexternal operation mode					
	0	NET operation mode	Switching between PU and NET operation modes is enabled 3				
	1	PU operation mode	Same as when <i>Pr. 340</i> = "0"				
10, 12	2	NET operation mode	NET operation mode fixed				
*2	3, 4	External/PU combined operation mode	Same as when <i>Pr. 340</i> = "0"				
	6	NET operation mode	Switching between PU and NET operation modes is enabled while running ^{*3}				
	7	External operation mode	Same as when $Pr. 340 = "0"$				


^{*1} The operation mode cannot be directly changed between PU mode and NET mode.

INVERTER SETTINGS

^{*2} *Pr. 340* settings "2" and "12" are mainly used for communication operation using the inverter's RS-485 port. When a value other than "9999" (automatic restart after momentary power failure) is set in *Pr. 57 Restart coasting time*, the inverter will resume the same operation state which it was in prior to a momentary power failure is such a failure occurs. When *Pr. 340* is set to "1" or "10" and a start command is active, then the start command will be deactivated if a momentary power failure occurs.

^{*3} The operation mode can be changed between PU mode and NET mode with the operating panel (FR-DU07) and X65 signal.

For a switching method via external terminal input signals, refer to the inverter's user's manual (applied).

- When starting the inverter in NET mode upon powering-up or after an inverter reset, set a value other than 0 in *Pr. 340*. (Refer to page 28).
- When setting a value other than 0 in Pr. 340, make sure that the initial settings of the inverter are correct.

3.3 Operation & Speed Command Source (Pr.338, Pr.339, Pr.550)

(1) Select control source for NET mode (Pr. 550)

The control location for NET mode can be selected to be from either the inverter's RS-485 port or a plug-on communication option card. Although the option card physically plugs into the inverter's option card slot, it actually communicates to the inverter via the inverter's RS-485 port. Therefore, to control the inverter via the option card, *Pr.* 550 must be set to either "9999" (default) or "1" (RS-485 input valid).

Parameter Number	Name	Default Value	Setting Range	Description
			0	Communication option card control is valid (FR-A7N-WiE control via the inverter's RS-485 port is invalid.)
	NET mode operation command source selection	9999	1	FR-A7N-WiE control via the inverter's RS-485 port is valid (communication option card control is invalid.)
550			9999	Communication option automatic recognition. Normally, control via the inverter's RS-485 port is valid, which includes the situation when an FR-A7N-WiE card is installed. When a non-FR-A7N-WiE communication option card is installed, that communication option card's control is made valid instead of the inverter's RS-485 port.

Refer to the inverter's user's manual (applied) for further details.

(2) Selection of control source for NET mode (Pr. 338, Pr. 339)

Control sources can be subdivided into two separate realms: 1) operation commands such as start/stop signals, etc. and 2) the speed command source that determines the inverter's frequency command. The various combinations of these realms that can be configured are summarized in the following table.

	Control Location Selection		Pr. 338 Communication operation command source		0:NET			1:External			Remarks
				Pr. 339 Communication speed command source	0:NET	1: External	2: External	0:NET	1: External	2: External	Remarks
	Fixed		Runn	ing frequency from communication	NET	_	NET	NET	_	NET	
	ction		Term	inal 2	_	External	_	_	External	_	
	nctio iivale		Term	inal 4	_	Exte	ernal	_	Exte	ernal	
to	ninal		Term	inal 1			Compe	nsation			
		0	RL	Low-speed operation command/ remote setting clear	NET	Exte	ernal	NET	NET External		Pr: 59 = "0"
		1	RM	Middle-speed operation command/ remote setting deceleration	NET	Exte	ernal	NET	Exte	ernal	(multi-speed) Pr. 59 = "1, 2"
functions	settings	2	RH	High-speed operation command/ remote setting acceleration	NET	Exte	ernal	NET	Exte	ernal	(remote)
i;	set	3	RT	Second function selection	NET				External		
Ĭ,	189	4	AU	Terminal 4 input selection	- Combined		_	Com	bined		
		5	JOG	Jog operation selection					External		
Selective	elective	78 to	78 to	Automatic restart after instantaneous power failure selection			External				
Ś	Pr. 1	7	ОН	External thermal relay input		External					
	P	8	REX	'	NET		ernal	NET	Exte	ernal	P_{i} : 59 = "0" (multi-speed)
		9	Х9	Third function		NET External					
		10	X10	Inverter operation enable signal	External						

	Control Location Selection		Pr. 338 Communication operation command source Pr. 339 Communication speed command source			0:NET			1:Externa	ıl	Remarks
						1: External	2: External	0:NET	1: External	2: External	Kemarks
		11	X11	FR-HC connection, instantaneous power failure detection		External					
		12	X12	PU operation external interlock							
		13	X13	External DC injection brake operation is started		NET			External		
		14	X14	PID control valid terminal	NET	Exte	ernal	NET	Exte	ernal	
		15	BRI	Brake opening completion signal		NET			External		
		16	X16	PU operation-external operation switching		Exter					
	so.	17	X17	Load pattern selection forward rotation reverse rotation boost	NET			External			
က္	пg	18	X18	V/F swichover	NET			External			
Selective functions	settings	19	X19	Load torque high speed frequency		NET			External		
unj e	: 189	20	X20	S-pattern acceleration/deceleration C switching terminal		NET			External		
Ęį	178 to Pr.	22	X22	Orientation command *1	NET			External			
<u>8</u>	8 10	23	LX Pre-excitation		NET			External			
Sel				Output stop		Combined	d		External		Pr. 79 ≠ " 7 "
	Pr.	24		PU operation interlock	External			ernal			Pr: 79 = "7" When the X12 signal is not assigned
		25		Start self-holding selection	_		External				
		26 MC Control mode swichover 27 TL Torque limit selection			NET			External			
					NET			External			
		28		Start time tuning		NET			External		
		37	X37	Traverse function selection		NET			External		
		42		Torque bias selection 1 *1		NET			External		
		43		Torque bias selection 2 *1		NET			External		
		44	X44	P/PI control switchover		NET			External		

_	Control Location		Pr. 338 Communication operation command source			0:NET			1:Externa	Remarks	
	Selection			Pr. 339 Communication speed command source	0:NET	1: External	2: External	0:NET	1: External	2: External	Kemarks
		50	SQ Sequence start			Combined			External		
		60	STF	Forward rotation command		NET			External		
		61	STR	Reverse rotation command		NET			External		
	S	62	RES Reset External								
l Si	ı.E	63	PTC	PTC thermistor selection			Exte	rnal			
functions	settings	64	X64	PID forward rotation action switchover	NET	Exte	ernal	NET	Exte	ernal	
ĮΞ	189	65	X65	PU/NET operation switchover		-	Exte	rnal	-		
\ e		66	X66	NET/external operation switchover		External					
cti	to	67	X67	Command source switchover			Exte	rnal			
Selective	. 178	68	NP	Conditional position pulse train sign *1			Exte	rnal			
	Pr.	69	CLR	Conditional position droop pulse clear *1			Exte	rnal			
		70	X70	DC feeding operation permission	NET			External			
	71		X71	DC feeding cancel	NET Ex			External			

^{*1:} Available only when used with the FR-A7AP.

[Table explanation]

ExternalOnly external terminal input control is valid.

NETOnly network control is valid.

Combined......Either external terminal input control or network control is valid.

- Both external terminal input control and network control are invalid.

Compensation External terminal input control is only valid if Pr. 28 Multi-speed input compensation is set to "1".

3.4 Communication EEPROM Write Selection (Pr. 342)

When parameters are written via communications, by default both volatile RAM and nonvolatile EEPROM contents are modified. Due to the limited write cycle lifetime of EEPROM memory, however, it may be desirable to modify only the contents of RAM when frequent parameter writes via communications are necessary.

Parameter Number	Name	Default Value	Setting Range	Description
342	Communication EEPROM write	0	0	Parameter values modified via communications are written to both EEPROM and RAM.
	selection		1	Parameter values modified via communications are written only to RAM.

When frequently modifying parameter values via communications, change the value of Pr. 342 to a "1" in order to write them only to RAM. Performing frequent parameter writes to EEPROM will shorten the lifetime of the component.

REMARKS

When Pr. 342 is set to a value of "1" (write to RAM only), powering off the inverter will erase the changed parameter values. Therefore, the parameter values available when power is switched on again are those that were previously stored in EEPROM.

4 FINDER APPLICATION

4.1 Overview

The "ICC Finder" application is a simple Windows PC program (just a single .exe file, no installations, DLL's etc.), which when executed discovers all ICC communication interfaces on the current Ethernet subnet, regardless of whether or not their network parameters are currently compatible with the subnet upon which they reside. Refer to Figure 11.

In order for the Finder application to discover devices, certain UDP Ethernet traffic must be allowed in and out of the computer, and firewall applications (such as

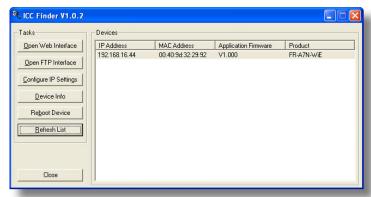


Figure 11: ICC Finder Discovery Utility

Windows Firewall) are often configured to block such traffic by default. If the Finder is unable to discover any devices on the current subnet, be sure to check the computer's firewall settings during troubleshooting, and add an exception to the firewall configuration if necessary.

FINDER APPLICATION

All discovered devices can be organized in ascending or descending order by clicking on the desired sort header (IP Address, MAC Address, Application Firmware or Product). The buttons on the left side of the window perform the following actions:

Open Web Interface: Opens a web browser page of the selected device. Refer to section 5.

Open FTP Interface: Opens the computer's default FTP application, which could be either Windows Explorer, a web browser, or a 3rd-party FTP program (whatever the computer/operating system is configured for by default). This allows you to interact directly with the unit's on-board flash filesystem, enabling you to drag and drop files to/from the unit and upload new firmware. Refer to section 7.

<u>Configure IP Settings</u>: Allows configuration of whether the device will use static IP parameters or will obtain its IP parameters via DHCP. Refer to section 4.2 for more information.

<u>Device Info</u>: Opens a dialog box containing relevant device information.

Reboot Device: Opens a dialog box which prompts for a password to reboot the interface. Enter the case-sensitive system password (default is "icc"), then click **Reboot**. The reboot cycle has completed when the displayed status changes from "Rebooting" to "Ready" (note that this may require 30s or more to complete.) Clicking **Close** will then close the dialog box and cause the discovery utility to automatically rescan the network.

<u>Refresh List</u>: Causes the discovery utility to rescan the network.

Close: Closes the discovery utility.

4.2 Configuring the IP Address

Before you can access the interface from your web browser or begin using it as a part of your automation network, you must know its IP address. The interface comes from the factory configured to obtain an IP address dynamically (DHCP/BOOTP). You can determine the interface's current IP address using the *ICC Finder* application included on the CD provided with the interface, or available from the ICC website at http://www.iccdesigns.com.

4.2.1 Via the Finder Utility

To configure the interface to use a static IP address:

- Connect the interface to your network and apply power to the inverter. When the interface boots up, it will attempt to obtain an IP address from a DHCP server or, failing that, will fall back to either the last static IP address assigned, or a default static IP address of 192.168.16.102 if no static IP address has yet been assigned.
- To determine the initial IP address of your interface, start the ICC FINDER.EXE discovery utility.
- The discovery utility scans the network for ICC devices and then lists each device's IP Address, MAC Address, Firmware Version and Product ID. Refer to Figure 11 on page 37. Identify your device by its unique MAC address (printed on a label on the top of the Ethernet network jack).
- To change the IP address, select the device in the list of detected devices and click the Configure IP Settings button.
- 5. In the dialog that appears, select **Manually configure network settings**.

FINDER APPLICATION

- Enter the desired IP Address, Subnet Mask and Default Gateway in the appropriate boxes, and then click Apply.
- 7. Enter the case-sensitive system password (default is "icc") in the Authentication dialog box.
- 8. A popup dialog box will prompt you to reboot. Click **Reboot Device**. Rebooting may require 30s or more to complete. When the device status indicates "Ready", click **Close**.
- 9. The discovery utility will automatically rescan the network. Confirm that the new IP address has been accepted by the device.

4.2.2 Via the Web Page

Once an initial IP address has been assigned to the device and the configuration web page can be accessed, the IP address-related parameters can also be modified via the web page. Refer to section 5.7.3.

5 EMBEDDED WEB SERVER

5.1 Overview

The interface contains an embedded web server (also known as an HTTP server), which allows users to access the inverter's internal data in a graphical manner with web browsers such as Microsoft Internet Explorer or Mozilla Firefox. In this way, the inverter can be monitored, configured and controlled from across the room or from across the globe.

In order to view the interface's web page, the free Adobe (formerly Macromedia) Flash Player browser plug-in is required. If the plug-in is not already installed on your computer, then your browser will automatically be redirected to the appropriate Adobe download web site when you initially attempt to access the interface's web page. Alternatively, the plug-in can be downloaded directly by going to http://www.adobe.com, and choosing the "get Adobe Flash Player" link. Always ensure that you have the latest version of the Flash Player installed: if some aspect of the web page does not appear to be displayed properly, installing the latest Flash Player update usually resolves the problem.

To access an interface's embedded web server, either use the finder application (refer to section 4) and select the "Open Web Interface" button when the target unit is highlighted, or just directly enter the target unit's IP address into the address (URL) field of your web browser. Refer to Figure 12 for a representative screenshot of the web server interface.

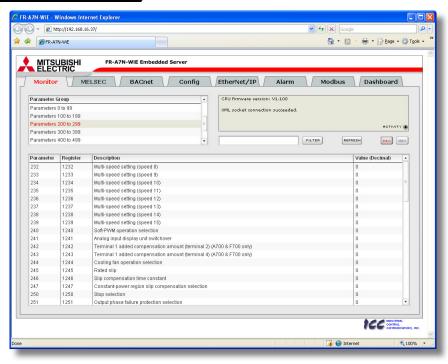


Figure 12: Embedded Web Server

In order to access the web server and view the parameter values, destination TCP ports 80 and 2000 must be accessible from the client computer. If an "XML socket connection failed" error message is displayed in the information window, and no parameter values are shown, this is typically indicative of port 2000 being blocked by a firewall or Ethernet router situated between the client computer and the interface card.

5.2 Authentication

For security, the interface requires valid user authentication whenever the web page is accessed. The authentication request will appear as a browser popup box that will request entry of a user name and password. Refer to Figure 13.

The factory-default user name is "root", and the password is "icc". Note that the username and password are case-sensitive, and that once authenticated, the authentication will remain in effect from that point until all browser windows are closed. The authentication credentials can also be changed from their default settings (refer to section 5.7.2.)

Figure 13: Web Server
Authentication

5.3 Page Select Tabs

The web interface is subdivided into several different "tabs" of associated information, much the same as how folders in a filing cabinet are arranged. Refer to Figure 14. To change tabs, just click on the tab you wish to view. The title of the currently-selected tab is red. Note that because different protocols are supported by the interface with different firmware images, not all tabs may be accessible with the firmware image currently loaded. The titles of tabs that are not accessible are grayed-out, and clicking them has no effect.

Figure 14: Page Select Tabs

5.4 Monitor Tab

5.4.1 Information Window

Figure 15 shows the Information Window, which is located in the upper-right hand corner of the monitor tab. This window displays various informational messages regarding the status of the interface card or web browser session. There is also an "activity" indicator located in the lower-right hand corner of the Information Window, which blinks periodically to show the status of data

Figure 15: Monitor Tab Information Window

communication between the web browser and the interface card. If you do not observe the activity indicator blink at all for several seconds or more, it is possible that the web browser may have lost contact to the web server due to an inverter power cycle or a network problem: to reestablish communications, select "refresh" on your web browser.

5.4.2 Parameter Group Selection List

The Parameter Group Selection List is located in the upper-left hand corner of the Monitor Tab. Refer to Figure 16. Individual groups can be selected by clicking on the group name. Multiple groups may also be selected by holding down the CTRL key while clicking on the group names, or a range of groups can be selected by first selecting the starting group, and then holding down the SHIFT key while selecting the last group in the range. When a parameter group is selected, the parameters contained in that

parameter group are displayed in the Parameter List (refer to section 5.4.3). The following parameter groups are available:

All: All parameters/registers are available.

<u>Command registers:</u> Inverter command registers are available.

<u>Monitor registers:</u> Inverter monitor registers are available.

Figure 16: Parameter Group Selection List

Alarm history registers: Inverter alarm history registers are available.

<u>Universal access registers:</u> The interface card's "universal access registers" are available (refer to section 6.5 for an explanation of the universal access registers).

Parameters 0 to 99: Inverter parameters *Pr. 0* to *Pr. 99* are available.

Parameters 100 to 199: Inverter parameters Pr. 100 to Pr. 199 are available.

Parameters 200 to 299: Inverter parameters Pr. 200 to Pr. 299 are available.

Parameters 300 to 399: Inverter parameters Pr. 300 to Pr. 399 are available.

Parameters 400 to 499: Inverter parameters Pr. 400 to Pr. 499 are available.

Parameters 500 to 599: Inverter parameters Pr. 500 to Pr. 599 are available.

Parameters 600 to 699: Inverter parameters Pr. 600 to Pr. 699 are available.

Parameters 800 to 899: Inverter parameters Pr. 800 to Pr. 899 are available.

Note that because parameters in the "Parameters X00 to X99" groups are non-scanned, their values are not continuously updated from the inverter. For more information regarding scanned vs. non-scanned parameters, refer to sections 5.4.5 and 6.2.

5.4.3 Parameter List

The bottom half of the Monitor tab contains the parameter list (refer to Figure 17). The parameters that are displayed in the list at any given time depend on the parameter groups that are currently selected (refer to section 5.4.2), as well as whether or not any filters have been applied (refer to section 5.4.4).

The first column of the Parameter List shows the inverter parameter (Pr. XXX) number that is normally used when accessing a given register via the inverter's keypad. Note that not all registers will have parameter number entries: command and monitor registers, for example, are not accessed via the inverter's keypad by entering a "Pr. XXX" number, and their associated parameter column fields on the Monitor tab are therefore empty. Also note that this column is for user convenience and inverter user's manual cross-reference only: parameters are not referenced through the interface card by their parameter numbers, but by their register numbers.

The second column of the Parameter List shows the register number that provides network access to each parameter (refer to section 6). The third column contains the parameter descriptions, which are used by the filter function. The last column performs two functions: it displays the current value of the parameter, and (for writable parameters) also allows changing the parameter's value by clicking on the number in the value column and entering the new value.



Figure 17: Parameter List

Some items to keep in mind when interacting with the Parameter List are:

 When entering new parameter values, be sure that the number being entered is appropriate for the currently-selected radix (refer to section 5.4.6): for example, an entered value of "1000" in hexadecimal is equal to 4096 in decimal.

EMBEDDED WEB SERVER

- If desired, the column widths can be changed by dragging the vertical bars that separate the header row's cells to a different position.
- If you begin changing a parameter value and then decide to abandon the change, pressing the ESC key on your keyboard will abandon the change and redisplay the current parameter value.
- When editing a parameter value, clicking someplace off the entry cell is equivalent to hitting the ENTER key.
- The values of all non-scanned (*Pr. XXX*) parameters are only read from the inverter by the web browser when the "refresh" button is clicked (refer to section 5.4.5). Values of non-scanned parameters are immediately written down to the inverter when they are changed, however.

