
1 12/00

AB 55-5a

INTRODUCTION

This Application Bulletin provides background infor-
mation about the VXI-10 Fast Data Channel (FDC), about
features of the FDC that are specific to ICS's VXI modules that
use the Fast Data Channel transfer protocol and ICS's Ex-
panded FDC Command Set. While this Application Bulletin
provides recommended channel initialization and data pass-
ing procedures, it is not a replacement for the FDC Specifica-
tion. Users of the Fast Data Channel transfer protocol are
urged to read the VXI-10 Fast Data Channel Specification.

The VXI modules with Fast Data Channels are just
becoming available and the majority of VXI module users are
not familiar with the VXI Fast Data Channel protocols.
Because of the newness of the VXI Fast Data Channel
Specification, information about using the Fast Data Channel
is not readily available. The purpose of this Application
Bulletin is to provide the user with the necessary information
to program the Fast Data Channels in ICS modules. However,
a large portion of the information in this Application Bulletin
is generic in nature and applies to any VXI module that uses
Fast Data Channel.

FAST DATA CHANNEL ADVANTAGES

VXIbus message based modules have inherently slow
data transfer rates because of the complex protocol used to
transfer word serial messages. Data transfer with word serial
messages is one byte of information for every 2 or 4 four bus
transactions. This 'handshaking' holds the word serial mes-
sage data transfer rate down to 10 to 20 kbytes/second which
is too low for many real-time data transfer applications.

VXI Shared Memory concept was the VXIbus
Consortium's first attempt to provide high speed data transfer.

VXIbus
BULLETIN

APPLICATION

Better Solutions for GPIB and VXIbus Systems

(over)

VXI-1 Fast Data Channel Operation and ICS Expanded
Command Set

The Shared Memory protocols were too complex and it was
not a practical solution. In 1995, the VXIbus Consortium
defined the new VXI Fast Data Channel specification. The
Fast Data Channel concept has the speed advantages of shared
memory without the software overhead. VXI modules with
Fast Data Channel buffers have 'dual-port' memory that ap-
pears in the VXI Controller's A32 memory space. The FDC
channels (buffers) are located in this shared memory space so
they can be accessed by both modules.

Data transfer with the Fast Data Channel approaches the
maximum transfer rate for the VXIbus, up to 32 Mbytes/sec.
With Word Serial messages, reading a data character requires
the controller to make a minimum of four VXIbus accesses -
read the response register, send byte request, read the response
register again and then read the data byte. To read a register,
the Controller must make a read to see that the data is present
and then read the data. With the Fast Data Channel, the
Controller reads the channel word count and then makes one
read per word. Each word is 32-bits wide and can contain four
data bytes.

In ICS's VXI modules, the VXI-10 Fast Data Channel
protocol is used as a way to improve the data transfer rate
across the VXIbus and free up the VXI Controller for other
functions besides transferring data. This is necessary for
systems that have multiple data channels or for those systems
with high-speed continuous data transfer requirements. ICS's
modules use two large FDC buffers per data direction to
prevent data loss and to buffer the incoming or outgoing data.
The high-speed FDC data transfer rate coupled with data
buffering greatly reduces the load on the VXI Controller and
gives it time to do other computations.

ICS
ELECTRONICSICS

division of Systems West Inc.

2 12/00

DESCRIPTION

VXI Fast Data Channels occupy space in A32 memory
and can be used to transfer data and/or commands between the
Commander and the Servant module. The memory is physi-
cally part of the VXI module but it is mapped into the
Controller's A32 address space. FDC channels (or buffers)
and can be used singly or in pairs. The number, size and
organization of the channels and their use are up to the module
designer. Control bits in the FDC channel header (see Tables
A1 and A2) define who 'owns' the buffer and if the buffer is
full or empty. These control bits prevent data contention since
only the channel owner can read or write data in the buffer.

Currently, ICS VXIbus modules support Fast Data Chan-
nel (FDC) data transfer per VXIbus Specification VXI-10,
Rev. 2.10 using the Standard FDC Word Serial Commands
and ICS's expanded command set that handles up to 32 FDC
channels. Refer to the VXIbus Specification VXI-10, Rev.
2.10 for detailed information on the standard commands and
other Fast Data Channel configurations.

