
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB80-4

INTRODUCTION

In GPIB systems, the SRQ (ServiceReQuest) signal is used by a
GPIB device to notify the GPIB Controller that the device requires
servicing. SRQs are traditionally used to inform the user of a
completed task, data ready, an error condition or some other con-
dition that the user has enabled. SRQ handling depends upon the
programming language and operating system. Some languages and
systems have an On-SRQ capability to jump to an interrupt routine.
Others require that the program wait for the SRQ line to be asserted
or periodically test the state of the SRQ line. In others, the user can
create an 'ibnotify' routine to set a flag or handle the interrupt.

This need to use SRQ notification still exists within VXI-11 systems,
but SRQs and interrupt handling must be handled in an entirely
different way. This is due to VXI-11 communication being via
Ethernet rather than a GPIB bus. The user can still implement a
polling method that periodically samples the state of the SRQ line.
When it becomes active, the program then has to Serial Poll all of
the devices that are enabled to generate SRQs to find the device
that is requesting service. This method works okay with one or two
devices but becomes slow and loads the network with extra traffic
when applied to a large number of devices.

THE VXI-11 METHOD

The VXI-11 Specification provides a Reverse Interrupt Channel that
notifies the user when an instrument is requesting service and can
be used to identify the requesting instrument. The problem is that
the VXI-11 specification discusses the Reverse Interrupt Channel
concept at numerous points throughout the Specification and does
not give the reader a good comprehensive description of the Reverse
Channel operation. This Application Note is intended to give the user
the necessary guidelines to implement a Reverse Interrupt Channel
in his operating system. An example is not provided since each
operating system and programming language has different constraints
that limit an example's usefulness and portability.

SRQ HANDLING WITH A VXI-11 INTERRUPT CHANNEL
ON ICS's MODEL 8065 ETHERNET-TO-GPIB CONTROLLER

VXI-11 REVERSE INTERRUPT CHANNEL

The VXI-11 Specification defines the Interrupt Channel in the Con-
nection Model section, Section B2, of the specification.

Figure B.4 Network Instrument Channels

Figure B.4 from the VXI-11 Specification illustrates the Network
Instrument Client (user) and the Network Instrument Server (8065)
channel connections. The Network Instrument Server (8065)
provides two RPC services (Core Channel RPC Server and Abort
Channel RPC Server). Note that the Network Instrument Client
also has an RPC Server (Interrupt Channel RPC Server). The Core
Channel is required for normal operation. The Abort and Interrupt
Channels are optional.

The concept of RPC communication is that the originator of the
message is considered the RPC Client, with the receiver of the mes-
sage being defined as the RPC Server. Since the SRQ notification
must originate from the Network Instrument Server (8065), this
defines the Network Instrument Server (8065) as being the RPC
Client when sending the SRQ notification message.

01-12-06

2

REVERSE CHANNEL METHODS

The Network Instrument Client can use three different methods to
receive SRQ notification messages. The first method assumes that the
client is using a support library such as a TCP/IP (VXI-11) capable
VISA. The client would register a function to be executed upon
receipt of an SRQ notification message and the support library would
call the function when the SRQ notification message is received.

The next two methods are more commonly used by the RPC client.
First, a client might register an RPC service, to be invoked upon
receipt of an RPC SRQ notification message from the Interrupt
Channel RPC Client. Next, the client might establish a TCP listen
socket. The Interrupt Channel RPC Client would then connect to
this socket and send the SRQ notification message through it.

Registering an RPC service is relatively simple, with numerous
examples existing. However, the developer must remember that the
client computer must have an RPC PortMapper service installed and
enabled. This requirement may be beyond the abilities of the customer
environment due to network and/or system installation requirements.
Consequently, it is more suited for a controlled application with a
dedicated controller system where the client application runs on a
system under control by the developer of the application client. In
other words, it is best run on an in-house system.

Since the Interrupt Channel RPC Client does not require an RPC
PortMapper service to establish a connection to the Interrupt Channel
RPC Server, it might be easier to create a TCP socket level service
to handling incoming SRQ notification messages. The VXI-11
create_intr_chan function specifies the RPC service information
(IP address, port, program number, program version, and TCP/UDP
protocol) rather than requiring the RPC client to query an RPC Port-
Mapper service for the information. The RPC client then attempts
to establish a socket connection using the RPC service information
specified in the VXI-11 create_intr_chan function.

ENABLING AND IDENTIFYING GPIB INSTRUMENTS

The application client uses the VXI-11 device_enable_srq function
for each device that is to generate a SRQ. As part of the VXI-11
device_enable_srq function, the client specifies a unique identifier for
each GPIB instrument being enabled. A handle might consist of the
ASCII string “device 14”. Then when the VXI-11 device_intr_srq
message is sent to the Interrupt Channel RPC Server, the handle is
included in the message as the sole VXI-11 data field. The Inter-
rupt Channel RPC Server is then able to easily determine which
instrument is requesting service (SRQ generator) by examining the
handle portion of the VXI-11 device_intr_srq message.