5.4.4 Parameter List Filter

A filter function provides Parameter List search capabilities. To use the filter function, simply type a word or portion of a word into the filter entry box and then click the "filter" button. Refer to Figure 18.

The filter will then display only those parameters currently available in the Parameter List that satisfy the search criteria. For example, to find all monitor parameters that contain some derivative of the word

Figure 18: Parameter List Filter

"volt" (such as "voltage" or "volts"), select the "Monitor parameters" group, enter "volt" in the filter entry box, and then click the "filter" button.

Once a filter has been entered, it will continue to be applied to all information normally displayed in the Parameter List for as long as the filter term is left in the filter entry box. Continuing the previous example where we filtered on the root term "volt" in the monitor parameters, we can then easily apply this filter to all available parameters simply by selecting the "All" parameter group. The Parameter List will now display all command, monitor, alarm history etc. parameters that contain the root term "volt".

To remove the filter, delete any characters contained in the filter entry box and then click the "filter" button.

5.4.5 Non-Scanned Parameter Refresh

The values of all non-scanned (*Pr. XXX*) parameters are only read from the inverter when the "refresh" button (shown in Figure 19) is clicked. Once clicked, the interface card will display the message "refreshing values..." in the Information Window (refer to section 5.4.1), and will begin to retrieve the values of all non-scanned parameters from the inverter. This process may require 5s-10s to complete. When completed, the current values of all non-scanned parameters will be undated in the Parameter List, and the latest the complete of the parameters and the latest and the latest the parameters are only read from the inverter of the complete of the parameters will be undated in the Parameter List, and the latest the parameters of the parameters will be undated in the Parameter List.

Figure 19: Refresh Button

all non-scanned parameters will be updated in the Parameter List, and the Information Window will display the message "refresh completed." For further details regarding scanned vs. non-scanned parameters, refer to section 6.2.

5.4.6 Radix Selection

Figure 20 shows the radix selection buttons. These selection buttons allow changing the Parameter List "value" column data display and entry radix between decimal and hexadecimal formats.

When "DEC" is selected, the "value" column heading will be "Value" (Decimal)", current parameter values will be displayed in decimal, and values to be written to parameters must be entered in decimal format. For example, to change the inverter's frequency command to 40.00Hz, enter the decimal value 4000.

Similarly, when "HEX" is selected, the "value" column heading will be "Value (Hexadecimal)", current parameter values will be displayed in hexadecimal, and values to be written to parameters must be entered in hexadecimal format. For example, to turn on bit #10 in the inverter's command word (MRS), enter the hexadecimal number 0400.

5.5 MELSEC Tab

The MELSEC tab provides for the configuration of the device on an Ethernet network. Refer to Figure 21.

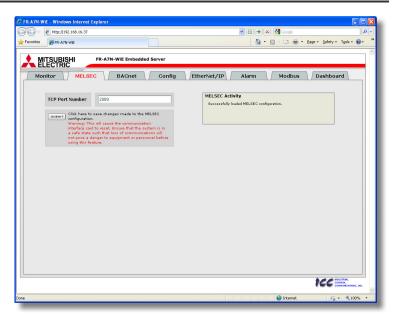


Figure 21: MELSEC Tab

5.5.1 Information Window

Figure 22 shows the Information Window, which is located in the upper-right hand corner of the MELSEC tab. This window displays various informational messages regarding the status of the MELSEC configuration (loading or submitting).

Figure 22: MELSEC Tab Information Window

5.5.2 TCP Port

The MELSEC Server TCP port must be specified before establishing any connections. The text entry box shown in Figure 23 is used to configure the TCP port number.

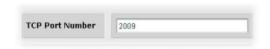


Figure 23: MELSEC TCP Port Number

5.5.3 Submitting Changes

Whenever the MELSEC TCP Port number is changed, the "submit" button located in the left-hand portion of the web page must be clicked in order to write the setting to the interface card's filesystem.

Note that because these configuration elements are read from the filesystem only when the interface card boots up, the act of submitting configuration changes will also reset Click here to save changes made to the MELSEC configuration.

Warning: This will cause the communication interface card to reset. Ensure that the system is in a safe state such that loss of communications will not pose a danger to equipment or personnel before using this feature.

Figure 24: Submit MELSEC Changes

the interface card. Please allow 30 seconds for the interface card to reboot, at which time it will then be operating with the recently-submitted configuration. Refer to Figure 24.

5.6 BACnet Tab

The BACnet tab provides for the configuration of the device on a BACnet/IP network. Refer to Figure 25.

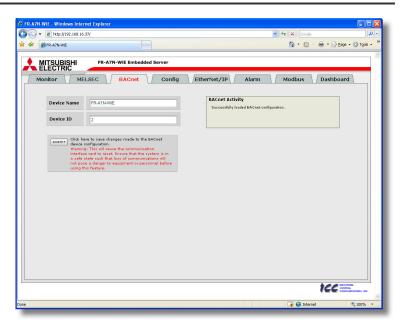


Figure 25: BACnet Tab

5.6.1 Information Window

Figure 26 shows the Information Window, which is located in the upper-right hand corner of the BACnet tab. This window displays various informational messages regarding the status of the BACnet configuration (loading or submitting).

Figure 26: BACnet Tab Information Window

5.6.2 Device Identifiers

A BACnet device's name and ID (the Object_Name and Object_Identifier properties, respectively, of the Device Object) must be unique across the entire BACnet network because they are used to uniquely identify BACnet devices. The text entry boxes shown in Figure 27 are used to configure these unique device identifiers on every inverter.

Figure 27: BACnet Device Identifiers

5.6.3 Submitting Changes

Whenever either of the BACnet configuration elements (Device Name or Device ID) has been changed, the "submit" button located in the left-hand portion of the web page must be clicked in order to write these settings to the interface card's filesystem.

Note that because these configuration elements are read from the filesystem only when the interface card boots up, the act of submitting configuration changes will also reset

Click here to save changes made to the BACnet device configuration.

Warning: This will cause the communication interface card to reset. Ensure that the system is in a safe state such that loss of communications will not pose a danger to equipment or personnel before using this feature.

Figure 28: Submit BACnet Changes

the interface card. Please allow 30 seconds for the interface card to reboot, at which time it will then be operating with the recently-submitted configuration. Refer to Figure 28.

5.7 Config Tab

The Config tab provides access to various configuration items. Refer to Figure 29.

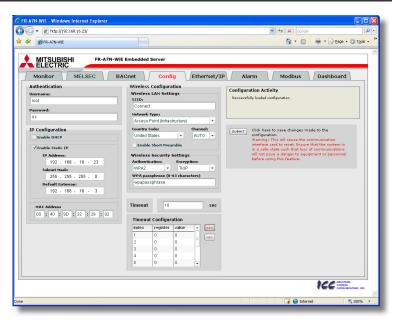


Figure 29: Config Tab

5.7.1 Information Window

Figure 30 shows the Information Window, which is located in the upper-right hand corner of the Config tab. This window displays various informational messages regarding the status of the configuration parameters (loading or submitting).

Figure 30: Config Tab Information Window

5.7.2 Authentication Configuration

Figure 31 shows the entry boxes used to modify the authentication credentials. The case-sensitive username and password can contain letters ("a".."z" and "A".."z") and numbers ("0".."9"), and can each be up to 80 characters in length.

Be sure to make a note of the new settings whenever these credentials are changed, as they must be entered whenever the web page is accessed, an FTP session is initiated, or when a configuration change is performed via the Finder utility. Contact ICC for assistance if you have forgotten your customized credentials.

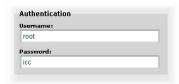


Figure 31: Authentication Configuration

5.7.3 IP Address Configuration

Figure 32 shows the configuration items used to modify the IP address-related parameters. Modification of these settings is consistent with the technique used with the Finder utility (refer to section 4.1).

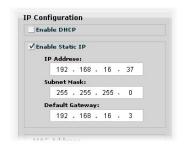


Figure 32: IP Address Configuration

5.7.4 MAC Address Configuration

Figure 33 shows the entry boxes that are used to view and/or modify the unique MAC address of the interface. The MAC address should not be changed without first consulting ICC Technical Support.

Figure 33: MAC Address Configuration

5.7.5 Wireless Settings

Figure 34 shows the wireless configuration items, which must be assigned to have values that are compatible with the remainder of the wireless network installation in order to allow communication. The wireless configuration is comprised of two basic subgroups: the wireless LAN settings and the wireless security settings. The wireless LAN settings define the basic LAN parameters, and are not related to any specific security or encryption settings. The wireless security settings, on the other hand, define the specific authentication and encryption algorithms that are to be used to secure all communication that is carried on the LAN.

SSID: The SSID (Server Set Identifier) is the wireless network name shared among all points in a wireless network. The SSID must be identical for all devices in the wireless network. It is case-sensitive and must be comprised of 1 to 32 characters (any characters are valid). For added security, you should change the default SSID ("Connect") to a unique name after initial configuration.

Figure 34: Wireless Settings

Network Type: By making the appropriate selection you can configure the interface card to either connect to access point (infrastructure) networks only, peer-to-peer (ad-hoc) networks only, or any available wireless network (infrastructure or ad-hoc).

<u>Country Code:</u> Availability of Wi-Fi channels and maximum allowable transmission power is regulated by country, constrained in part by how each country allocates radio spectrum to various services. By

properly setting the country code to the country in which the interface is currently installed, the interface will automatically compensate for the legally-allowed channel set and transmission power.

<u>Channel:</u> The list of available channels will depend on the Country Code setting. Select a specific wireless channel, or select "auto" to allow the interface card to scan all available frequencies until it locates an available wireless network that it can join.

Enable Short Preamble: Using short preambles can boost wireless network throughput. Select this checkbox if your wireless network supports this feature.

<u>Authentication:</u> The interface supports five different types of authentication: NONE, WEP, WPA, WPA2 and AUTO. The default setting is AUTO.

NONE may be chosen if wireless security is not desired.

WEP (Wired Equivalency Privacy) and WPA/WPA2 (Wi-Fi Protected Access) offer different levels of security for wireless communication. A network encrypted with WPA/WPA2 is more secure than a network encrypted with WEP, because WPA/WPA2 uses dynamic key encryption. To protect the information as it passes over the airwaves, the highest level of encryption supported by the installed equipment should typically be enabled.

AUTO allows the interface to automatically detect and use the authentication method currently being enforced on the network (NONE, WEP, WPA or WPA2). Note that even though the authentication method and encryption (TKIP or AES for WPA/WPA2 and 64-bit or 128-bit key for WEP) will automatically be detected by the interface, the appropriate key information (WEP key or WPA

EMBEDDED WEB SERVER

passphrase) must still match the remainder of the network's settings. It is therefore expected that the AUTO setting will typically only be used during initial contact with the interface card, and that the network's pre-determined security settings will then be selected on the interface as part of the commissioning process.

Encryption: The encryption selection field options depend on the authentication algorithm currently selected. WEP supports two encryption methods: 64-bit and 128-bit. WPA/WPA2 also supports two encryption methods: TKIP (Temporal Key Integrity Protocol) and AES (Advanced Encryption Standard). The default encryption method for WEP is 64-bit, and for WPA/WPA2 is TKIP.

<u>Passphrase/Key:</u> The last remaining field in the wireless security settings group depends on the authentication and encryption methods selected. When 64-bit WEP is selected, this field allows entry of a WEP key comprised of 10 hexadecimal digits (0..9, A..F.) The default 64-bit key is 012345ABCD. When 128-bit WEP is selected, this field allows entry of a WEP key comprised of 26 hexadecimal digits. When WPA/WPA2 is selected (regardless of TKIP or AES encryption), this field allows entry of an 8-63 character passphrase (the default is "wpapassphrase".)

5.7.6 Timeout Configuration

The interface can be configured to perform a specific set of actions when network communications are lost. Support for this feature varies depending on the protocol: refer to the protocol-specific section of this manual for further information.

There are two separate elements that comprise the timeout configuration (refer to Figure 35):

- The timeout time
- The timeout configuration array

The *timeout time* is a floating-point number which allows adjustment down to $1/100^{th}$ of a second (0.01 second increments). This time setting is used by certain protocols in order to determine abnormal

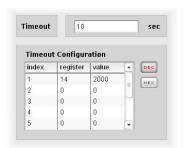


Figure 35: Timeout Configuration

loss-of-communications conditions and, optionally, to trigger a timeout processing event. The default timeout time is 10s.

The *timeout configuration array* allows up to 10 register/value pairs to be designated by the user. When a timeout event is triggered by a protocol, the timeout configuration array indexes are parsed. If the "register" field for an index is set to 0, then this index is "disabled" and therefore ignored. If, on the other hand, the "register" field is non-zero, then the value contained in the "value" field is automatically written to the designated register. This flexible mechanism allows up to 10 designated inverter registers to have their own unique "fail-safe" conditions in the event of a network interruption.

EMBEDDED WEB SERVER

For example, Figure 35 shows a timeout time of 10s, and one timeout entry assignment. If a protocol that makes use of timeout processing triggers a timeout event, then a value of 2000 will automatically be written to inverter register 14 (the frequency command). Provided the inverter has a valid "run" command and is currently configured to use the network frequency command as its master frequency command, it will ramp to 20.00Hz.

If timeout/failsafe processing is not desired, just set the "register" fields for all indexes to 0 (disabled). This is the default condition.

"DEC" and "HEX" selection buttons are also available, and allow changing the "value" column data display and entry radix between decimal and hexadecimal formats, respectively. These buttons provide the ability to interact with the various inverter registers in their most natural radix (e.g. a hexadecimal command word vs. a decimal frequency command value).

5.7.7 Submitting Changes

Whenever any of the configuration elements has been changed, the "submit" button located in the right-hand portion of the web page must be clicked in order to write these settings to the interface card's filesystem.

Note that because these configuration elements are read from the filesystem only when the interface card boots up, the act of submitting configuration changes will also reset the interface card. Please allow 30 seconds for the interface card to reboot, at which time it will then be operating with the recently-submitted configuration. Refer to Figure 36.

Figure 36: Submit Configuration Changes

5.8 EtherNet/IP Tab

The EtherNet/IP tab provides access to configuration items related to communication on an EtherNet/IP network. Refer to Figure 37.

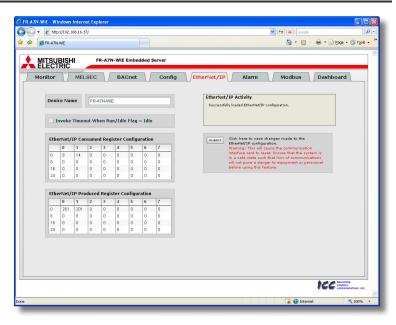


Figure 37: EtherNet/IP Tab

5.8.1 Information Window

Figure 38 shows the Information Window, which is located in the upper-right hand corner of the EtherNet/IP tab. This window displays various informational messages regarding the status of the EtherNet/IP configuration parameters (loading or submitting).

5.8.2 Device Identification

A text entry box is available which allows customization of the device's name for identification on the EtherNet/IP network. This string is accessible as the "product name" attribute of the identity object. Refer to Figure 39.

5.8.3 Run/Idle Flag Behavior

EtherNet/IP clients (such as PLCs) have the option of adding a 32-bit "run/idle" header to all class 1 (I/O) data packets sent to devices. Bit 0 of this header is called the "run/idle flag" by the EtherNet/IP specification, and is intended to signify when the client is in a "running" state or an "idle" state. A

Figure 38: EtherNet/IP Tab Information Window

Figure 39: EtherNet/IP Device Identification

Figure 40: Run/Idle Flag Behavior Selection

running state (run/idle flag = Run) is indicated whenever the client is performing its normal processing (e.g. scanning its ladder logic). An idle state (run/idle flag = Idle) is indicated otherwise. For example, Allen Bradley ControlLogix PLCs will set their run/idle flag to Idle whenever their processor keyswitch is placed in the "PROG" position, presumably in preparation to receive a new application program from RSLogix.

The behavior of EtherNet/IP devices when they receive I/O data from a controller with the run/idle flag set to Idle is not specified in the EtherNet/IP specification. The interface card allows the option of two different behavioral responses when a run/idle flag = Idle condition is received, depending on the state of the checkbox indicated in Figure 40.

- If the checkbox is cleared (default setting), then the interface card will maintain the last I/O data values received from the client. For example, if the inverter was being commanded to run prior to the run/idle flag being set to Idle, then it will continue to run.
- If the checkbox is checked, then the interface card will invoke its user-configured timeout processing (refer to section 5.7.6). This setting allows the user to determine any inverter behavior they may desire (stop the inverter, fault the inverter, ramp to a preset speed, etc.)

5.8.4 Class 1 (I/O) Data Configuration Arrays

The interface card supports two different types of EtherNet/IP class 1 (I/O) data transfer. One type is included with the implementation of the AC/DC drive profile, and requires no user configuration. The other type, however, is entirely user-configurable, and is utilized when the client opens a connection to the interface using assembly instances 100 and 150.

The user-configurable data arrays consist of two separate elements (refer to Figure 41.) The <u>consumed register</u> <u>configuration</u> defines the structure of the command data sent from the EtherNet/IP controller (for example, a ControlLogix PLC) to the inverter, and the <u>produced register configuration</u> defines the structure of the status data sent from the inverter back to the controller. These arrays allow the creation of custom-built I/O data. Up to 32 command registers can be sent to the inverter, and up to 32 status registers can be sent back to the controller. Each box in an array is capable of containing a register number. Because all inverter registers are 16-bit data elements, each box therefore represents two bytes of consumed or produced data.

	0	1	2	3	4	5	6	7
0	9	14	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0
the	ernet/1	(P Pro	duce	d Regis	ster Co	onfigu	ration	
Ethe	ernet/I	IP Pro	duce:	d Regis	ster Co	onfigu 5	ration	7
E the								7
	0	1	2	3	4	5	6	- 1
0	261	201	0	0	0	5	6	0

Figure 41: EtherNet/IP Class 1 (I/O) Data Configuration

Each of the register array locations are numbered 0-31, and traverse from left to right across each row, and then

increment to the left-most position on the next row. Clicking on a box in an array allows the user to enter a register number that will be referenced at that location when data is either consumed from the controller or produced to the network. Note that only scanned registers may be entered into the register array locations: if an attempt is made to enter a non-scanned register number, an error dialog box will appear (refer to section 6.2 for an explanation of scanned vs. non-scanned registers.) A value of 0 indicates that no register is referenced at that location, which will cause the corresponding consumed data to be ignored and produced data to be a default value of 0.

EMBEDDED WEB SERVER

As an example, looking at the default configuration shown in Figure 41, we can see that each array contains two defined registers. Therefore, up to 4 "meaningful" bytes of data can be both received and sent (the qualifier "meaningful" is used here because the connection sizes configured in the controller may request larger consumed and/or produced data sizes, but all unreferenced consumed data will be ignored, and all unreferenced produced data will contain dummy "0" values). The first word (two bytes) of consumed data will be written to register 9 (command register) and the second word will be written to register 14 (frequency command). Similarly, the first word of produced data will contain the value of register 261 (status register) and the second word will contain the value of register 201 (output frequency).