FAST DATA CHANNEL USAGE IN ICS'S VXI
MODULES

In ICS VXI modules, the VXI-10 Fast Data Channel
protocol is mainly used as a way to provide continuous data
transfer capability while using a minimum of the VXIbus's
data bandwidth and data transfer time. A pair of FDC
channels are used for a single data transfer direction. The
channels operate as A/B buffer pairs and in Stream Transfer
mode for continuous data throughput. One module starts by
filling the first buffer and then passing it to the other module.
The second buffer is filled while the other module is emptying
the first buffer. The buffers are exchanged and the process
repeats until all of the data has been transferred.

Because two buffers are required for a data transfer
direction, it takes four buffers or FDC channels for a bidirec-
tional data port such as a serial port or a GPIB bus interface.
ICS's multiport VXI modules require four FDC channels per
port times the number of ports in the module. In multiport
modules, the number of FDC channels quickly exceeds the
eight channels provided for in the VXI-10 standard command
set. Fortunately, the VXI-1 Specification allows designers to
create user defined commands sets to meet the needs of more
complex modules. ICS's Expanded FDC Command Set
handles up to 32 FDC channels which is adequate for modules
with up to 8 bidirectional data ports. ICS's Expanded FDC
Command Set is listed in Table 1 and described in the
Command Reference Section. These commands mirror the
standard FDC command set.

The FDC channels must be initialized before they are
used to establish data direction. The recommended initializa-
tion process is shown in Figure 3. The process shown in
Figure 3 closes the channels at the start of the initialization
process in case they had been previously initialized. Initializ-
ing an open channel will result in an error.

Transmit channels (buffers) are passed to the VXI Con-
troller (Commander) when they are empty. The Commander
passes them back to the VXI module when they are full or have
data in them. The amount of data in the buffer is up to the user
and is specified in the FDC channel header. The only
restriction is that the amount of data cannot exceed the
maximum channel size. The Commander must keep the
module supplied with a new buffer before the old one is used
up to maintain continuous data flow.

Receive channels (buffers) alternate as they become
full, or upon the receipt of a designated number of bytes in the
buffer or upon receipt of the Switch Buffers command. The
number of bytes for the switch point is set by the user with the
SCPI SYST:INP:BUF:SIZE command. This command must
be given before the Transfer to Commander command to be
effective with the first buffer. When the buffer has filled
enough to reach the switch point, the receiver will switch to
the other buffer (if it has been returned as empty). If the other
buffer is not ready then any new incoming data will be lost. A
VXI event interrupt will occur when the buffers are switched,
if interrupts were enabled. Use the Go-to-Idle command to
terminate data transfer and to get last buffer with any remain-
ing received data.

In addition to using FDC channels as A/B buffer pairs,
individual FDC channels may be assigned to other uses such
as fill buffers, or alternate program buffers. Consult your
module's manual for specific information on any extra FDC
channel usage. The number of channels in a module can also
be determined by querying the module with the FDC Sup-
ported command.

FAST DATA CHANNEL (FDC) MEMORY MAPS

Memory maps for a typical FDC channel are shown in
Figures 1 and 2. Both figures contain the same information
but show it by different VXIbus word widths. Figure 1 is
organized as 16-bit words and Figure 2 is organized as 32-bit
words. The first eight bytes in both figures contain the
mandated FDC Channel Header information. The header
contains the Control Bits for determining buffer ownership
and defines the channel buffer size. The FDC Channel buffer
space starts with Byte 8. Module designers may use the buffer
space in the way that best fits their application. Byte numbers
are in Motorola order for correlation with the VXI-10 Speci-
fication.

3 12/00

 Word Byte 0 Byte 1
 Count (MSB) (LSB)

0 Rsvd Rsvd Rsvd Rsvd Rsvd Rsvd Rsvd TRIG Rsvd Rsvd Rsvd Rsvd ABT RDY WDY END
1 Minor Revision Major Revision Rsvd Rsvd Rsvd Rsvd Rsvd Rsvd Rsvd Rsvd
2 Data Size Bits 15-8 Data Size Bits 7-0
3 Data Size Bits 31-24 Data Size Bits 23-16

4 Buffer Byte 2 Buffer Byte 3
5 Buffer Byte 0 Buffer Byte 1
6 Buffer Byte 6 Buffer Byte 7
7 Buffer Byte 4 Buffer Byte 5
· · · · ·
n Buffer Byte i-1 Buffer Byte i

Figure 1 16-Bit Wide FDC Memory Map

 Word Byte 0 Byte 1 Byte 2 Byte 3
 Count (MSB) (LSB)

0 Revision Rserved Bits Reserved TRIG Rsvd ABT RDY WDY END
1 Data Size Bits 31-24 Data Size Bits 23-16 Data Size Bits 15-8 Data Size Bits 7-0

2 Buffer Byte 0 Buffer Byte 1 Buffer Byte 2 Buffer Byte 3
3 Buffer Byte 4 Buffer Byte 5 Buffer Byte 6 Buffer Byte 7
4 Buffer Byte 8 Buffer Byte 9 Buffer Byte 10 Buffer Byte 11
· · · · · · · · ·
n Buffer Byte i-3 Buffer Byte i-2 Buffer Byte i-1 Buffer Byte i

Note: Bit definitions are listed in paragraph A3.2

Byte numbers are in Motorola byte order for correlation with the VXI-10 Specification.