If or when a SRQ event occurs for a GPIB instrument that has been
specified through a device_enable_srq VXI-11 function, a VXI-11
device_intr_srq RPC message is then sent through the channel
established by the earlier VXI-11 create_intr_chan function. This
message will be an RPC message with the attendant RPC header
information and a VXI-11 payload section. The RPC header infor-
mation can be safely ignored and the VXI-11 payload section will
contain only the VXI-11 device_intr_srq handle field.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

INTERRUPTING INSTRUMENT IDENTIFICATION

The VXI-11 device_intr_srq handle field is defined as being of an
opaque data type (Note 1). This means that the first four bytes are
the length field, in network order. The length field should be put into
host order through the usage of a network-to-host conversion macro.
The length field specifies the actual length of the following string
that contains the handle that was defined by the VXI-11 device_en-
able_srq function. The handle data should be used to determine
which GPIB instrument is generating the SRQ message.

PROGRAM OUTLINE

The following steps outline a simple test program created to test
the RPC methods using the RPC service in the Client Application
computer.

1. Create a Reverse Channel.
2. Create a link to an instrument.
3. Issue a readstb to ensure no pending SRQ status.
4. Write a string to clear the device of error conditions.
5. Write a string to enable SRQ on error. With an IEEE-488.2 de-

vice the error can be created by an unrecognized command.
6. Enable SRQ for the instrument using link ID from step-2.
7. Cause an error condition (which generates the SRQ).
8. Wait for a background signal saying reverse message re-

ceived.
9. The background sets a flag for the foreground thread that identi-

fies the instrument that generated the message.
10. Perform a readstb on the instrument and confirm value of

0x60.

RECOMMENDATIONS

1. While socket coding is relatively simple, it is not an intuitively
easy task. It is therefore recommended that such socket coding
as a socket level Interrupt Channel RPC Server be done by an
engineer experienced in socket coding.

2. If creating a socket level Interrupt Channel RPC Server, it is
important to handle network disconnects properly. If a network
error happens, it is possible that the socket connection will
break.

3. If the Interrupt Channel connection (socket level or RPC level)
should become disconnected, it must be regenerated through the
usage of the VXI-11 create_intr_chan and device_enable_srq
functions.

4. If the Core Channel used to create an Interrupt Channel is dis-
connected, the Network Instrument Server will disconnect the
Interrupt Channel RPC Client. Thus if it is wished to keep the
Interrupt Channel active, the initial Core Channel itself must
be kept active.

3

5. It is possible (but not advisable) to create multiple Interrupt
Channels for multiple Network Instrument Client support.
However, it is important to note that if multiple Interrupt Chan-
nels are attached to the same GPIB instrument, only the first
Interrupt Channel RPC Server will be notified.

6. The user must be consistent with his use of instrument links.
The same link used to originally link to the GPIB device in the
Core Channel should be used with all other functions sent to
the same GPIB device for the related Interrupt Channel.

7. The Interrupt Channel is a one-way channel. The background
should not attempt to send the instrument any messages or
perform a readstb on the instrument. That should be left to the
foreground operation.

8. If the 8065 fails to connect to an open SRQ Socket it is prob-
ably due to a TCP stack error. When a socket connect request
is passed to the TCP/IP stack layer, it nearly always executes a
successful connection. This is of course assuming that the target
box is there, listening, and ready for a connection. However
sometimes odd things happen. A failure to successfully connect
is in this area of “normally works”, but doesn’t always.

 Normally error handling would retry a connection and/or handle

the error in some other way. The problem in this specific case is
that the client may have given an incorrect IP, port address, or
may not have the port in a listen state. So error handling inside
the 8065 becomes problematic. The 8065 does not assume that
the connection error was due to a TCP layer error and should
be retried. Instead the 8065 handles the error by aborting the
connection attempt.

 Note that if and only if the create_intr_chan function believes

it has successfully established a specified IP/port, will it return
a 0 (no) error status. Thus if it returns a 0 error status and your
application believes that no connection is established, the ap-
plication must issue a destroy_intr_chan to close out the channel
prior to creating a new Reverse Channel.

 If a Reverse Channel connection is not successful (as determined

by the application) within a pre-defined amount, the client should
re-issue the create channel VXI-11 command. Thus the error
handling is done by the client (application). 8065 commands
are actually functions being called by the RPC application. If
a function fails to properly perform, it is up to the application
to do error checking and error handling. Remember that if the
create_intr_chan function returns a 0 status, the 8065 believes
that a connection is established (no error on connection at-
tempt).

9. The 8065's Auto Polling takes place in the background and can
alter the address state of the enabled devices. The application
client should disable the device from generating an SRQ when
maintaining the device's Listening or Talking address state is
critical.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

SUMMARY

This Application Note outlines several ways to use a VXI-11
Reverse Interrupt Channel to notify the Client Application about
a GPIB device that has generated a SRQ. This note also includes
the outline of a test program the user can create to verify that the
Reverse Channel is operating correctly and some recommendations
about writing RPC programs. While VXI-11 systems are harder to
program, the notification process identifies the device generating
the SRQ which can be a considerable time savings in a large system
with multiple devices.

Note 1 - Opaque Data Type - a variable length opaque data defined
as a leading Big-Endian 4-byte length field and a series of bytes
(followed by NULL padding to create a length, multiple of 4).

Example:
0x00, 0x00, 0x00, 0x05, ‘*’, ‘I’, ‘D’, ‘N’, ‘?’, 0x00, 0x00, 0x00

The last 3 bytes are to expand the data to a length which is a multiple
of 4. The first 4 bytes is the length count which defines how many
bytes are valid data.

Note that the data length is 5, but the total data field length is 8.
 - 4 bytes of length
 - 5 bytes of data
 - 3 bytes of padding