5.8.5 Submitting Changes

Whenever any of the EtherNet/IP configuration elements (Device Name or I/O array configurations) have been changed, the "submit" button located in the right-hand portion of the web page must be clicked in order to write these settings to the interface card's filesystem.

Note that because these configuration elements are read from the filesystem only when the interface card boots up, the act of submitting configuration changes will also reset the interface card. Please allow 30 seconds for the interface card to reboot, at which time it will then be operating with the recently-submitted configuration. Refer to Figure 42.

Figure 42: Submit Configuration Changes

5.9 Alarm Tab

The Alarm tab provides a configurable mechanism by which the interface card can autonomously monitor any available inverter register and send emails to up to four recipients when a certain condition is detected. The alarm conditions have both value and time constraints, and can be configured to retrigger at a fixed interval as long as the alarm condition continues to be satisfied. Twenty individually-configurable alarms are available. Refer to Figure 43.

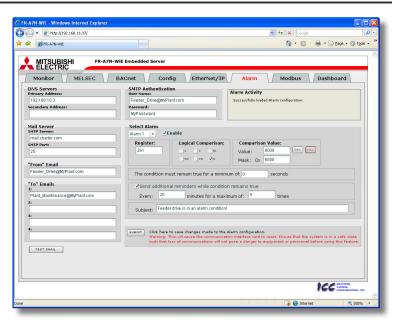


Figure 43: Alarm Tab

5.9.1 Information Window

Figure 44 shows the Information Window, which is located in the upper-right hand corner of the Alarm tab. This window displays various informational messages regarding the status of the Alarm configuration parameters (loading or submitting) and test emails.

Figure 44: Alarm Tab Information Window

5.9.2 Email Configuration

In order for an alarm trigger to successfully send a notification email, some network settings must first be configured properly (refer to Figure 45 and Figure 46.)

<u>DNS Servers:</u> Enter the dotted-decimal IP addresses of the primary and secondary DNS servers which will be used to resolve the configured SMTP server name. Only the primary DNS server is required, but if a secondary DNS server is entered, then it will be used if the primary server is inaccessible.

<u>Mail Server:</u> Enter the SMTP server address as a name or as a dotted-decimal IP address, and the SMTP port (default=25) that the SMTP server listens for incoming emails on.

<u>"From" Email:</u> Enter the email address that will appear as the sender's email address in the email headers.

<u>"To" Emails:</u> Up to four recipients can be designated to receive alarm emails. Blank entries will not be processed by the interface.

"Test Email" Button: When the "Test Email" button is pressed, the interface card will use the information currently entered in the above-mentioned fields to send a test email. Note that you do not have to first "authorit" the posttings to the interface cardio filesystem (refer to accomplishing the continuous testings to the interface cardio filesystem (refer to accomplishing the continuous testings).

Figure 45: Email Configuration

first "submit" the settings to the interface card's filesystem (refer to section 5.9.4) in order to test them:

fields can be changed and retested on-the-fly without affecting the operation of the interface card's control protocols. When the correct settings have been confirmed with a successfully-sent test email, "submit" the changes at that time to commit them to the interface card's filesystem: any changes made prior to submitting as described in section 5.9.4 are temporary only and will be lost if a different configuration tab is selected or if the web browser is closed.

SMTP Authentication: Some email servers require that clients wishing to send emails first authenticate themselves. If the email server in use requires authentication, then enter the user name and password as indicated in Figure 46. If the email server in use does not require authentication, then these entries can be disregarded.

Figure 46: SMTP AUTH Configuration

When a test email transmission is initiated, completes successfully, or fails due to an error, the information window (refer to section 5.9.1) will display appropriate messages such as those shown in Figure 47 and Figure 48. Although the test email is sent

Figure 47: Information Window at Test Email Initiation

Figure 48: Information Window at Test Email Successful Completion

immediately, note that due to internet and/or email server delays, it may take several minutes to receive test emails.

5.9.3 Alarm Configuration

The interface supports twenty independently-configurable alarms. As shown in Figure 49, each alarm has a variety of configuration elements, which will be explained further below.

<u>Alarm Selection:</u> This drop-down box allows the selection of one of the twenty available alarms. When an alarm is selected, that alarm's current configuration parameters will be populated in the alarm configuration box.

<u>"Enable" Check Box:</u> If checked, this alarm is active and will be evaluated every second. If unchecked, this alarm is inactive and will therefore not be evaluated.

Register: Enter the inverter register number that this alarm will continuously monitor. For example, the alarm displayed in Figure 49 is configured to monitor register 261, which is the inverter status register. Note that only scanned

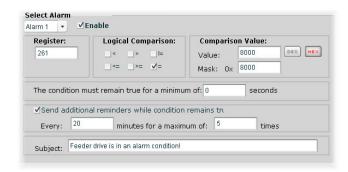


Figure 49: Alarm Configuration Box

registers may be used for alarms (refer to section 6.2).

<u>Logical Comparison:</u> Choose a comparison operator which will be used to compare the current value of the indicated "Register" with the reference "Comparison Value". Available selections are "less than" (<), "less than or equal to" (<=), "greater than" (>), "greater than or equal to" (>=), "not equal to" (!=), and "equal to" (=).

<u>Comparison Value:</u> The reference comparison value is comprised of two subcomponents: a "Mask" field and a "Value" field. Each time the alarm is evaluated, the current value of the indicated "Register" is first bit-wise "AND"ed with the "Mask" field. The resulting derived value is then compared with the "Value" field by way of the "Logical Comparison" operator. While the "Mask" field is always a hexadecimal number, the display and entry radix of the "Value" field can be changed between decimal and hexadecimal with the associated "DEC" and "HEX" buttons.

Registers that correspond to "analog" process variables (e.g. frequencies, voltages, etc.) should typically have their "Mask" fields set to 0xFFFF, which causes all data bits to be retained for the "Value" field comparison. For registers that correspond to "enumerated" process variables (e.g. status words where each bit of the register indicates a different item), however, the "Mask" can be chosen to single out one or more specific data bits of the register. For example, the "Mask" value of 0x8000 displayed in Figure 49 isolates bit #15 of the inverter status register, which indicates whether or not an inverter "alarm occurrence" state exists. The "Value" field is also set to a hexadecimal value of 0x8000, so the alarm condition will be evaluated as "true" when bit #15 of the inverter status register equals 1.

<u>The Condition Must Remain True For A Minimum Of:</u> Alarm analysis processing is performed by the interface card once per second. Enter the number of seconds that the condition must be continuously

evaluated as "true" for the alarm to be triggered. A time of 0 seconds means that just a single evaluation of "true" will immediately trigger the alarm.

<u>Send Additional Reminders While The Condition Remains True:</u> If this check box is unchecked, then only one email transmission event will occur when an alarm condition is triggered: further email transmissions will not be attempted for this alarm unless the alarm condition is first evaluated as "false" (which resets the alarm), and then once again is triggered by a subsequent event.

If this check box is checked, then as long as the alarm condition continues to be evaluated as "true", subsequent email transmissions will be automatically retriggered every indicated number of minutes for a maximum of the indicated number of times. If at any time during the subsequent transmissions the alarm condition is evaluated as "false", then the alarm will be reset and email transmissions for this alarm will stop (until the next time the alarm is triggered, of course).

<u>Subject:</u> Enter a string of up to 128 characters in length which will appear in the "subject" line of the alarm email. The body of the alarm email is empty.

5.9.4 Submitting Changes

Whenever any of the Alarm configuration elements (alarm settings or email configuration parameters) have been changed, the "submit" button located in the lower right-hand portion of the web page must be clicked in order to write these settings to the interface card's filesystem.

Note that because these configuration elements are read from the filesystem only when the interface card boots up, the act of submitting configuration changes will also reset the interface card. Please

allow 30 seconds for the interface card to reboot, at which time it will then be operating with the recently-submitted configuration. Refer to Figure 50.

Figure 50: Submit Configuration Changes

5.10 Modbus Tab

The Modbus tab provides access to configuration items related to communication on a Modbus/TCP network. Refer to Figure 51.

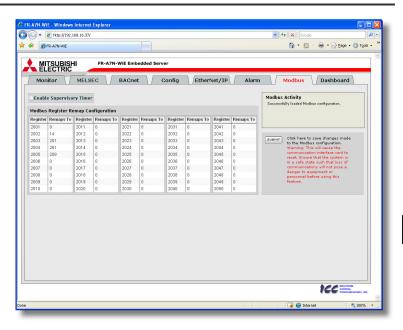


Figure 51: Modbus Tab

5.10.1 Information Window

Figure 52 shows the Information Window, which is located in the upper-right hand corner of the Modbus tab. This window displays various informational messages regarding the status of the Modbus configuration parameters (loading or submitting).

Figure 52: Modbus Tab Information Window

5.10.2 Supervisory Timer Selection

Figure 53 shows the checkbox which enables the interface card's Modbus "supervisory timer" function. This timer provides the ability for the interface card to monitor timeout occurrences between successive Modbus/TCP socket connections, as opposed to the standard timeout functionality (refer to section 5.7.6), which monitors timeout occurrences only within the scope of each client socket connection. While this feature provides an additional level of

Figure 53: Supervisory Timer Selection

fail-safe functionality for those applications that require it, there are several ramifications that must be understood prior to enabling this capability. Before enabling this timer, therefore, it is suggested that users read the ICC whitepaper titled "<u>A Discussion of Modbus/TCP Server-Side Timeout Processing</u>", which can be found in the documents section at http://www.iccdesigns.com.

5.10.3 Register Remap Configuration

At times, it may be convenient to access inverter registers in bulk Modbus transactions. This may be especially true in situations where it is desired to access certain registers that are natively non-contiguous. For example, if it were desired to read the inverter's operating frequency (register 201), inverter status (register 261) and converter output voltage (register 208), this could be accomplished in two different ways:

- 1. Implement three separate Modbus read transactions, each one reading one register only, or
- Implement one single Modbus read transaction, starting at register 201 for a quantity of 61 registers. Then, pick out the registers of interest and ignore the rest of the response data.

While both of these methods will certainly work, neither one of them is optimized for the task at hand, which is to access three specific register values. A fully optimized solution can be realized, however, by making use of the interface card's Modbus register remapping capabilities. This mechanism operates by allocating a block of 50 user-configurable registers (2001..2050) that remap to other inverter registers. In this way, non-contiguous inverter registers can be grouped together in any order and accessed efficiently via the Modbus/TCP "read multiple registers" and "write multiple registers" function codes. The net effect is one of being able to transfer larger blocks of registers using fewer Modbus transactions, which results in improved network utilization and simpler data manipulation code on the Modbus master device.

Modbus Register Remap Configuration										
Register	Remaps To	Register	Remaps To	Register	Remaps To	Register	Remaps To	Register	Remaps To	
2001	9	2011	0	2021	0	2031	0	2041	0	
2002	14	2012	0	2022	0	2032	0	2042	0	
2003	201	2013	0	2023	0	2033	0	2043	0	
2004	261	2014	0	2024	0	2034	0	2044	0	
2005	208	2015	0	2025	0	2035	0	2045	0	
2006	0	2016	0	2026	0	2036	0	2046	0	
2007	0	2017	0	2027	0	2037	0	2047	0	
2008	0	2018	0	2028	0	2038	0	2048	0	
2009	0	2019	0	2029	0	2039	0	2049	0	
2010	0	2020	0	2030	0	2040	0	2050	0	

Figure 54: Modbus/TCP Register Remap Configuration

Figure 54 shows the register remap configuration array. Clicking on an entry field in the "Remaps To" column allows the user to enter an inverter register number that will then be accessible at the register indicated in the adjacent "Register" column. An assignment of 0 in the "Remaps To" column indicates that no inverter register is remapped at that location, which results in written values being ignored and read values returned as a default value of 0. Note that remapped inverter registers are still accessible at their original locations: remapping simply provides an additional means of accessing the original register's value.

As an example, the configuration shown in Figure 54 reveals that a total of five inverter registers have been remapped: register 9 (command word) has been remapped to register 2001, register 14 (frequency

command) has been remapped to register 2002, register 201 (output frequency) has been remapped to register 2003, register 261 (inverter status) has been remapped to register 2004, and register 208 (converter output voltage) has been remapped to register 2005. With this configuration, it is now possible to efficiently interact with these five non-contiguous inverter registers via just two Modbus "read/write multiple registers" transactions. Writing to the command word and frequency command can be accomplished with a single "write multiple registers" transaction by writing a quantity of two registers starting at register 2001. Similarly, reading the output frequency, inverter status word and converter output voltage (in that order) can be accomplished with a single "read multiple registers" transaction by reading a quantity of three registers starting at register 2003.

5.10.4 Submitting Changes

Whenever the Modbus configuration has been changed, the "submit" button located on the right-hand portion of the web page must be clicked in order to write these settings to the interface card's filesystem. Refer to Figure 55.

Note that because these configuration elements are read from the filesystem only when the interface card boots up, the act of submitting configuration changes will also reset the interface card. Please allow 30 seconds for the interface card to reboot, at which time it will then be operating with the recently-submitted configuration.

Figure 55: Submit Configuration Changes

5.11 Dashboard Tab

The Dashboard Tab provides access to a variety of gauges, meters and graphs that can be configured to provide an at-a-glance graphical overview of critical application variables in real-time. A total of 10 gauge windows are available (four at a time), and each gauge window can be configured to display any scanned register's value via one of six different gauge types. User-defined engineering units, scaling and range limits are also configurable. Refer to Figure 56.

Figure 56: Dashboard Tab

5.11.1 Information Window

Figure 57 shows the Information Window, which is located in the upperright hand corner of the Dashboard Tab. This window displays various informational messages regarding the status of the Dashboard configuration parameters (loading or submitting).

Figure 57: Dashboard Tab Information Window

5.11.2 Gauge Window Navigation

Figure 58 shows the two buttons that provide for navigation of the gauge windows. Gauge windows are displayed four at a time in the Dashboard Tab, and by clicking the "Up" or "Down" buttons, the gauge windows will scroll in the corresponding direction, two at a time.

Figure 58: Gauge Window Navigation

5.11.3 Gauge Window Configuration

Each of the gauge windows can be independently configured to display a user-defined register with a variety of flexible configuration options. While the behavior and presentation may vary slightly

depending on the specific gauge chosen, all of the gauges share the following common elements (refer to Figure 59 for an example):

<u>Gauge Selector:</u> A drop-down selection box in the upper left-hand corner of the gauge window, which allows the user to select the type of gauge that will be displayed.

<u>Title:</u> A text entry box located above the gauge, in which the user can enter a descriptive gauge title comprised of up to 16 characters.

<u>Units:</u> A text entry box in which the user can enter an engineering units string comprised of up to 8 characters. This units string will be appended to all locations in the gauge window that display the designated register's current value.

<u>Register:</u> The designated register whose value is to be reflected on the gauge. Note that only scanned registers may be displayed in Dashboard gauges (refer to section 6.2 for a discussion of scanned registers).

<u>Multiplier:</u> The multiplier value is a floating-point number that is used to scale the raw value of a register. As its name suggests, the multiplier value is multiplied by the designated register's current raw value in order to calculate the gauge's indicated value. Negative values can also be used if desired.

<u>Min Value</u>: The gauge's minimum indicated value. Negative values can be used if desired (e.g. if a negative Multiplier attribute is used to generate a negative indicated value). Not all gauges allow adjustment of the min value.

<u>Max Value</u>: The gauge's maximum indicated value. Similar to the Min Value attribute, negative values can be used if desired. Indicated value characteristics can even be inverted by setting the Max Value attribute to a value less than the Min Value attribute.

<u>Update Button:</u> Clicking the update button will apply the current configuration attribute settings to the gauge. Note, however, that simply updating the gauge's current display properties <u>does not write these settings to the interface card's filesystem</u>. To save the current configuration of all the gauge windows to the filesystem, the Dashboard tab's "submit" button must be selected (refer to section 5.11.4).

<u>Current Value:</u> The current indicated value of the designated register is numerically displayed with the configured Units string at the bottom of each gauge window.

The following is a summary of the different available gauge types:

<u>Gauge:</u> Refer to Figure 59. This type of meter implements a rotary dial-type display format. The indicated value and units are shown numerically on the face of the gauge, and via the red indicator needle. The yellow needle shows the previous indicated value, thereby providing a simple historical reference. The "Min Value" attribute is not configurable; this gauge always starts at 0.

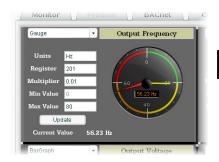


Figure 59: Gauge

EMBEDDED WEB SERVER

BarGraph: Refer to Figure 60. This type of meter implements a linear bar graph display format. Hovering the mouse pointer over the red portion of the graph pops up a tooltip which displays the current indicated value and units.

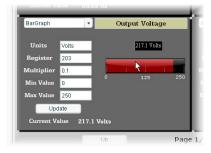


Figure 60: BarGraph

Meter: Refer to Figure 61. This type of meter implements a common panel meter-type display format. The units string is shown on the face of the meter. All raw register values are interpreted as positive numbers (i.e. 0..0xFFFF equates to 0..65535₁₀.)

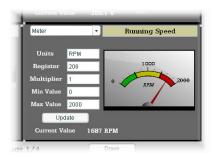


Figure 61: Meter

Pos/Neg Meter: Refer to Figure 62. Similar to the "meter" gauge, this type of meter also implements a common panel meter-type display format, but in this instance the indicated value can be positive or negative (two's complement interpretation). In other words, raw register values of 0..0x7FFF equate to 0..32767₁₀, and values of 0x8000..0xFFFF equate to -32768..-1. Because the meter placard is always centered around zero, the "Min Value" attribute is not configurable, and the "Max Value" attribute is used for both the maximum positive indicated value as well as the maximum negative indicated value.

<u>Thermometer:</u> Refer to Figure 63. This type of meter implements the universally-identifiable thermometer display format. Hovering the mouse pointer over the red "mercury" portion of the graph pops up a tooltip which displays the current indicated value and units.

Figure 62: Pos/Neg Meter



Figure 63: Thermometer

EMBEDDED WEB SERVER

<u>Line Graph:</u> Refer to Figure 64. This type of graph implements a continuously-scrolling historical data logging line graph. Up to 80 seconds worth of historical data is available. Hovering the mouse pointer anywhere on the graph displays a vertical reference line at the corresponding time, and pops up a tooltip which displays the current indicated value at that time.

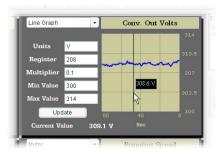


Figure 64: Line Graph

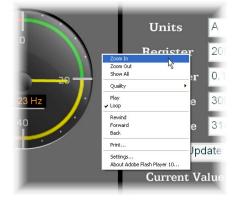


Figure 65: Zooming

Tip

At times, it may be convenient to zoom in on a particular gauge or meter in order to more clearly see the indicator, or to fill the computer screen with a particular gauge's image. This can be easily accomplished with the web browser's Flash Player plug-in by right-clicking on the gauge and selecting the desired zoom level (refer to Figure 65).