Figure 2 32-Bit Wide FDC Memory Map

FAST DATA CHANNEL BUFFER DEFINITIONS

The following definitions include definitions from the
VXI-10 Fast Data Channel Specification:

RSVD : These bits are reserved and should be set to 0.

MAJOR REVISION: (Byte 0, bits 2-0). Must be a 2 (010)

MINOR REVISION: (Byte 0, bits 4-3). Must be 1 (01)

TRIG: (Byte 2, bit 0) The TRIG bit is utilized only within
Message Transfer Protocol (MTP) to send the MTP Trigger
command. It has no meaning outside of MTP and should be set
to 0.

END: (Byte 3, bit 0) The END bit indicates whether this
buffer of data is the last buffer of data in a data block. If the
END bit is set to 1, this is the last buffer of data. If the END
bit is set to 0 this is not the last buffer of data.

WDY: (Byte 3, bit 1) The WDY flag is utilized when data is
transferred from the Commander to the Servant. If the WDY
bit is set to 1, the Commander owns the FDC area. It can place
a buffer of data into the FDC area and then set WDY to 0 to
pass the buffer of data to the Servant. If the WDY bit is set to
0, the VXI Servant owns the FDC area. It may read the buffer
of data and then set WDY high to pass the FDC area back to
the Commander. When the channel is in the idle state, WDY
is 0.

RDY: (Byte 3, bit 2) The RDY flag is utilized when data is
transferred from the Servant to the Commander. If the RDY
bit is set to 0, the VXI Servant owns the FDC area. It can place
a buffer of data into the FDC area and set the RDY bit to 1 to
pass the buffer of data to the Commander. If the RDY bit is set
to 1, the Commander owns the FDC area. The Commander
can read the buffer of data and then set the RDY bit to 0 to pass
the FDC area back to the Servant. When the channel is in the
idle state, RDY is 0.

4 12/00

ABT: (Byte 3, bit 3) The ABT bit indicates that an abort
transfer is being requested for this block of data.

DATA SIZE: (Bytes 4-7) The DATA SIZE contains the
number of bytes (i) contained in the FDC Data Buffer.

FDC DATA BUFFER: Memory area for the data in the FDC
Channel Buffer. The Data Buffer starts with Byte 8 (Word 4
for 16-bit wide buffers or Word 2 for 32-bit wide buffers) and
ends in Word n. The organization of the data buffer is module
dependent.

Note: Refer to the Fast Data Channel Specification VXI-10
for additional information on the usage of the bits in the
Channel Header.

FDC CHANNEL INITIALIZATION SEQUENCE

Figure 3 on the right shows the recommended initialization
sequence for a streaming channel pair. The sequence can be
used with minor changes to initialize any FDC channel. It is
strongly recommended that the user include the Go-to-Idle-
Immediate and Channel-Close commands in the initialization
sequence so the sequence can initialize a previously opened
channel.

If streaming channel pairs are to be swapped when the
buffer contents reach a preset byte count, the byte count needs
to be set with the SCPI SYST:INP:BUF:SIZE command
before issuing the Transfer-to-Commander command. The
Channel Size commands will return the current buffer size
setting. In ICS modules, the Go-to Idle Immediate command
also resets the channel specific hardware.

FAST DATA CHANNEL PASSING SEQUENCE

Transfer to Servant

Figure 4 shows a sequence for swapping a streaming
channel pair. In normal operation, buffers of data are passed
from the data source to the data destination, alternating
between the even and odd FDC channels. The END flag is
used to indicate the end of a block of data, not the termination
of the data transfer. The sequence in Figure 4 is for the
Transfer to Servant direction. The sequence starts when the
Commander loads the first (even) buffer and transfers it to the
Servant. While the Servant empties the first buffer, the
Commander fills the next buffer. The buffers are exchanged
and the process repeats. The steps below the dotted line are
repeated until terminated by the Go-to-Idle command.