5.11.4 Submitting Changes

Whenever any of the gauge window configuration items in the Dashboard Tab have been changed, the "submit" button located on the right-hand portion of the web page must be selected in order to write these settings to the interface card's filesystem. Refer to Figure 66. Note that submitting the Dashboard Tab configuration does not require rebooting of the interface card: the changes take effect immediately, and the interface card continues its operation without interruption.

Figure 66: Submit Dashboard Changes

6 PARAMETER NUMBERING AND BEHAVIOR

6.1 Register Numbers

All accessible inverter parameters are referenced by their Modbus register indexes, as defined in the appropriate Mitsubishi inverter user's manual. Refer to the applicable inverter user's manual for further details pertaining to each register/parameter. These same register numbers are used when accessing and configuring parameters via an Ethernet protocol.

Note that not all of the available registers that exist in the interface card's register map have corresponding parameters that exist in the inverter. In other words, if a read from or write to a register that does not correspond to an existing inverter parameter takes place, the read/write may be successful (depending on the specific register accessed; refer to section 6.2), but the data will have no meaning. This feature is beneficial in situations where the accessing of non-contiguous registers can be made more efficient by accessing an all-inclusive block of registers (some of which correspond to inverter parameters and some of which do not), while only manipulating those in your local programming that are known to exist.

6.2 Scanned and Non-Scanned Registers

The interface card provides network access to inverter registers as two different classes. The first class, called "**scanned registers**" is comprised all inverter command and monitor registers, which exist in the inverter as register numbers 2 (inverter reset) through 508 (alarm history 8). These registers are

constantly being "scanned" by the interface card, which is to say that they are constantly being read and/or written (as applicable), and their current values are therefore mirrored in the interface card's internal memory. Because these inverter registers are mirrored by the interface card, they have the following advantages:

- Access speed: when a network protocol accesses a scanned register (read or write), the value
 is available immediately. The interface card does not have to make a corresponding request to
 the inverter to resolve the network access.
- In the web browser's monitor tab, the values of scanned registers are continuously updated. An explicit on-demand "refresh" does not have to be initiated in order to view the current inverter values (refer to section 5.4.5).
- Only scanned registers may be used when configuring alarm processing (section 5.9), dashboard gauges (section 5.11) and I/O protocols (such as EtherNet/IP consumed & produced data configuration arrays).

The principle disadvantage of scanned registers is that write data checking is not available. This means that when the value of a scanned register is modified via a network protocol or via the web browser's monitor tab, the interface card itself is not able to determine if the new value will be accepted by the inverter (the value may be out-of-range, or the inverter may be in a state in which it will not accept new values being written via communications, etc.) For example, if a write is performed to a scanned command register with a data value that is out-of-range, the interface card will not generate a corresponding error. However, if end-to-end confirmation of such data writes is required, then the register can be read over the network at a later time to confirm that the written value "took hold" in the inverter. If the value was not accepted by the inverter, then the unsuccessful write can be observed by

PARAMETER NUMBERING

reading the current (unchanged) value of the register during a subsequent network transaction. If the unsuccessful write was initiated via the web browser's monitor tab, then the displayed register will revert back to its original value automatically.

Visually, scanned registers are easily identifiable on the web server monitor tab by virtue of the fact that they do not have any entries in the "Parameter" column. This is because these registers are not accessed from the inverter's keypad as configuration parameters (i.e. by navigating to a *Pr. XXX* reference).

Accesses to any register in the scanned register range (2..508) will always be successful. Even if an inverter parameter corresponding to a given scanned register does not exist, the interface card still maintains a location in its internal mirroring memory for that register. This feature allows for the block access of non-contiguous registers as described in section 6.1.

The second class of registers is called "non-scanned registers", and is comprised of all inverter configuration registers (those which are accessible as *Pr. XXX* parameters via the inverter's keypad). The inverter itself exposes all configuration parameters externally as registers by adding 1000 to the parameter number. For example, the acceleration time parameter (Pr. 7) is made available by the inverter as register 1007. The non-scanned registers, therefore, exist as register numbers 1000 (torque boost) through 1899 (operation time rate). Non-scanned registers are <u>not</u> continuously accessed by the interface card. What this means is that for those protocols that allow accesses to non-scanned registers, such accesses will incur additional response latency, as the interface card must first forward the request to the inverter for it to process.

While the principle disadvantage of accessing non-scanned registers is the additional delay that is incurred, the unique advantage that non-scanned register accesses provide is that write data checking is available. Because all non-scanned register accesses must first be processed by the inverter itself, issues such as out-of-range data values will always be checked for, and any applicable errors will be immediately returned to the originating network protocol.

For those protocols (such as Modbus/TCP) that allow access to non-scanned registers, note that the inverter applies the following rules to these accesses:

- If only one non-scanned register is accessed, then that register must exist in the inverter, or an
 error will be returned.
- If more than one non-scanned register is accessed, then at least one register within the requested range must exist in the inverter, or an error will be returned.

6.3 Inverter Command and Status Register

Inspection of the 700-series inverter user's manual reveals that the inverter has a combined command/status register located at register index 40009 (Modbus holding register 9). When writing to inverter register 9, the inverter uses the written value as its command word. When reading from register 9, however, the returned data actually represents the inverter's status. To more clearly differentiate the command word from the status word, the interface card separates this combined command/status register into two separate registers. Register 9 is still the inverter's command word, but the inverter status word must be accessed by requesting read-only register 261 from the interface card.

One side-effect of this combined inverter command/status word is that because the current value of the inverter's command word cannot be read by the interface card, there are no guarantees that the interface card's local value matches the current command word value in the inverter. Resetting a faulted inverter, for example, will clear its internal command word, but the command word residing in the interface card will be unchanged from the last written value in such a scenario. It is important to remember, therefore, that the interface card only has knowledge of the last written command word value, which may or may not equal the inverter's current internal command word value.

6.4 Inverter Operation Mode Setting and Status Register

Inspection of the 700-series inverter user's manual reveals that the inverter has a combined operation mode/inverter setting register located at register index 40010 (Modbus holding register 10). When writing to inverter register 10, the inverter uses the written value as a command to change the current operation mode. When reading from register 10, however, the returned data actually represents the inverter's current operation mode. To more clearly differentiate the operation mode (commanded) from the inverter's current setting, the interface card separates this combined command/status register into two separate registers. Register 10 is still the inverter's operation mode (commanded), but the inverter's current mode setting must be accessed by requesting read-only register 262 from the interface card.

One side-effect of this combined inverter mode command/setting status word is that because the current value of the inverter's operation mode (commanded) cannot be read by the interface card, there are no guarantees that the interface card's local value matches the current mode command value in the inverter. Resetting a faulted inverter, for example, may change its internal operation mode (commanded), but the operation mode (commanded) residing in the interface card will be unchanged

from the last written value in such a scenario. It is important to remember, therefore, that the interface card only has knowledge of the last written operation mode (commanded), which may or may not equal the inverter's current internal operation mode (commanded).

6.5 Universal Access Registers

6.5.1 Overview

As detailed in section 6.2, the interface card provides network access to inverter registers as scanned and non-scanned classes. This section will introduce a mechanism called "universal access registers", which essentially provides access to non-scanned registers within the scanned register class. There are two principle applications for universal access registers:

- To provide access to inverter configuration parameters via I/O protocol data sets. One of the
 previously-mentioned limitations of non-scanned registers (which map to inverter configuration
 parameters) is that they cannot be included in I/O protocol data sets (such as EtherNet/IP
 consumed and produced assembly membership lists). If it becomes necessary to access
 inverter configuration parameters via I/O protocol data sets, then this can be accomplished via
 the universal access register mechanism.
- 2. To provide access to non-standard inverter parameters. Depending on the inverter, there may be non-standard parameters/registers available that lie outside the typical "Pr. XXX" accesses made available through the inverter's keypad. For example, there may be a variety of configuration and/or bias & gain setting registers that are available above register number 1899. The quantity and allowable ranges of these registers may vary from inverter family to inverter

family, and the universal access register mechanism is therefore the most convenient method of accessing these non-standard registers. Refer to the appropriate inverter user's manual for detailed information on available inverter registers, their allowable adjustment ranges, and any scaling factors that may apply.

The universal access register set is comprised of the following three interface card registers, all of which exist in the scanned register class:

- An <u>address</u> register accessible via interface card register 100 (Universal Access Register Address, or *UARA* for short),
- A <u>value</u> register accessible via interface card register 101 (Universal Access Register Value, or UARV for short), and
- A <u>status</u> register accessible via interface card register 102 (Universal Access Register Status, or UARS for short.)

The essential concept of using this powerful feature is to just set the UARA to the inverter register number that you wish to access (e.g. acceleration time is located at inverter register 1007), and then perform the desired operation ("read" to read the designated parameter and "write" to change it) on the UARV. The operation on the UARV will be directly performed on the inverter parameter indicated by the UARA. In this manner, any available inverter parameter can be read from or written to.

The UARS exists to support the universal register architecture. This 16-bit status word is divided into two 8-bit status codes: the lower byte represents the read status, and the upper byte represents the write status.

6.5.2 Universal Access Reads

When a new register number is entered into the UARA, it takes a certain amount of time for the UARV to reflect the value of this newly-entered register number. To indicate when the UARV has been updated with the value of the desired parameter, the read status (UARS low byte) is initialized to 0xFF whenever the UARA is changed. This code represents "not ready", and is used to indicate that the value currently contained in the UARV is not yet the value of the parameter indicated in the UARA. Once the value of the parameter indicated in the UARA has been retrieved from the inverter, this

Table 1: UARS Read Codes

Code	Meaning
0x00	Read successful (value in UARV)
0x02	Invalid parameter targeted
0x07	Communication to inverter lost
0x0A	Other / unclassified error
0xFF	Not ready (ignore UARV)

"not ready" status will be replaced by one of the read codes indicated in Table 1. As long as the UARA is not changed, the indicated parameter will then be continuously read from the inverter, and the read code updated if a status change occurs.

In summary, the procedure for reading an inverter parameter via the universal access registers is as follows:

- 1. Write the register value of the parameter to be accessed to the UARA. The UARV will immediately be set to 0, and the read status will immediately be set to 0xFF (not ready).
- 2. Poll the read status until it is no longer 0xFF.
- If the read status transitioned to a value of 0, the UARV now contains the value of the desired parameter. This value will be continuously read & updated as long as the UARA is not changed.

4. If the read status transitioned to a nonzero value, then this value represents an error code obtained during the transaction with the inverter. The read attempt from this parameter will be continually repeated as long as the UARA is not changed

6.5.3 Universal Access Writes

When a new value is written to the UARV, it takes a certain amount of time for the write transaction with the inverter to be completed and the status to be known. To indicate when the write transaction has been completed, the write status (UARS high byte) is initialized to 0xFF whenever a write operation is performed on the UARV. This code represents "write pending", and is used to indicate that the write transaction has not yet been completed. Once the write transaction completes and the

Table 2: UARS Write Codes

Code	Meaning
0x00	Write successful
0x02	Invalid parameter targeted
0x03	Invalid data value / write to read-only parameter
0x07	Communication to inverter lost
0x0A	Other / unclassified error
0xFF	Write pending

success/failure outcome is known by the interface board, this "write pending" status will be replaced by one of the write codes indicate in Table 2. From that point on, as long as the UARA is not changed, the parameter indicated in the UARA will then be continuously read from the inverter, and the read code updated if a status change occurs. The write code, however, will not change unless another value is written to the UARV, or unless the UARA is changed.

In summary, the procedure for writing an inverter parameter via the universal access registers is as follows:

- With the UARA already set to the register value of the parameter to be accessed, write the new parameter value to the UARV. The write status will immediately be set to 0xFF (write pending.)
- 2. Poll the write status until it is no longer 0xFF.
- 3. If the write status transitioned to a value of 0, the write was successful.
- If the write status transitioned to a nonzero value, then this value represents an error code obtained during the transaction with the inverter. The write transaction will <u>not</u> be automatically retried by the interface card.
- 5. The interface card will return to continuously reading the parameter indicated by the UARA.

6.5.4 Disabling

Disabling universal access reads & writes can be accomplished by setting the UARA to 0. Whenever the UARA is 0, the UARV will also be 0, and the UARS will contain 0x00FF, which indicates "not ready". This is the default initial condition of the universal access registers.

7 FILESYSTEM & FIRMWARE

7.1 Overview

The interface card's on-board filesystem is used to store files for use by the application firmware. Currently, the application firmware's main use of the filesystem is to store XML-encoded configuration files that dictate the characteristics of the various protocols. Each protocol that requires configuration will have its own XML file stored on the filesystem. For easy identification, the filename will begin with the corresponding protocol which it configures. For example, a BACnet configuration file's filename will begin with "bacnet", and an Ethernet/IP file will begin with "eip".

Whenever the configuration for a specific protocol is completed, it is suggested that a backup copy of the configuration file be downloaded from the unit to a PC. One reason for this is in case it becomes necessary to restore a previous configuration at a later time. Another reason is that it may be desirable to load multiple units with the same configuration, as a downloaded configuration file can be uploaded again to any compatible unit, allowing the user to easily clone multiple units with the same configuration.

Each time the interface card boots up, it will search the filesystem for the configuration files required by the protocols currently operating in the unit. If it does not find a required file, it will create one and initialize it with factory-default values. Therefore, if it is ever desired to reset a protocol's configuration to factory-default values, this can be easily accomplished by simply deleting the appropriate configuration file from the filesystem and rebooting the unit.

Note that the application firmware uses specific filenames for the configuration files. This means that if a file with a different filename is loaded onto the unit, it will be stored correctly, but will not be used by the application firmware. Similarly, if an existing configuration file's filename is changed, then the unit will again create a default configuration file at next boot-up, which will be stored in the filesystem alongside the file with the changed name.

Configuration files are only read by the protocol drivers at unit boot-up. Therefore, if a new configuration file is loaded onto a unit's filesystem, that unit must be rebooted for the configuration file's settings to take effect. Rebooting a unit can be performed by power-cycling the inverter in which the card is installed, or by selecting the "Reboot Device" button in the Finder application.

Interacting with the filesystem is performed by use of the File Transfer Protocol (FTP). Using FTP allows the user to interact with the files on the interface card's filesystem in the same manner as though they were traditional files stored on a local or remote PC. While there are many different FTP applications available, the following sections will provide general examples of using some of the most commonly-available ones.

Note that certain routers or firewall applications (such as Windows Firewall) can block FTP traffic. If an FTP connection to the interface card cannot be established, be sure to check the computer's firewall settings during troubleshooting, and add an exception to the firewall configuration if necessary.

7.2 Initiating FTP via the Finder Utility

After discovering all interface cards on the current subnet as described in section 4, select the target interface card and then click on the "Open FTP Interface" button. This will open the computer's default FTP application, which could be Windows Explorer, a web browser, or a 3rd-party FTP program (whatever the computer/operating system is configured for by default). This example will assume that a web browser (Microsoft Internet Explorer) is configured as the default FTP application.

An authentication dialog will appear (refer to Figure 67.) Enter the currently-configured user name and case-sensitive password (defaults are "root" and "icc", respectively), then click "Log On."

The web browser will then display the filesystem's contents (refer to Figure 68.) FTP access via a web browser allows viewing and downloading files to a computer, but does not allow advanced file manipulation such as cut, paste, drag-and-drop, etc. For advanced file manipulation abilities, use of a different FTP application is required.

Figure 67: FTP Authentication

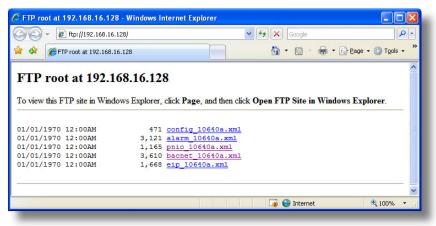


Figure 68: FTP Navigation with Internet Explorer

7.3 Using FTP with Windows Explorer

To use FTP with Microsoft Windows Explorer, first open either "Windows Explorer" or "My Computer". Refer to Figure 69. Please note that the indicated procedure, prompts and capabilities outlined here can vary depending on such factors as the installed operating system, firewalls and service packs.

In the "Address" field, type in "ftp://root@" and then the IP address of the target interface card (if the user name has been changed from its default, then replace "root" in "ftp://root@" with the new user name.) Refer to Figure 70.

Figure 69: Accessing Windows Explorer

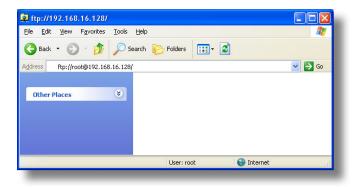


Figure 70: FTP Navigation with Windows Explorer

You will then be presented with an authentication dialog (refer to Figure 71.) The user name will already be filled-in. Enter the case-sensitive password (default is "icc") and click "Log On."

Windows Explorer will then display the filesystem's contents (refer to Figure 72.) You can now perform normal file manipulation actions on the available files (cut, copy, paste, open, rename, drag-and-drop transfers etc.) in the same manner as though you were manipulating any traditional file stored on your computer's hard drive.

Figure 71: FTP Authentication

Figure 72: File Access via Windows Explorer

7.4 Using FTP with a Windows Command Prompt

To use FTP with a Windows command (DOS) prompt, first open a command prompt by either selecting *Start* ... *All Programs* ... *Accessories* ... *Command Prompt*, or by selecting *Start* ... *Run* and typing "cmd" in the "Run" dialog.

Once the command prompt opens, type "ftp" and the IP address of the target interface card. The FTP client will connect to the unit and then prompt for the username and case-sensitive password (defaults are "root" and "icc", respectively). Upon successful entry of the authentication information, you will be presented with an "ftp>" prompt. Refer to Figure 73.

At this point, you can use standard Unix-style file and directory manipulation commands to perform such actions as listing files (Figure 74), copying files to your computer (Figure 75), and copying files to the unit (Figure 76).

Figure 73: FTP Initiation and Authentication

Figure 74: Listing Files with "Is" Command

Figure 75: Copying a File from the Unit With "get" Command

Figure 76: Copying a File to the Unit With "put" Command

7.5 Using FTP With Core FTP LE

Core FTP LE (Lite) is a 3rd-party FTP application that can be downloaded for free from http://www.coreftp.com. Core FTP is just one example of the various commercial and freeware FTP client applications available on the internet.

After installing Core FTP LE, run the program. If the "Site Manager" window (Figure 77) does not automatically open, open it by choosing "File...connect".

Click on the "New Site" button, then enter a Site Name, IP Address, username (default is "root") and case-sensitive password (default is "icc"). The "Port", "Timeout", and "Retries" fields should already contain the default values. Click the "Connect" button when done.

Core FTP LE will then try to connect and authenticate to the FTP server, and if successful, will populate the right-hand side of the main page with the unit's filesystem contents. Refer to Figure 78.

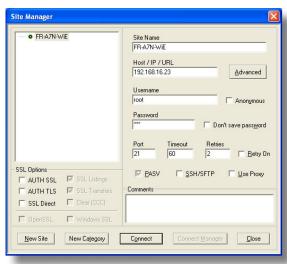


Figure 77: Core FTP Site Manager

Files can be easily downloaded from the unit by choosing the appropriate destination folder on your computer in the left-hand side of the main page, choosing the file to download, and then clicking the "download" button in the right-hand (source) side. Similarly, files can be easily uploaded to the unit by choosing the file to upload and then clicking the "upload" button in the left-hand (source) side of the main page.

Like most 3rd-party FTP client applications, Core FTP LE has a wide array of configuration and file management capabilities, which are beyond the scope of this manual. Refer to the program's Help file for more detailed instructions.

Figure 78: Core FTP in "Connected" State

7.6 Loading New Application Firmware

The interface card's embedded firmware resides in flash memory that can be updated in the field. Firmware updates may be released for a variety of reasons, such as custom firmware implementations, firmware improvements and added functionality as a result of user requests. Additionally, it may be necessary to load different firmware onto the unit in order to support various protocols.

ICC is continually striving to enhance the functionality and flexibility of our products, and we therefore periodically release new embedded firmware to achieve these goals and meet customer requests. Flash firmware files and all related documentation (such as updated user manuals) can be downloaded from http://www.iccdesigns.com. It is suggested that users check this Internet site prior to installation, and then periodically afterwards to determine if new firmware has been released and is available to upgrade their units.

Besides the new firmware file, firmware updates require only a PC with the same FTP client capabilities as described earlier in this section. The new firmware is loaded on the unit via the FTP protocol in the same manner as uploading a configuration (.XML) file. Some notes on uploading new firmware via FTP are:

Please be sure to read the firmware release notes and updated user's manual for any important
notices, behavior precautions or configuration requirements prior to updating your firmware. For
example, upgrading to a new firmware version may affect user-defined configuration files: prior to
starting an update procedure always back up your configuration file to a PC for later recovery if
necessary.

- Because the FTP application firmware in the unit distinguishes application firmware files from XML configuration files by virtue of the filename, don't change the default name of the firmware file to be uploaded to the unit.
- Although the firmware file is uploaded from your PC to the unit in the same manner as configuration
 files are uploaded, the firmware cannot be downloaded from the unit, because the firmware does
 not reside in the unit's filesystem like configuration files do.
- After the firmware upload process has been completed (typically requiring 30-45 seconds), the unit
 will reset automatically 5s after the FTP connection is closed. When the unit boots up again, it will
 be running the new application firmware, which can be confirmed by observing the version
 displayed in the web server's information window (refer to section 5.4.1).
- Because the transferred firmware file is not written to the unit's flash memory until the FTP connection is closed, be sure to close the connection in order to trigger the write process. The method of closing an FTP connection differs depending on the FTP transfer mechanism used. For example, if using Windows Explorer, close the window. If using the command prompt method, type "quit" to close the connection. If using Core FTP, click on the "disconnect" button, etc.
- Because the interface's web pages may have changed with the new firmware version, it is
 recommended to clear your web browser's cache memory before accessing the web server after the
 firmware update. This will ensure that your web browser will load the updated web server pages
 directly from the interface, instead of just loading the local (old) copy stored in your computer's
 cache memory. To accomplish this in Internet Explorer, go to Tools...Internet Options...Browsing
 History...Delete, and delete all temporary internet files.

PROTOCOL-SPECIFIC INFORMATION

This section will discuss topics that are specific to each of the supported protocols.

Modbus/TCP 8.1

8.1.1 Overview

The interface card supports Schneider Electric's Modbus/TCP protocol, release 1.0. The interface is conformance class 0 and partial class 1 and class 2 compliant, and allows up to

8 simultaneous Modbus/TCP client connections (sockets). Other notes of interest are:

- Supported Modbus/TCP functions are indicated in Table 3.
- Inverter registers can be addressed as either holding registers (4X references) or input registers (3X references). For example, accessing the output frequency involves accessing holding register 40201 or input register 30201 (i.e.

Table 3: Supported Modbus/TCP Functions

Function Code	Function	Modbus/TCP Class
1	Read coils	1
2	Read input status	1
3	Read multiple registers	0
4	Read input registers	1
5	Write coil	1
6	Write single register	1
15	Force multiple coils	2
16	Write multiple registers	0

offset 201).

- Specific bits within inverter registers can be accessed as either coils (0X references) or discrete inputs (1X references).
- Because the transaction is handled locally within the interface card, write data checking is not
 available for scanned registers (refer to section 6.2.) For example, if a write is performed to a
 register with a data value that is out-of-range of the corresponding parameter object, no Modbus
 exception will be immediately returned.
- Both scanned and non-scanned registers can be freely accessed. The response time for scanned register accesses will be faster than that for non-scanned registers.
- The "unit identifier" (UI) field of the request packets is ignored.
- The socket timeout time is determined by the "timeout" setting on the web server's "Config" tab (refer to section 5.7.6). This means that if a particular open socket experiences no activity for more than the timeout time setting, then the interface assumes that the client or network has experienced some sort of unexpected problem, and will close that socket.
- Because the socket timeout determination is performed on a per-socket basis, note that a certain
 degree of caution must be exercised when using the network timeout feature to avoid "nuisance"
 timeouts from occurring. Specifically, do not perform inadvisable behavior such as sending a
 request from the master device to the interface, and then closing the socket prior to successfully
 receiving the unit's response. The reason for this is because the interface will then experience an
 error when attempting to respond via the now-closed socket, which will immediately trigger the
 timeout action. Always be sure to manage socket life cycles "gracefully", and do not abandon
 outstanding requests.

If a socket timeout occurs (regardless of whether it was due to a communication lapse or abnormal socket error), the driver will trigger a timeout event as described in section 5.7.6.

8.1.2 Coil & Discrete Input Mappings

The Modbus/TCP driver provides read/write support for coils (0X references) and read-only support for discrete inputs (1X references). These will collectively be referred to from here on out as simply "discretes". Accessing discretes does not reference any new physical data: discretes are simply indexes into various bits of existing registers. What this means is that when a discrete is accessed, that discrete is resolved by the interface into a specific register, and a specific bit within that register. The pattern of discrete-to-register/bit relationships can be described as follows:

Discrete 1...16 map to register #1, bit0...bit15 (bit0=LSB, bit15=MSB) Discrete 17...32 map to register #2, bit0...bit15, and so on.

Arithmetically, the discrete-to-register/bit relationship can be described as follows: For any given discrete, the register in which that discrete resides can be determined by:

$$register = \left\lfloor \frac{discrete + 15}{16} \right\rfloor$$
 Equation 1

Where the bracket symbols "_ j" indicate the "floor" function, which means that any fractional result (or "remainder") is to be discarded, with only the integer value being retained.

Also, for any given discrete, the targeted bit in the register in which that discrete resides can be determined by:

$$bit = (discrete - 1) \% 16$$

Equation 2

Where "discrete" \in [1...65535], "bit" \in [0...15], and "%" is the modulus operator, which means that any fractional result (or "remainder") is to be retained, with the integer value being discarded (i.e. it is the opposite of the "floor" function).

For clarity, let's use Equation 1 and Equation 2 in a calculation example. Say, for instance, that we are going to read coil #34. Using Equation 1, we can determine that coil #34 resides in register #3, as $\lfloor 3.0625 \rfloor = \lfloor 3 \text{ r1} \rfloor = 3$. Then, using Equation 2, we can determine that the bit within register #3 that coil #34 targets is (34-1)%16 = 1, as 33%16 = mod(2 r1) = 1. Therefore, reading coil #34 will return the value of register #3, bit #1.

8.2 EtherNet/IP

8.2.1 Overview

The EtherNet/IP protocol is an application-level protocol implemented on top of the Ethernet TCP/IP and UDP/IP layers. It shares its object model with ControlNet and DeviceNet through the Common Industrial Protocol (CIP). This protocol allows the transfer of data and I/O over Ethernet.

EtherNet/IP incorporates both the TCP and UDP layers of Ethernet in the transmission of data. Because TCP/IP is a point-to-point topology, EtherNet/IP uses this layer only for explicit messaging; i.e. those messages in which the data field carries both protocol information and instructions for service performance. With explicit messaging, nodes must interpret each message, execute the requested task and generate responses. These types of messages can be used to transmit configuration, control and monitor data.

The UDP/IP protocol layer, which has the ability to multi-cast, is used for implicit (I/O) messaging. With I/O messaging, the data field contains only real-time I/O data; no protocol information is sent because the meaning of the data is pre-defined at the time the connection is established, which in turn minimizes the processing time of the node during run-time. I/O messages are short and have low overhead, which allows for the time-critical performance needed by controllers.

The interface card supports both explicit and I/O messaging. Further, two different types of I/O messaging are supported. One type (invoked when the client opens a connection to the interface using assembly instances 20 & 70 or 21 & 71) is included with the implementation of the AC/DC drive profile,

and requires no user configuration. The other type, however, is entirely user-configurable, and is invoked when the client opens a connection to the interface using assembly instances 100 and 150.

The following sections demonstrate specific examples of how to use EtherNet/IP to transfer data between the inverter and Allen-Bradley Logix-brand PLCs.

Some other notes of interest are:

- The interface card supports the EtherNet/IP protocol, as administered by the Open DeviceNet Vendor Association (ODVA).
- This product has been self-tested by ICC, Inc. and found to comply with ODVA EtherNet/IP Conformance Test Software Version A-5.
- I/O connection sizes for assembly instances 100 and 150 are adjustable between 0 and 64 bytes (32 registers max @ 2 bytes per register = 64 bytes). Because registers are 16-bit elements, however, connection sizes cannot be odd (i.e. 1, 3, 5 etc.)
- The interface card's product type code is 2 (AC Drive.)
- Supports unconnected messages (UCMM), and up to 16 simultaneous class 1 (I/O) or class 3 (explicit) connections.
- Assembly instances 100 and 150: if a register entry in the consumed data configuration array is 0, then any consumed data that corresponds to that location will be ignored. Conversely, if a register entry in the produced data configuration array is 0, then any produced data that corresponds to that location will be a default value of 0. Refer to section 5.8.4 for further information on the data configuration arrays.

PROTOCOL-SPECIFIC INFORMATION

- Class 1 implicit I/O supports both multicast and point-to-point (unicast) when producing data in the T→O direction.
- Point-to-point class 1 connected messages will be produced targeting the IP address of the device that instantiated the connection, UDP port 0x08AE (UDP port 2222).
- If a class 1 point-to-point connection is established in the (T→O) direction, no more class 1 connections can be established.
- If a class 1 connection's consuming half (O→T) times out, then the producing half (T→O) will also time-out and will stop producing.
- If a class 1 or class 3 connection timeout occurs, the driver will trigger a timeout event as described in section 5.7.6. For class 1 connections, the timeout value is dictated by the scanner/client and is at least four times the RPI (Requested Packet Interval). For class 3 connections, the timeout value is also dictated by the scanner/client, but is typically a much larger value than for class 1 connections.

8.2.2 ODVA AC/DC Drive Profile

The interface card supports the ODVA AC/DC drive profile. No special EtherNet/IP configuration of the interface card is required when using the AC/DC drive profile: all that is needed is that the controller must target either assembly instances 20 & 70 or 21 & 71 in its connection parameters.

The AC/DC drive profile implementation provides support for several required CIP objects, which are specified in Table 4. While the various supported attributes of all of these objects are accessible via explicit messaging, the main intent of using the AC/DC drive profile is to interact with the predefined input and output assembly instances via an I/O connection. The structure of these assembly instances is defined by the EtherNet/IP specification in order to engender interoperability among different

Table 4: AC/DC Drive Profile-Related Objects

Class Code	Object Name
0x04	Assembly Object
0x28	Motor Data Object
0x29	Control Supervisor Object
0x2A	AC Drive Object

vendor's products. This section will focus primarily on the format of the AC/DC drive profile I/O assemblies supported by the interface card, and the inverter data which their various constituent elements map to.

Output Instances 20 and 21 Detail

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	0						Fault Reset		Run Fwd		
20	1										
	2	Speed Reference (Low Byte)									
	3	Speed Reference (High Byte)									
21	0		NetRef	NetCtrl			Fault Reset	Run Rev	Run Fwd		
	1										
	2	Speed Reference (Low Byte)									
	3	Speed Reference (High Byte)									

Mapping Detail

Run Fwd: forward rotation command (0=forward rotation off, 1=forward rotation on). Maps to inverter register 9, bit 1 (forward rotation command).

<u>Run Rev</u>: reverse rotation command (0=reverse rotation off, 1=reverse rotation on). Maps to inverter register 9, bit 2 (reverse rotation command).

<u>Fault Reset</u>: Inverter reset command (0=no action, 0→1 rising edge=reset). Maps to inverter register 2 (inverter reset).

<u>NetCtrl</u>: Run/stop control source selection (0=local control, 1=network control). Maps to inverter register 10 (operation mode).

<u>NetRef</u>: Speed reference source selection (0=local control, 1=network control). Maps to inverter register 10 (operation mode).

<u>NetCtrl and NetRef explanation</u>: Although the intent of these bits is to be able to independently separate the inverter's run/stop command source and speed reference source, the inverter only has one externally-accessible "operation mode" command register, which controls both the run/stop source and speed reference source simultaneously. Therefore, Table 5 can be used to determine the resultant value of the "operation mode" register based on the various combinations of NetCtrl and NetRef.

Table 5: NetCtrl/NetRef Behavior

NetCtrl	NetRef	"Operation Mode" Register Value			
0	0	0x0010 (EXT mode)			
0	1	No change from			
1	0	current value			
1	1	0x0014 (NET mode)			

<u>Speed Reference</u>: Inverter speed reference in RPM. Maps to inverter register 14 (frequency command). The frequency command value written to the inverter depends on the settings of parameters Pr.37 and Pr.144 (refer to Table 6). The speed reference component of the AC/DC drive profile output instances is always in units of RPM. With certain combinations of Pr.37 and Pr.144, however, the inverter interprets its incoming frequency command either as an actual frequency command (with units of Hz) or as a speed reference (with units of RPM). Therefore, the interface card will apply an RPM-to-Hz conversion equation when necessary, or will pass the consumed speed reference value directly on to the inverter as-is when the inverter is already expecting the frequency command to be in units of RPM.

The RPM-to-Hz conversion equation is [RPM x number of motor poles / 120]. Table 6 indicates the scenarios under which the conversion equation is and is not applied, and the value used for the "number of motor poles" component in the numerator of the conversion equation. For more information on the manners in which Pr.37 and Pr.144 affect the inverter's operation, please refer to the appropriate inverter user's manual. Note that the values of Pr.37 and Pr.144 are read by the interface card only at boot-up, so if these parameter values are changed, then the interface card must be rebooted in order for it to recognize the new values and once again determine the required conversion scenarios.

Table 6: Inverter Speed Reference and Speed Actual Conversion Scenarios

Pr.37	Pr.144	Pr.144 Conversion Number of Motor Poles Used i Conversion Equation					
0	0	Yes	4				
(default value)	210	Yes	210				
	102110	No	N/A				
	0	Yes	4				
19998	210	No	N/A				
	102110	Yes	210				

Input Instances 70 and 71 Detail

Instance	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	0						Running1		Faulted		
70	1										
70	2	Speed Actual (Low Byte)									
	3	Speed Actual (High Byte)									
71	0	At Reference	Ref From Net	Ctrl From Net	Ready	Running2 (REV)	Running1 (FWD)	Warning	Faulted		
	1	Drive State									
	2	Speed Actual (Low Byte)									
	3	Speed Actual (High Byte)									

Mapping Detail

<u>Faulted</u>: Inverter fault signal (0=not faulted, 1=faulted). Maps to inverter register 260 (status word), bit 15 (alarm occurrence).

Warning: This bit is not used (it is always 0).

Running1 (FWD): Running forward status signal (0=not running forward, 1=running forward). Maps to inverter register 260 (status word), bits 0 and 1. The Running1 bit will be 1 whenever bit 0 (inverter running) and bit 1 (forward rotation) of the status word are both 1, and will be 0 otherwise. Note that if

PROTOCOL-SPECIFIC INFORMATION

the setting of inverter parameter Pr.190 (RUN terminal function selection) is changed from its factorydefault value, the indicated status of the Running1 bit will no longer be accurate.

Running2 (REV): Running reverse status signal (0=not running reverse, 1=running reverse). Maps to inverter register 260 (status word), bits 0 and 2. The Running2 bit will be 1 whenever bit 0 (inverter running) and bit 2 (reverse rotation) of the status word are both 1, and will be 0 otherwise. Note that if the setting of inverter parameter Pr.190 (RUN terminal function selection) is changed from its factory-default value, the indicated status of the Running2 bit will no longer be accurate.

Ready: Inverter ready signal (0=not ready, 1=ready). The Ready bit will be 1 whenever the Drive State attribute (see below) is in the Ready, Enabled or Stopping state.

<u>CtrlFromNet</u>: Inverter command reference status (0=command reference is not from network, 1=command reference is from network). Maps to inverter register 261 (operation mode status). CtrlFromNet will be 1 whenever the operation mode status is a value of 0x0004 (NET mode), and will be 0 otherwise.

<u>RefFromNet</u>: Inverter speed reference status (0=speed reference is not from network, 1=speed reference is from network). Maps to inverter register 261 (operation mode status). RefFromNet will be 1 whenever the operation mode status is a value of 0x0004 (NET mode), and will be 0 otherwise.

<u>AtReference</u>: Up-to-speed signal (0=not up-to-speed, 1=up-to-speed). Maps to inverter register 260 (status word), bit 3 (SU/up to frequency). Note that if the setting of inverter parameter Pr.191 (SU terminal function selection) is changed from its factory-default value, the indicated status of the AtReference bit will no longer be accurate.

<u>Drive State</u>: Indicates the current state of the Control Supervisor Object state machine. Refer to the ODVA EtherNet/IP specification (object library) for detailed information on the Control Supervisor Object state machine.

<u>Speed Actual</u>: Inverter operating speed in RPM. Maps to inverter register 201 (output frequency). The output frequency value read from the inverter depends on the settings of parameters Pr.37 and Pr.144 (refer to Table 6). The speed actual component of the AC/DC drive profile input instances is always in units of RPM. With certain combinations of Pr.37 and Pr.144, however, the inverter provides its output frequency either as an actual frequency (with units of Hz) or as a speed (with units of RPM). Therefore, the interface card will apply a Hz-to-RPM conversion equation when necessary, or will pass the inverter's output frequency value directly on to the network as-is when the inverter is already providing the output frequency in units of RPM.

The Hz-to-RPM conversion equation is [output frequency x 120 / number of motor poles]. Table 6 indicates the scenarios under which the conversion equation is and is not applied, and the value used for the "number of motor poles" component in the denominator of the conversion equation. For more information on the manners in which Pr.37 and Pr.144 affect the inverter's operation, please refer to the appropriate inverter user's manual. Note that the values of Pr.37 and Pr.144 are read by the interface card only at boot-up, so if these parameter values are changed, then the interface card must be rebooted in order for it to recognize the new values and once again determine the required conversion scenarios.

8.2.3 ControlLogix Examples: Setup

This section will demonstrate how to initially setup a ControlLogix PLC (such as a 1756-L61) coupled with a 1756-ENBT/A communication interface (adjust this procedure according to your specific equipment). Later sections will provide specific read/write examples using this configuration with I/O or explicit messaging.

- Run RSLogix 5000, and create a new configuration.
- To add a 1756-ENBT/A to your I/O configuration, first switch to offline mode.
- Right click on the I/O Configuration node in the controller organizer view and choose "New Module..."
- 4) The "Select Module" window will open.
- Under "Communications", select "1756-ENBT/A", and click OK. Refer to Figure 79.
- 6) The "New Module" window will open. Refer to Figure 80.
- Assign the Ethernet module a name (we will use "EIP") and an IP address,

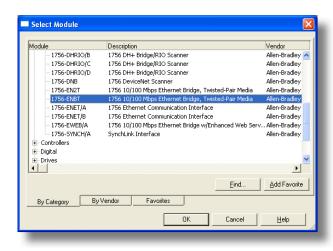


Figure 79: Adding a New Module

- deselect "Open Module Properties", and click OK.
- 8) Download the configuration.
- 9) Switch to online mode. Right click on the 1756-ENBT/A module in the I/O Configuration and choose "Properties".
- 10) Select the Port Configuration tab from the Module Properties dialog box.
- 11) Confirm that the IP Address, Subnet Mask and Gateway Address fields are configured correctly. The IP Address must match the IP Address entered when the new module was first created. Refer to Figure 81.
- Apply the settings using the "Set" button.
- 13) You should now be able to confirm that the 1756-ENBT/A module is configured properly by (for example) opening the module's web interface in a web browser.

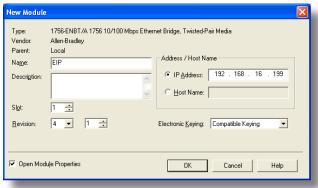


Figure 80: Identifying the New Module

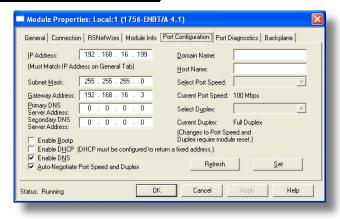


Figure 81: Confirming the Module's Properties

8.2.4 ControlLogix Example: I/O Messaging

This section will demonstrate how to setup and use an EtherNet/IP I/O connection via vendor-specific assembly instances 100 & 150. EtherNet/IP I/O messaging allows the inverter's registers to be directly mapped into tags in the ControlLogix PLC. Once an I/O connection is established, it is automatically synchronized at an interval defined by the Requested Packet Interval (RPI).

- Switch to offline mode.
- Right click on the 1756-ENBT/A node under the I/O Configuration in the controller organizer view and choose "New Module..."
- 3) Choose "Generic Ethernet Module" in the Select Module dialog box and click "OK". Refer to Figure 82.
- 4) The module properties dialog box will open (refer to Figure 83). Enter a Name and Description which will allow easy identification of the inverter on the network (the tags created in RSLogix 5000 will be derived from this Name). Because all inverter data is stored as 16-bit registers, change the "Comm Format" selection to "Data-INT". Enter the IP address of the targeted interface card.

In the "Connection Parameters" portion of the dialog box, enter the following information:

<u>Input:</u> The Input Assembly is the collection of monitor data that is produced by the interface card and is received as an input to the PLC. Its

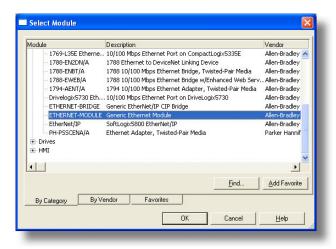


Figure 82: Adding a New Generic Ethernet Module

structure is defined by the Produced Register Configuration as described in section 5.8.4. The Input Assembly Instance must be set to 150 when connecting to the vendor-specific I/O assembly instances (or 70/71 when using the ODVA AC/DC drive profile), and the size must be set to the number of 16-bit registers that we wish to receive from the interface card. For the purposes of this example, we are assuming that the produced configuration array is defined as shown in Figure 41, with two relevant registers (261 and 201). We therefore set the Input Size to 2.

<u>Output:</u> The Output Assembly is the collection of command & configuration data that is sent as an output from the PLC and consumed by the interface card. Its structure is defined by the Consumed

Register Configuration as described in section 5.8.4. The Output Assembly Instance must be set to 100 when connecting to the vendor-specific I/O assembly instances (or 20/21 when using the ODVA AC/DC drive profile), and the size must be set to the number of 16-bit registers that we wish to send to the interface card. For the purposes of this example, we are assuming that the consumed configuration array is defined as shown in Figure 41, with two relevant registers (9 and 14). We therefore set the Output Size to 2.

<u>Configuration:</u> The Configuration Assembly Instance is unused, and its

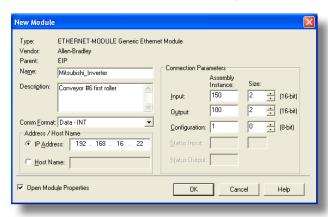
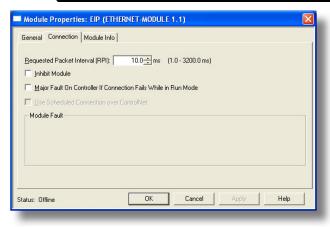


Figure 83: Interface Card Module Properties

instance number and size are therefore irrelevant (you can just enter "1" and "0", respectively).

When done, click "OK".


5) You should now see the new module (named "ETHERNET-MODULE Mitsubishi_Inverter") in the 1756-ENBT/A branch under the I/O Configuration in the controller organizer view. Right click on this new module, choose "Properties", and select the Connection tab. Refer to Figure 84.

Confirm the setting of the Requested Packet Interval (RPI). The RPI defines the amount of time (in milliseconds) between data exchanges across an I/O

connection. The smallest RPI supported by the interface card is 10ms.

Click OK when done.

6) After adding the I/O Module to the configuration, the full I/O Configuration tree should appear similar to Figure 85.

Figure 84: Module Properties Connection Tab

Figure 85: I/O Configuration Tree

PROTOCOL-SPECIFIC INFORMATION

7) Switch to online mode and download the project to the PLC. Verify that the newly-added inverter is available and operating correctly by observing any indications shown on the inverter's icon. When the inverter's icon is selected, its status and any available error messages will be displayed in the area below the project tree. Refer to Figure 86. Also confirm that the interface card's "Network Status" LED should be solid green, indicating an "online/connected" state.

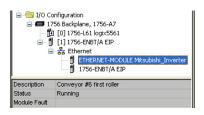


Figure 86: Online Module Status

8) By double-clicking "Controller Tags" in the project tree, it is possible to view the newly-added tags. Refer to Figure 87. The Mitsubishi_Inverter:C configuration tag is unused, the Mitsubishi_Inverter:I tag allows viewing of the input data, and the

Mitsubishi_Inverter:O tag allows modification of the output data. These tags will be synchronized with the inverter at whatever rate was established for the module's RPI.

We can directly interact with these tags in order to control and monitor the inverter. In Figure 87, for example, we can see that the first 16-bit word of output data

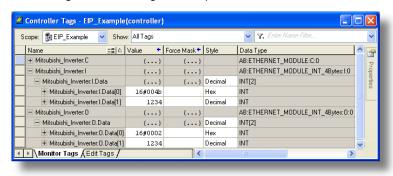


Figure 87: Controller Tags for I/O Access

(Mitsubishi_Inverter:O.Data[0]) has been set to a hexadecimal value of 0x0002. Referring back to Figure 41, we can see that the first element of the consumed register configuration references register 9, which is the inverter's command register. A value of 0x0002, therefore, means that the run forward bit has been turned ON.

Similarly, we can see that the second 16-bit word of output data (Mitsubishi_Inverter:O.Data[1]) has been set to a decimal value of 1234. Once again referring back to Figure 41, we can see that the second element of the consumed register configuration references register 14, which is the inverter's frequency command register. A value of 1234, therefore, equates to a frequency command of 12.34Hz.

The input data from the inverter shows similar expected results. Values of 0x004B and 1234 corresponding to registers 261 (status register) and 201 (output frequency), respectively, are consistent with the inverter running at the parameters commanded by the output tag.

8.2.5 ControlLogix Example: Generic Default I/O Add-On Instruction

The generic default I/O add-on instruction is a simple interface to command and monitor the inverter. It is based on the vendor-specific assembly instances 100 & 150 and the default produce and consume data configuration arrays (refer to section 5.8.4).

- 1) Complete all the steps in section 8.2.4.
- 2) Right click on "Add-On Instructions" in the controller organizer view and select "Import Add-On Instruction". Browse and import the generic default I/O add-on instruction. Refer to Figure 88.

PROTOCOL-SPECIFIC INFORMATION

- 3) Double click "Controller Tags" in the controller organizer view and select the "Edit Tags" tab at the bottom.
- 4) Create the tags in Figure 89.

Figure 88: Generic Default IO Add-On Instruction

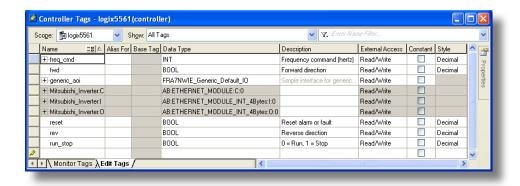


Figure 89: Create Generic Default AOI Tags

- 5) Double click "MainRoutine" under Tasks ...MainTask ...MainProgram in the controller organizer view.
- Right click on the first ladder logic rung in the MainRoutine window and select "Add Ladder Element..."
- 7) The "Add Ladder Element" window appears.
- Select the generic default I/O add-on instruction in the Add-On folder. Refer to Figure 90.
- 9) Click OK.
- 10) Edit the add-on instruction according to Figure 91.
- 11) The program is now complete.
- 12) Save, download and run the program.

Figure 90: Add Generic Default Add-On Instruction

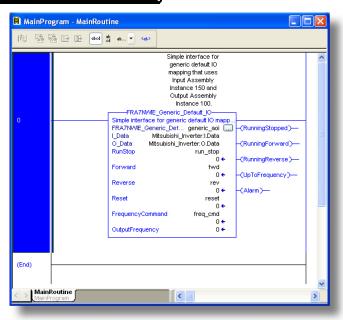


Figure 91: Configure Generic Default AOI

8.2.6 ControlLogix Example: AC/DC Drive Profile Add-On Instruction

The AC/DC drive profile add-on instruction is a simple interface to command and monitor the inverter. It is based on the assembly instances 21 & 71.

 Complete all the steps in section 8.2.4. Please note that the Assembly Input Instance must be changed to 71 and the Assembly Output Instance must be changed to 21. Refer to Figure 92.

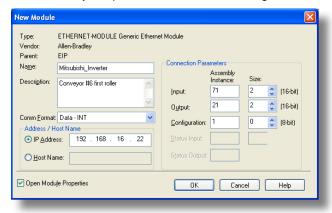


Figure 92: AC/DC Drive Profile Generic Ethernet Module Configuration

 Right click on "Add-On Instructions" in the controller organizer view and select "Import Add-On Instruction". Browse and import the AC/DC drive profile add-on instruction. Refer to Figure 93.

PROTOCOL-SPECIFIC INFORMATION

- Double click "Controller Tags" in the controller organizer view and select the "Edit Tags" tab at the bottom.
- 4) Create the tags in Figure 94.

Figure 93: AC/DC Drive Profile Add-On Instruction

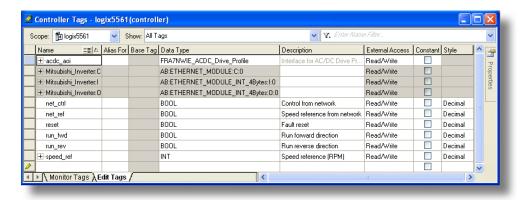


Figure 94: Create AC/DC Drive Profile AOI Tags

- 5) Double click "MainRoutine" under Tasks ...MainTask ...MainProgram in the controller organizer view.
- Right click on the first ladder logic rung in the MainRoutine window and select "Add Ladder Element..."
- 7) The "Add Ladder Element" window appears.
- Select the AC/DC drive profile add-on instruction in the Add-On folder. Refer to Figure 95.
- 9) Click OK.
- 10) Edit the add-on instruction according to Figure 96.
- 11) The program is now complete.
- 12) Save, download and run the program.

Figure 95: Add AC/DC Drive Profile Add-On Instruction

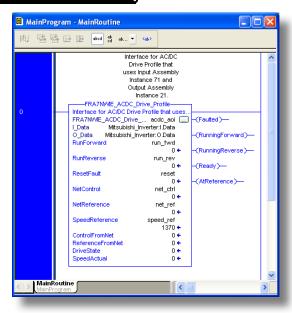


Figure 96: Configure AC/DC Drive Profile AOI

8.2.7 Explicit Messaging Tag Reference

When class 3 (explicit messaging) connections are used, register contents are read from and written to the interface card via EtherNet/IP by reference to "tag names". Tags are read via the EtherNet/IP "data table read" service, and tags are written via the EtherNet/IP "data table write" service. Different tags exist for reading vs. writing.

Any given scanned or non-scanned register can be accessed with its own unique tag name, or an array tag can be used to access a group of registers with one PLC instruction. Tag names are generated according to the following structure:

[action prefix][_reg_][register number]

Where

[action prefix] is a 2-character field, and is equal to either "rd" for read tags, or "wr" for write tags. Although commonly followed for naming clarity, this "read vs. write" naming convention is not strictly enforced by the interface card, however: it is perfectly acceptable to write to a tag that starts with "rd" and read from a tag that starts with "wr".

[_reg_] is just the 5-character sequence "_reg_".

[register number] is a 1- to 4-character field ("1", "2"..."507", "508", "1000", "1001"... etc.) corresponding to the referenced register number.

Examples

Read "output voltage" (register #203).....rd_reg_203

PROTOCOL-SPECIFIC INFORMATION

Write "frequency command" (register #14)wr_reg_14
Read "inverter status" (register #261)rd_reg_261
Write "acceleration time" (Pr.7 / register #1007)wr_reg_1007

Additionally, a few special tags exist which provide alternate names for commonly-used registers. These are specified in Table 7.

Table 7: Special Tag Reference

Service	Tag Name	Register Start	Same As
Data table read	rd_uar_addr	100	rd_reg_100
Data table read	rd_uar_val	101	rd_reg_101
Data table read	rd_uar_stat	102	rd_reg_102
Data table read	rd_reg_monitor	201	rd_reg_201
Data table read	rd_freq_out	201	rd_reg_201
Data table read	rd_inv_stat	261	rd_reg_261
Data table read	rd_op_mode_stat	262	rd_reg_262
Data table read	rd_reg_alarm_history	501	rd_reg_501
Data table write	wr_inv_rst	2	wr_reg_2
Data table write	wr_param_clr1	3	wr_reg_3
Data table write	wr_all_param_clr1	4	wr_reg_4
Data table write	wr_param_clr2	6	wr_reg_6
Data table write	wr_all_param_clr2	7	wr_reg_7
Data table write	wr_cmd_reg	9	wr_reg_9

$\overline{}$
<u>~</u>

Service	Tag Name	Register Start	Same As
Data table write	wr_op_mode	10	wr_reg_10
Data table write	wr_freq_cmd	14	wr_reg_14
Data table write	wr_freq_cmd_eeprom	15	wr_reg_15
Data table write	wr_uar_addr	100	wr_reg_100
Data table write	wr_uar_val	101	wr_reg_101
Data table write	wr_reg_alarm_history1	501	wr_reg_501

To read data from the interface card, the application PLC program must reference a "source element" from which to start reading and the "number of elements" to read. The "source element" will be a tag name constructed according to the naming convention shown above, or a special tag as shown in Table 7. The "source element" can be either a base tag (such as "rd_reg_201", which starts at register 201), or an offset from a base tag (such as "rd_reg_201[4]", which starts at register 201+4 = register 205, the inverter's frequency setting monitor register).

In a similar manner, to write data to the interface card, the application PLC program must reference a "destination element" to which to start writing and the "number of elements" to write. Again, the "destination element" will be a tag name constructed according to the naming convention shown above, or a special tag as shown in Table 7.

Whether reading or writing, the "number of elements" can be any quantity of registers from 1 to the maximum allowable length.

8.2.8 ControlLogix Example: Read a Register Block

This example program will show how to continuously read a block of registers from the inverter with a single MSG instruction. Only one read request is outstanding at any given time.

1) Create new Tags.

- Double click "Controller Tags" in the controller organizer view.
- b) The "Controller Tags" window appears. Refer to Figure 97.
- Select the "Edit Tags" tab at the bottom.
- Create a new tag by entering "connection" in the first blank Name field, and change its Data Type to "MESSAGE" This tag will contain configurations.

Figure 97: Create New Tags

- "MESSAGE". This tag will contain configuration information for the MSG instruction.

 e) Select the "Monitor Tags" tab. Expand the "connection" tag by clicking on the "+" sig
- e) Select the "Monitor Tags" tab. Expand the "connection" tag by clicking on the "+" sign next to the tag name. Scroll down to the connection. Unconnected Timeout field and change its value from the default 30000000 (30s in 1uS increments) to 1000000 (1s). This value determines how long to wait before timing out and retransmitting a connection request if a connection failure occurs. Refer to Figure 98.
- f) Collapse the "connection" tag again by clicking on the "-" sign next to the tag name.

g) Select the "Edit Tags" tab again. Create another new tag by entering "data_array" in the next blank Name field, and change its Data Type by typing in "INT[62]" in the Data Type field. This tag is an array of INTs that will be able to hold up to 62 16-bit registers from

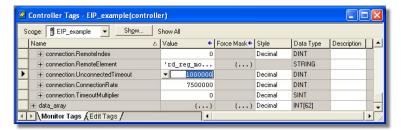


Figure 98: Reduce the UnconnectedTimeout Value

the inverter. Always make sure that the destination tag size is large enough to hold all elements to be read.

2) Add a MSG instruction to the main program.

- a) Double click "MainRoutine" under Tasks ...MainTask ...MainProgram in the controller organizer view.
- b) Right click on the first ladder logic rung in the MainRoutine window and select "Add Ladder Element..."

Figure 99: Adding a MSG Instruction

PROTOCOL-SPECIFIC INFORMATION

- c) The "Add Ladder Element" window appears.
- Select the "MSG" instruction in the Input/Output folder. Refer to Figure 99.
- e) Click OK.

3) Add an XIO element to the main program.

- Right click on the ladder logic rung containing the MSG instruction in the MainRoutine window and select "Add Ladder Element..." again.
- b) The "Add Ladder Element" window appears.
- c) Select the "XIO" element in the Bit folder. Refer to Figure 100.
- d) Click OK.

4) Configure the MSG instruction.

- Edit the "Message Control" field on the MSG instruction to use the previouslycreated "connection" tag. Refer to Figure 101.
- b) Click the message configuration button ("...") in the MSG instruction. The

Figure 100: Adding an XIO Element

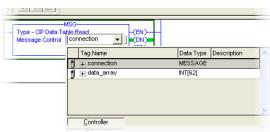


Figure 101: MSG Instruction Tag Assignment

"Message Configuration" window will open. Refer to Figure 102.

- c) "Configuration" tab settings:
 - i) Change the "Message Type" to "CIP Data Table Read".
 - ii) In the "Source Element" field, enter the read tag you wish to access (refer to section 8.2.5.) In this example, we will be reading a total of 25 registers beginning at rd_reg_monitor[10].

Figure 102: MSG Instruction Configuration

Offset 10 in the interface card's rd_reg_monitor root tag (which starts at register 201) refers to 201+10 = register 211 (output current peak value). If we wish, we could also use the tag name which references output current peak value directly (rd_reg_211) to achieve the same results.

- iii) Enter the Number Of Elements to read. In this example, we will read 25 registers.
- iv) For the Destination Element, either directly type in "data_array[10]", or select element #10 in the data_array tag via the drop-down box (refer to Figure 103). The destination could be any offset in the data_array tag, as long as the offset plus the Number Of Elements (25) does not exceed the tag's defined size (62).
- d) "Communication" tab settings (refer to Figure 104):

PROTOCOL-SPECIFIC INFORMATION

- i) Enter the Path to the interface card. A typical path is formatted as "Local_ENB,2,target_IP_address", where:
 - Local_ENB is the name of the 1756-ENBx module in the local chassis (we named ours "EIP" in section 8.2.3),
 - 2 is the Ethernet port of the 1756-ENBx module in the local chassis, and
 - target_IP_address is the IP address of the target node.

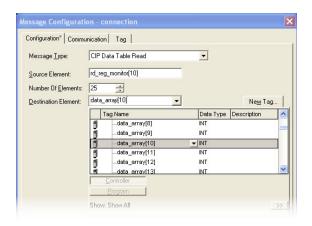


Figure 103: Selecting the Destination Element

Figure 104: Setting the Communication Path

- In our example, this path would be entered as "EIP.2.192.168.16.163".
- ii) If "Cache Connections" is enabled (checked), the connection remains open after transmission. If disabled (unchecked), the connection is opened before and closed after every transmission. For efficiency, it is recommended to enable "Cache Connections".
- e) Click "OK" to close the MSG Configuration dialog. At this stage, MainRoutine should look like Figure 105.

5) Assign a tag to the XIO element.

 a) Double-click on the XIO element located to the left of the MSG block. In the drop-down box, double-click on the "connection.EN" field. Refer to Figure 106. This configuration causes the MSG instruction to automatically retrigger itself when it completes. While this is acceptable for the purposes of this example, it can produce high network utilization. In actual practice, it may be desirable to incorporate

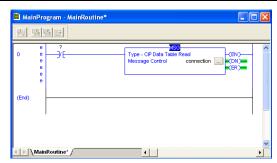


Figure 105: MainRoutine

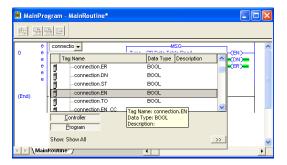


Figure 106: Configure XIO Element

additional logic elements to allow triggering the MSG instruction at a specific rate or under specific conditions.

- 6) The program is now complete. Refer to Figure 107.
- 7) Save, download and run the program.
 - To view the values of the registers being read from the interface card, double-click "Controller Tags" in the controller organizer view.
 - b) Select the "Monitor Tags" tab.
 - c) Expand the data_array tag. Refer to Figure 108.

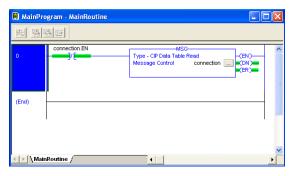


Figure 107: Complete Program

d) 25 register values starting at register #211 are being continuously read from the interface card and placed in the 25 sequential offsets of data_array starting at the 11th offset (data_array[10]). In Figure 108, we can see that data_array[11] (register 212 / converter output voltage peak value) has a value of 3190 (319.0V), data_array[15] (register 216 / output terminal status) has a value of 19, etc.

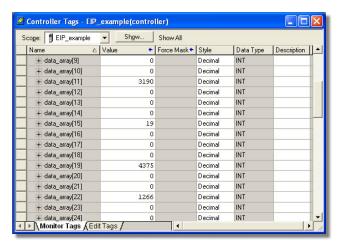


Figure 108: Viewing the Register Values

8.2.9 ControlLogix Example: Read a Single Register

The configuration and execution for reading a single register is in general identical to that required for reading a block of registers as detailed in section 8.2.8. The only difference is in the configuration of the MSG instruction. Figure 109 shows an example MSG instruction's Configuration tab, which will read a single tag (rd_inv_stat / rd_reg_261, the inverter's status register) and place it in the first element (offset 0) of data_array.



Figure 109: Read the Inverter's Status Register

8.2.10 ControlLogix Example: Multiple MSG Instructions

At times, reading from different groups of registers may be necessary. For example, a specific application may require access to the universal access registers and some other monitor registers. To accomplish this task, multiple MSG instructions will need to be implemented in the PLC program.

The configuration and execution for implementing multiple MSG instructions is in general identical to that required for implementing just one MSG instruction. Each MSG instruction will require its own message controller tag. In the case of read MSG instructions, more than one instruction may use the same Destination Element tag, but the storage locations must not overlap. Figure 110 shows an example of two MSG instructions, each accessing different read tags. It is evident from this logic that

"rd_connection" and "rd_connection2" are the two independent message controller tags created for these instructions.

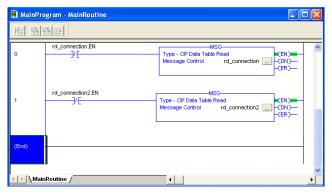


Figure 110: Reading Via Multiple MSG Instructions

8.2.11 ControlLogix Example: Reading and Writing

Often times, applications may need to both read data from and write data to the inverter. At a minimum, this will require two MSG instructions and two message controller tags. Figure 111 shows an example of three MSG instructions, one for reading and two for writing (the inverter's frequency command and command word). The only item of note that differentiates this example from the multiple-read example in section 8.2.10 is the addition of the en xx wr XIC elements. The reason for the addition of these elements is that while reading from a remote device is often continuously performed

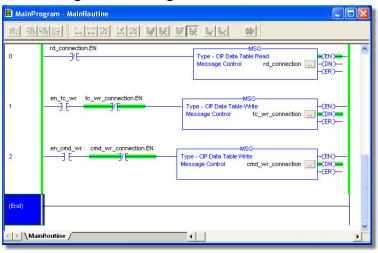


Figure 111: Reading and Writing via MSG Instructions

(monitoring), data is typically written to the remote device only when necessary (i.e. when the value to write has changed). This conserves both network bandwidth and potentially EEPROM lifespans on the target device. The en_xx_wr elements in this example, therefore, would typically be replaced in an actual application program by user-provided logic that controls the conditions under which write operations would be performed.

Figure 112 shows the configuration details of the example fc_wr_connection MSG instruction. Note that the chosen "Message Type" is "CIP Data Table Write", and that this instruction will only be writing to one inverter register: namely, the frequency command (Destination Element is wr_freq_cmd / wr_reg_14). The Source Element in this case is the 2nd element (starting from index 0) of an INT array tag named "wr_data".

Figure 112: MSG Configuration for Writing

Note that when writing data via explicit messaging, use caution to ensure that the commanded registers are not also simultaneously being commanded in the background via I/O messaging. Indeterminate behavior can occur if MSG instructions and background I/O data transfers are both writing to the same registers. In other words, if the I/O messaging example procedure detailed in section 8.2.4 has already been implemented, and the same program is now being modified to implement explicit messaging, then it is recommended to inhibit the target module by selecting the "Inhibit Module" checkbox in the Connection tab of the Module Properties dialog.

8.3 Allen Bradley CSP

8.3.1 Overview

Ethernet-enabled Allen-Bradley legacy PLCs (such as the PLC5E and SLC-5/05 series) use a protocol called CSP (Client Server Protocol) to communicate over the Ethernet network. The flavor of CSP used by these PLCs is also known as "PCCC" (Programmable Controller Communication Commands) and "AB Ethernet". The interface card supports CSP for direct connectivity to these PLCs.

If a connection timeout or socket-level error occurs, the driver will trigger a timeout event as described in section 5.7.6.

8.3.2 Tag Reference

Register contents are read from and written to the interface card via CSP by reference to an integer "file/section number" and an "offset/element" within that file. Reading is performed via the CSP "PLC5 Read" (DF1 protocol typed read) service, and writing is performed via the CSP "PLC5 Write" (DF1 protocol typed write) service.

The formula to calculate which register is targeted in the interface card is provided in Equation 3.

target register =
$$(file\ number\ -10) \times 100 + offset$$

Equation 3

In Equation 3, "target register" ∈[1...1899], "file number" ∈[10...28] (which means N10...N28), and "offset" is restricted only by the limitations of the programming software (but is a value of 1899 max).

Table 8 provides some examples of various combinations of file/section numbers and offsets/elements which can be used to access inverter registers. Note that there are multiple different combinations of file/section numbers and offsets/elements that will result in the same inverter register being accessed.

Table 8: CSP Target Register Examples

File/Section Number	Offset/Element	Start Target Register
N10	2	2
N12	62	262
N11	162	262
N15	1	501
N15	8	508
N10	508	508
N10	1899	1899
N28	99	1899

In addition to providing access to the inverter registers in their "standard" numerical locations as mentioned above, the registers can also be accessed in a special "assembly object" type format by targeting integer file N50. What this means is that when N50 is targeted for reading, what is actually returned by the interface card is the user-defined register data as ordered by the EtherNet/IP produced register configuration array (refer to section 5.8.4). Similarly, when N50 is targeted for writing, the written data is disseminated to the inverter's registers according to the definition contained in the EtherNet/IP consumed register configuration array. By appropriate configuration of the EtherNet/IP consumed and produced register configuration arrays, therefore, bulk access to non-contiguous but

frequently-used inverter registers can be conveniently provided by performing only one read and/or write instruction targeting file N50.

Because both the EtherNet/IP consumed and produced register configuration arrays are comprised of 32 register definitions, the targeted "offset/element" must be within the range of 0 to 31 inclusive. Refer to Table 9 for some examples of N50 accesses.

Table 9: Examples of EtherNet/IP-Style Bulk Access via File N50

Offset/Element	Start Target Register of Configuration Array	Max Number of Accessible Elements
0	1st	32
:	:	:
15	16th	16
:	••	:
31	32nd	1

The application PLC program uses a MSG instruction that is configured with a "Data Table Address" from which to start the access and a "Size in Elements" which determines the number of items to access (read or write). The "Data Table Address" is constructed by selecting a "File/Section Number" and an "Offset/Element" according to Equation 3. For example, a "File/Section Number" of N12 and "Offset/Element" of 61 = N12:61, which corresponds to register 261 (the inverter's status register).

8.3.3 SLC-5/05 Example: Read a Register Block

This example program will show how to continuously read a block of registers from the inverter with a single MSG instruction. Only one read request is outstanding at any given time.

- 1) Run RSLogix 500, and create a new configuration.
- 2) Create a control and a data file.
 - a) Right click Data Files and select New... The "Create Data File" dialog box appears (refer to Figure 113).
 - b) To create a control file, enter a file number (e.g. 20), set the type to "Integer", enter a descriptive name (e.g. "CONTROL"), and enter a number of elements (e.g. 100). Click OK to create the file. The control file is used to store configuration information pertaining to the functionality of the MSG instruction which will perform the data read.
 - c) Follow the same procedure to create a data file. This file will be used to store the incoming data read from the interface card. Enter a file number (e.g. 18), set the type to "Integer", enter a descriptive name (e.g. "DATA"), and enter a

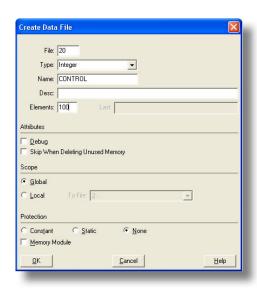
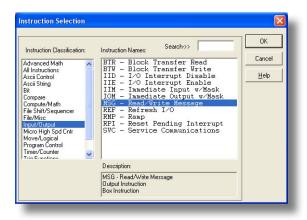


Figure 113: Creating a Control File

number of elements (e.g. 200). Refer to Figure 114. Click OK to create the file.


3) Add a MSG instruction to the program.

- a) If not already visible, double-click "LAD2" under Project...Program Files in the controller organizer view to bring up the ladder logic program.
- Right click on the default rung number on the lefthand side of the LAD2 window and select "Insert Rung".
- Right click on the rung number of the new editable rung and select "Append Instruction".
- d) Select the "MSG" instruction from the "Input/Output" classification, then click OK. Refer to Figure 115.

Create Data File File: 18 Type: Integer Name: DATA Desc: Elements: 200 Attributes ☐ Debug Skip When Deleting Unused Memory Scope · Global To File: 2 C Local Protection Constant C Static None Memory Module Cancel <u>H</u>elp

4) Add an XIO element to the program.

- Right click on the rung number of the rung currently being edited and select "Append Instruction" again.
- b) Select the "XIO" instruction from the "Bit" classification, then click OK. Refer to Figure 116.



Figure 115: MSG Instruction Selection

Figure 116: XIO Instruction Selection

5) Configure the MSG instruction.

- a) Set the "Read/Write" field to "Read", "Target Device" field to "PLC5", "Local/Remote" field to "Local", and "Control Block" to "N20:0".
- b) Upon hitting the <ENTER> key while in the "Control Block" entry box, the MSG Properties dialog box should appear (or it can be opened by clicking on the "Setup Screen" button at the bottom of the MSG instruction). Refer to Figure 117.

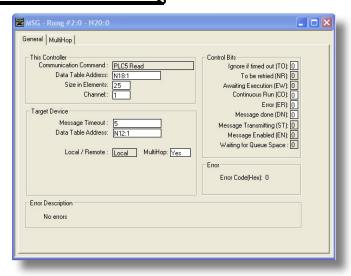


Figure 117: MSG Configuration, "General" Tab

c) In this example, we will be reading a total of 25 registers beginning at N12:1 (register 201, the inverter's "output frequency" register). To configure this, under "This Controller" set the "Data Table Address" field to N18:1, set the "Size in Elements field" to 25, and set the "Channel" field to 1 (Ethernet).

- d) Under "Target Device", set the "Data Table Address" field to N12:1 (starting target register=201) and set the "MultiHop" field to Yes to cause the "MultiHop" tab to appear.
- e) Under the "MultiHop" tab settings, set the "To Address" in the first row to the inverter's IP address, and the "To Address" in the second row to 0. Refer to Figure 118.
- f) Close the dialog box. At this point, the program should appear as shown in Figure 119.

6) Assign a tag to the XIO element.

 a) Double-click on the XIO element located to the left of the MSG block. Type in N20:0/15 (MSG instruction's enable bit). This configuration

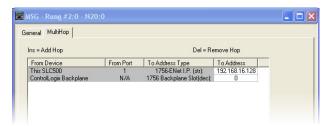


Figure 118: MSG Configuration, "MultiHop" Tab

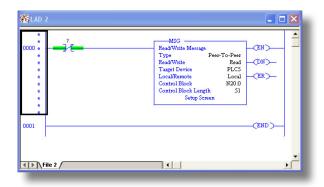
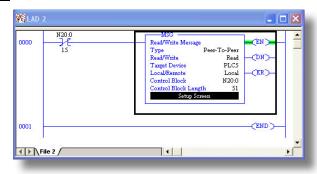



Figure 119: PLC Program after MSG Instruction Configuration

causes the MSG instruction to automatically retrigger itself when it completes. While this is acceptable for the purposes of this example, it can produce high network utilization. In actual practice, it may be desirable to incorporate additional logic elements to allow triggering the MSG instruction at a specific rate or under specific conditions.

7) The program is now complete. Refer to Figure 120.

Figure 120: Completed PLC Program

- 8) Save, download, and run the program.
 - a) To view the registers being read from the interface card, double-click the data file N18 under "Data Files" in the controller organizer view. 25 register values starting at register #201 are being continuously read from the interface card and placed in the 25 sequential offsets of N18 starting at N18:1. Refer to Figure 121. We can see that N18:1 (output frequency) has a value of 2000 (20.00Hz), N18:3 (output voltage) has a value of 255 (25.5V), etc.

Radix: Decimal

Help

Columns: 10 ▼

Figure 121: Monitoring the Data Being Read from the Inverter

Usage

N18:108 Symbol:

Properties

Desc: N18

8.3.4 SLC-5/05 Example: Read a Single Register

The configuration and execution for reading a single register is in general identical to that required for reading a block of registers as detailed in section 8.3.3. The only difference is in the configuration of the MSG instruction. Figure 122 shows an example MSG instruction's General tab, which will read a single element (N12:61, which corresponds to the inverter's status register) and place it in the first element (offset 0) of N18.

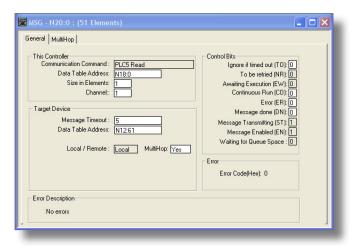


Figure 122: Read the Inverter's Status Register

8.3.5 SLC-5/05 Example: Multiple MSG Instructions

At times, reading from different groups of registers may be necessary. For example, a specific application may require some registers located in various disjoint locations in the register map. To accomplish this task efficiently, multiple MSG instructions can be implemented in the PLC program.

The configuration and execution for implementing multiple MSG instructions is in general identical to that required for implementing just one MSG instruction. Each MSG instruction will require its own message control file. In the case of read MSG instructions, more than one instruction may use the same data file to store the received register values, but the storage locations must not overlap. Figure 123 shows an example of two MSG instructions, each accessing different target integer files. It is evident from this logic that N20 and N21 are the two independent message control files created for these instructions.

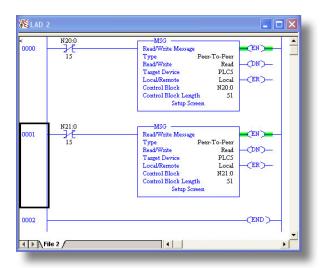


Figure 123: Multiple MSG Instructions

8.3.6 SLC-5/05 Example: Reading and Writing

Often times, applications may need to both read data from and write data to the inverter. At a minimum, this will require two MSG instructions and two message control files. Figure 124 shows an example of two MSG instructions, one for reading and one for writing. Note that the "Read/Write" field of each of the

MSG instructions is set according to their function.

Figure 125 shows the configuration details of the "write" MSG instruction. Note that this instruction will only be writing to one inverter register: namely, the command word (Target Data Table Address is N10:9, which equates to inverter register 9). The source Data Table Address in this case is N18:30.

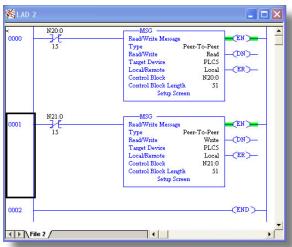


Figure 124: Reading and Writing via MSG Instructions

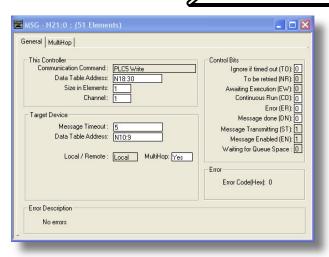


Figure 125: MSG Configuration for Writing

8.4 BACnet/IP

- The interface card supports the BACnet/IP (Annex J) protocol over Ethernet via UDP port 47808.
- The BACnet driver does not trigger timeout events (section 5.7.6).

8.4.1 Protocol Implementation Conformance Statement

BACnet Protocol

Date: June 1, 2011

Vendor Name: ICC, Inc.

Product Name: Mitsubishi Inverter FR-700

Product Model Number: FR-A7N-WiE

Applications Software Version: V1.100 Firmware Revision: V1.100

BACnet Protocol Revision: 2

Product Description:

The Mitsubishi 700-series inverter family represents inverters featuring reduced high-frequency noise, reduced harmonics, and high-precision and high-speed torque control with or without sensors. The FR-A7N-WiE is an 802.11b wireless Ethernet interface card for this inverter

family.

BACnet Standard Device Profile (And	nex L):		
 □ BACnet Operator Workstation (B-OWS) □ BACnet Building Controller (B-BC) □ BACnet Advanced Application Controller (B-AAC) ☑ BACnet Application Specific Controller (B-ASC) □ BACnet Smart Sensor (B-SS) □ BACnet Smart Actuator (B-SA) 			
BACnet Interoperability Building Blo	cks Supported (Annex K):		
 ☑ Data Sharing – ReadProperty-B (DS-RP-B) ☑ Data Sharing – ReadPropertyMultiple-B (DS-RPM-B) ☑ Data Sharing – WriteProperty-B (DS-WP-B) ☑ Device Management – Dynamic Device Binding-B (DM-DDB-B) ☑ Device Management – Dynamic Object Binding-B (DM-DOB-B) 			
Segmentation Capability:			
None			
☐ Segmented requests supported☐ Segmented responses supported	Window Size		

PROTOCOL-SPECIFIC INFORMATION

Standard Object Types Supported:

See "Object Types/Property Support Table".

Data Link Layer Options:	out types, reperty cupper radio r
	Link Layer Options:
 BACnet IP, (Annex J) BACnet IP, (Annex J), Foreign Device ISO 8802-3, Ethernet (Clause 7) ANSI/ATA 878.1, 2.5 Mb. ARCNET (Clause 8) ANSI/ATA 878.1, RS-485 ARCNET (Clause 8), baud rate(s) MS/TP master (Clause 9), baud rate(s): 9600, 19200, 38400, 76800 MS/TP slave (Clause 9), baud rate(s): Point-To-Point, EIA 232 (Clause 10), baud rate(s): Point-To-Point, modem, (Clause 10), baud rate(s): LonTalk, (Clause 11), medium: Other: 	Cnet IP, (Annex J), Foreign Device 0 8802-3, Ethernet (Clause 7) SI/ATA 878.1, 2.5 Mb. ARCNET (Clause 8) SI/ATA 878.1, RS-485 ARCNET (Clause 8), baud rate(s) /TP master (Clause 9), baud rate(s): 9600, 19200, 38400, 76800 /TP slave (Clause 9), baud rate(s): nt-To-Point, EIA 232 (Clause 10), baud rate(s): nt-To-Point, modem, (Clause 10), baud rate(s): nt-Tolak, (Clause 11), medium:

Device Address Binding:

Is static device binding supported? (This is currently for two-way communication with MS/TP slaves and certain other devise.) \square Yes \boxtimes No

Networkir	ng Options
□ Router	Clause 6 -

☐ Router, Clause 6 - List all routing configurations	
☐ Annex H, BACnet Tunneling Router over IP	
☐ BACnet/IP Broadcast Management Device (BBMD)	
Does the BBMD support registrations by Foreign Devices?	☐ Yes ☐ No

Character Sets Supported:

Indicating support for multiple character sets does not imply that they can all be supported simultaneously.

⊠ ANSI X3.4	□ IBM [™] /Microsoft [™] DBCS	☐ ISO 8859-1
☐ ISO 10646 (UCS-2)	☐ ISO 10646 (UCS-4)	☐ JIS C 6226

If this product is a communication gateway, describe the types of non-BACnet equipment/networks(s) that the gateway supports: N/A

Datatypes Supported:

The following table summarizes the datatypes that are accepted (in the case of a write property service) and returned (in the case of a read property service) when targeting the present value property of each supported object type.

Ohioot Turno	Service		
Object Type	Read Property	Write Property	
Analog Output	Real	Real, Unsigned, Integer, Null	
Analog Input	Real	N/A	
Binary Output	Enumerated	Enumerated, Boolean, Real, Unsigned, Integer, Null	
Binary Input	Enumerated	N/A	

Notes:

- The Null data type is used to relinquish a previously-commanded entry at the targeted priority in the priority array.
- When writing to Binary Output objects, all non-zero values are interpreted as a "1".

Object Types/Property Support Table

Table 10: BACnet Object Types /Properties Supported

	Object Type				
Property	Device	Binary Input	Binary Output	Analog Input	Analog Output
Object Identifier	R	R	R	R	R
Object Name	R	R	R	R	R
Object Type	R	R	R	R	R
System Status	R				
Vendor Name	R				
Vendor Identifier	R				
Model Name	R				
Firmware Revision	R				
Appl Software Revision	R				
Protocol Version	R				
Protocol Revision	R				
Services Supported	R				
Object Types Supported	R				
Object List	R				
Max APDU Length	R				_
Segmentation Support	R				

	Object Type				
Property	Device	Binary Input	Binary Output	Analog Input	Analog Output
APDU Timeout	R				
Number APDU Retries	R				
Max Master					
Max Info Frames					
Device Address Binding	R				
Database Revision	R				
Present Value		R	W	R	W
Status Flags		R	R	R	R
Event State		R	R	R	R
Reliability		R	R	R	R
Out-of-Service		R	R	R	R
Units				R	R
Priority Array			R		R
Relinquish Default			R		R
Polarity		R	R		
Active Text		R	R		
Inactive Text		R	R		

R – readable using BACnet services

W - readable and writable using BACnet services

8.4.2 Supported Objects

Table 11: Binary Input Object Instance Summary

Instance ID	Object Name	Description	Active/ Inactive Text
BI1	RUN_STOP_STATUS	Run/stop status	running/stopped
BI2	FOR_ROT_STATUS	Forward rotation status	forward/off
BI3	REV_ROT_STATUS	Reverse rotation status	reverse/off
BI4	SU_STATUS	Up to frequency	on/off
BI5	OVERLOAD_STATUS	Overload status	on/off
BI6	IPF_STATUS	Instantaneous power failure	on/off
BI7	FU_STATUS	Frequency detection	on/off
BI8	ABC1_STATUS	Terminal function selection status	on/off
BI9	ABC2_STATUS	Terminal function selection status	on/off
BI10	ALARM_OCC_STATUS	Alarm occurrence status	on/off

Table 12: Binary Output Object Instance Summary

Instance ID	Object Name	Description	Active/ Inactive Text
BO1	STOP_CMD	Stop command	stop/no action
BO2	FOR_ROT_CMD	Forward rotation command	forward/off
BO3	REV_ROT_CMD	Reverse rotation command	reverse/off
BO4	RH_CMD	High speed operation command	on/off
BO5	RM_CMD	Medium speed operation command	on/off
BO6	RL_CMD	Low speed cooperation command	on/off
BO7	JOG_OP	Jog	on/off
BO8	RT_SEL	Second function selection	on/off
BO9	AU_SEL	Current input selection	on/off
BO10	CS_SEL	Auto restart selection after IPF	on/off
BO11	MRS	Output stop	on/off
BO12	STOP_HOLDING	Start self-holding	on/off
BO13	RESET	Reset	on/off

Table 13: Analog Input Object Instance Summary

Instance ID	Ohioot Nome	Description	Huita
Instance ID	Object Name	Description	Units
Al1	OUTPUT_FREQ	Output frequency	Hz
Al2	OUTPUT_CURRENT	Output current	Amps
Al3	OUTPUT_VOLTAGE	Output voltage	Voltage
Al4	INPUT_POWER	Input power	kW
AI5	OUTPUT_POWER	Output power	kW
Al6	CUMULATIVE_POWER	Energy consumption	kWh
AI7	OP_MODE_STATUS	Op mode status	None
Al8	UAR_STATUS	Universal access register status	None
AI9	PID_SET_POINT	PID set point	%
Al10	PID_MEASURED_VALUE	PID measured value	%
Al11	PID_DEVIATION_VALUE	PID deviation value	%

Table 14: Analog Output Object Instance Summary

Instance ID	Object Name	Description	Units
AO1	INVERTER_RESET	Reset	None
AO2	PARAM_CLEAR1	Clear parameters	None
AO3	ALL_PARAM_CLEAR1	Clear all parameters	None
AO4	PARAM_CLEAR2	Clear parameters except communication parameters	None
AO5	ALL_PARAM_CLEAR2	Clear all parameters except communication parameters	None
AO6	OPERATION_MODE	Operation mode register	None
AO7	FREQ_CMD_REG	Frequency command register	Hz
AO8	IFREO (MID) FERROM REG	EEPROM Frequency command register	Hz
AO9	UAR_ADDRESS	Universal address register address	None
AO10	UAR_VALUE	Universal address register value	None

8.4.3 Supported Object Details

Binary Input Objects

- BI1Indicates the status of the RUN output terminal function configured by *Pr. 190 RUN terminal function selection*. Corresponds to register 261, bit 0.
- BI2Indicates whether the inverter is running forward, or stopped. Corresponds to register 261, bit 1.
- BI3Indicates whether the inverter is running reverse, or stopped. Corresponds to register 261, bit 2.
- BI4Indicates the status of the SU output terminal function configured by *Pr. 191 SU terminal function selection*. Corresponds to register 261, bit 3.
- BI5Indicates the status of the OL output terminal function configured by *Pr. 193 OL terminal function selection*. Corresponds to register 261, bit 4.
- BI6Indicates the status of the IPF output terminal function configured by *Pr. 192 IPF terminal function selection*. Corresponds to register 261, bit 5.
- BI7Indicates the status of the FU output terminal function configured by *Pr. 194 FU terminal function selection*. Corresponds to register 261, bit 6.
- BI8Indicates the status of the ABC1 output terminal function configured by *Pr. 195 ABC1 terminal function selection*. Corresponds to register 261, bit 7.
- BI9Indicates the status of the ABC2 output terminal function configured by *Pr. 196 ABC2 terminal function selection*. Corresponds to register 261, bit 8.

BI10Indicates whether or not the inverter is in an alarm condition. Corresponds to register 261, bit 15.

Binary Output Objects

- BO1.....Stop command. Corresponds to register 9, bit 0.
- BO2......Forward command. Corresponds to register 9, bit 1.
- BO3.....Reverse command. Corresponds to register 9, bit 2.
- BO4......Activates the RH input terminal function configured by *Pr. 182 RH terminal function selection*. Corresponds to register 9, bit 3.
- BO5......Activates the RM input terminal function configured by *Pr. 181 RM terminal function selection*. Corresponds to register 9, bit 4.
- BO6...... Activates the RL input terminal function configured by *Pr. 180 RL terminal function selection*. Corresponds to register 9, bit 5.
- BO7......Activates the JOG input terminal function configured by *Pr. 185 JOG terminal function selection*. Corresponds to register 9, bit 6.
- BO8......Activates the RT input terminal function configured by *Pr. 183 RT terminal function selection*. Corresponds to register 9, bit 7.
- BO9...... Activates the AU input terminal function configured by *Pr. 184 AU terminal function selection*. Corresponds to register 9, bit 8.

- BO10....Activates the CS input terminal function configured by *Pr. 186 CS terminal function selection*. Corresponds to register 9, bit 9.
- BO11....Activates the MRS input terminal function configured by *Pr. 187 MRS terminal function selection*. Corresponds to register 9, bit 10.
- BO12.... Activates the STOP input terminal function configured by *Pr. 188 STOP terminal function selection*. Corresponds to register 9, bit 11.
- BO13....Activates the RES input terminal function configured by *Pr. 189 RES terminal function selection*. Corresponds to register 9, bit 12.

Analog Input Objects

- Al1 The output frequency of the inverter in 0.01 Hertz units (6000=60.00Hz). Corresponds to register 201.
- Al2The output current of the inverter in 0.1 or 0.01 Amp units (depends on inverter capacity). Corresponds to register 202.
- Al3The output voltage of the inverter in 0.1 Volt units (1000=100.0V). Corresponds to register 203.
- Al4Input power of the inverter in 0.1 or 0.01 kW units (depends on inverter capacity). Corresponds to register 213.
- Al5 Output power of the inverter in 0.1 or 0.01 kW units (depends on inverter capacity). Corresponds to register 214.

PROTOCOL-SPECIFIC INFORMATION

- Al6 Energy consumption in kWh. Corresponds to register 225.
- AI7Inverter operation mode status. Corresponds to register 262.
- Al8 Universal Access Register Status (UARS). Corresponds to register 102.
- Al9PID set point monitor in 0.1% units. Corresponds to register 252.
- Al10PID measurement value monitor in 0.1% units. Corresponds to register 253.
- Al11PID deviation value monitor in 0.1% units. Corresponds to register 254.

Analog Output Objects

- AO1......Inverter fault reset command. Corresponds to register 2.
- AO2......Parameter clear command. Corresponds to register 3.
- AO3.....All parameter clear command. Corresponds to register 4.
- AO4......Parameter clear command (communication parameters are not cleared). Corresponds to register 6.
- AO5......All parameter clear command (communication parameters are not cleared). Corresponds to register 7.
- AO6...... Selects the operation mode of the inverter. Corresponds to register 10.
- AO7......The frequency command (RAM) of the inverter in 0.01 Hertz units. Corresponds to register 14.

AO8......The frequency command (EEPROM) of the inverter in 0.01 Hertz units. Corresponds to register 15.

AO9......Universal Access Register Address (UARA). Corresponds to register 100.

AO10....Universal Access Register Value (UARV). Corresponds to register 101.

8.5 MELSEC

8.5.1 Overview

The Mitsubishi MELSEC communication protocol (also known as MC protocol) is an application-level protocol implemented on top of the Ethernet TCP/IP and UDP/IP layers. It is typically used to read and write data from/to devices supporting compatible 3E and 1E frames.

The interface card acts as a server and supports Device Memory Batch Read (0x0401), Batch Write (0x1401), Random Read (0x0403), and Random Write (0x1402) commands for word access for 3E frames. For 1E frames, both Device Memory Batch Read Word (0x01) and Batch Write Word (0x03) commands are supported. All commands only support word units. All MELSEC communication is conducted over only TCP/IP.

The only supported device type is the File Register. The 3E hex code for the File Register device type is 0xB0 and the 1E hex code is 0x5A52. The device point is the register number (refer to 6). If applicable, the network number is 0, the PC number is 0xFF, the module I/O number is 0x3FF, and the module station number is 0. For more information regarding the MELSEC protocol, refer to the Mitsubishi MELSEC Communication Protocol reference manual.

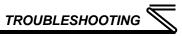
A MELSEC client device is required to initiate communications with the interface card. If a Mitsubishi PLC is commissioned as the MELSEC client device, please consult Mitsubishi Electric for GX Developer and/or GX Works programs implementing the MELSEC client driver.

Other notes of interest are:

Supports up to 8 simultaneous connections.

- The TCP port is user configurable.
- The max MELSEC frame size is 1460 bytes. Refer to Table 15.
- The 3E Random Write command will attempt to write to all requested device points even if an error is encountered. Ensure that all requested device points are valid before using Random Write.
- Both scanned and non-scanned registers can be freely accessed. The response time for scanned register accesses will be faster than that for non-scanned registers.
- The socket timeout time is determined by the "timeout" setting on the web server's "Config" tab
 (refer to section 5.7.6). This means that if a particular open socket experiences no activity for more
 than the timeout time setting, then the interface assumes that the client or network has experienced
 some sort of unexpected problem, and will close that socket.
- Because the socket timeout determination is performed on a per-socket basis, note that a certain
 degree of caution must be exercised when using the network timeout feature to avoid "nuisance"
 timeouts from occurring. Specifically, do not perform inadvisable behavior such as sending a
 request from the master device to the interface, and then closing the socket prior to successfully
 receiving the unit's response. The reason for this is because the interface will then experience an
 error when attempting to respond via the now-closed socket, which will immediately trigger the
 timeout action. Always be sure to manage socket life cycles "gracefully", and do not abandon
 outstanding requests.
- If a socket timeout occurs (regardless of whether it was due to a communication lapse or abnormal socket error), the driver will trigger a timeout event as described in section 5.7.6.

Table 15: MELSEC Commands


Frame	Command	Command	Subcommand	Max
Type	Name	Code	Code	Points
3E	Batch Read	0x0401	0x0000	724
3E	Batch Write	0x1401	0x0000	719
3E	Random Read	0x0403	0x0000	192
3E	Random Write	0x1402	0x0000	192
1E	Batch Read	0x01	NA	256
1E	Batch Write	0x03	NA	256

9 TROUBLESHOOTING

Although by no means exhaustive, the following table provides possible causes behind some of the most common errors experienced when using the FR-A7N-WiE interface.

Problem	Symptom	Solution
No communications between FR-A7N-WiE and the inverter	The FR-A7N-WiE's "INVERTER" TX and RX LEDs are blinking slowly, sporadically, or not at all	 Check connections and orientation of the #10621 cable between the FR-A7N-WiE and the inverter. Confirm that the inverter's station ID (<i>Pr. 331</i>), baud rate (<i>Pr. 332</i>) and parity (<i>Pr. 334</i>) are set to 1, 38400 and even, respectively. Confirm that the inverter's RS-485 protocol selection is set to Modbus (<i>Pr. 549</i> = 1).
No communications between the network and the FR-A7N-WiE	Communications cannot be established, or the Ethernet "activity" LED flashes only infrequently or not at all	 Confirm that the destination IP address programmed into the controller equipment or computer matches that of the interface card, as displayed by the finder utility. Confirm that the wireless configuration parameters are correct. Confirm that intermediate firewalls or routers have been configured to allow access to the interface via the applicable TCP/UDP ports. If attempting to access the web server on a computer whose web browser is configured to use a proxy server, ensure that the proxy server is accessible to the computer, and that the interface card is accessible to the proxy server.

Problem	Symptom	Solution	
Firmware-generated error	"MODULE STATUS" LED is flashing red. The number of times the LED flashes indicates an error code.	Contact ICC for further assistance.	
XML socket connection failed	Message on a web server tab information window	TCP port 2000 is blocked by a firewall, router or some other intermediate network equipment.	
Unable to control the inverter via network communications	Cannot write to command parameters via network communications, or writing to these parameters has no apparent effect	Set the inverter to NET mode. The inverter will reject all command and parameter write requests from the network if it is not in NET mode.	

REVISIONS

Date	Manual Number	Details
Jan. 2009	10707-1.000-000	Initial release
June 2011	10707-1.100-000	Updates for V1.100 firmware release

INDUSTRIAL CONTROL COMMUNICATIONS, INC.

1600 Aspen Commons, Suite 210 Middleton, WI USA 53562-4720 Tel: [608] 831-1255 Fax: [608] 831-2045

http://www.iccdesigns.com