Figure 4 Transfer to Servant Buffer Passing
Sequence

 Controller Module Comments
Gets even Test WRDY bit for ownership
 buffer

Loads even Data and header bits
 buffer

 Passes even buffer Uses Pass Buffer command

Empties even
Loads odd buffer
 buffer

 Passes odd buffer Uses Pass Buffer command
Marks buffer Sets WRDY bit
 empty

 Returns even buffer Generates interrupt if FDC event
Empties odd enabled or Controller polls header bits

Loads even buffer Data and header bits
 buffer

 Passes even buffer Uses Pass Buffer command

Marks buffer Sets WRDY bit
 empty

 Returns odd buffer Generates interrupt if FDC event
enabled or Controller polls header bits

 Controller Module Comments
FDC Supported

Channel Supported

Go to Idle Immediate

Channel Close

Channel Initialize

Transfer to Cmdr (Servant)

Enable Passed Buffer

FDC Event

Channel Address High

Address High Response

Channel Address Low

Address Low Response

Channel Size High

Size High Response

Channel Size Low

Size Low Response

Reset channel immediately (Note 3)
(Ignore response)
Do in case the channel was active
(ignore response)

Initialize the channel, check response

Sets transfer direction. (Note 1)
(check response)
Enables buffer passing commands
(check response)
Optional -Enables VXI Interrupts for
passing buffers
Queries channel address

Save Response

Queries buffer's current size (Note 2)

Save Response

Figure 3 Recommended FDC Channel Initialization
Sequence

5 12/00

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

Transfer to Commander

Figure 5 shows a sequence for swapping a streaming
channel pair when the data direction is to the Commander. In
normal operation, buffers of data are passed from the data
source to the data destination, alternating between the even
and odd FDC channel. Transfer takes place when the amount
of data in the buffer reaches the switch point set by the
SYST:INP:BUF:SIZE command. The steps below the dotted
line are repeated until terminated by the Go-to-Idle command.

FDC Command Summary

VXIbus modules with the Fast Data Channel option
respond to the FDC Standard commands listed in Table 1. ICS
modules also respond to ICS's expanded FDC Command Set.
The expanded commands are the similar to the standard VXI-
10 commands, except they allow for 32 channels. The formats
are the same except for the command codes and the channel
number field which is expanded to 5 bits to allow for up to 32
channels. ICS modules support both command sets for
software compatibility. However, to avoid conflicts, only one
set of commands should be used in an application program.
Refer to the Fast Data Channel Specification VXI-10, Rev.
2.10 for detailed information on the usage of these commands
and explanation of their parameters. Table 1 lists the standard
and ICS expanded FDC commands.

Example Program

ICS has written an example program that can be used as
a prototype for constructing your own FDC channel handling
routines. The program is written in the C language so that it
can be easily used with most VXI Controllers. The example
program is well documented and covers FDC channel initial-
ization and their use to transfer data. A .zip file
(5536DEMO.ZIP) with the example program can be down-
loaded from ICS's website at http://www.icselect.com/
ab_note.html.

The program was developed for ICS's VXI-5543/44
series Slot 0 VXI Controllers and uses ICS's own command
set. When adapting the program to another VXI Controller,
the user should replace ICS's commands with those from the
other Controller. There are only a few commands which can
be easily replaced with a good editor. The functions used in
the example are described in the Addendum to this application
note.

Figure 5 Transfer to Commander Buffer Passing
Sequence

Selecting VXI Bus Controllers

When selecting a VXI bus Controller for use with a FDC
capable module, the VXI Controller must be capable of
accessing the A32 address space. Because of this require-
ment, most of the inexpensive GPIB-VXI Slot 0 Controllers
on the market today cannot be used with FDC capable mod-
ules. The VXI Controller should also perform 32-bit data
transfers to maximize the FDC data transfer rate, but 16-bit
data transfers will also work. The Controller's software
should have FDC and Word Serial Command functions to
minimize your programming work. When in doubt, consult
the manufacturer's application support engineers before buy-
ing.

Summary

This application note has shown that the use of the VXI
Fast Data Channels in a VXI module greatly speeds up data
transfer and reduces the load on the VXIbus. The FDC
channels buffer a large amount of data and give the user a way
of sending or receiving continuous data streams.

This application note also shows how a pair of channels
can be initialized and opened for transferring data in either
direction. An example FDC channel handling program is
available for the user to use as a template for his own program.

 Controller Module Comments

Starts with
even buffer

Loads even
buffer, sets

RDY bit

 Passes even buffer
Generates interrupt if FDC event
enabled or Controller polls header
bits

Empties even
buffer, clears

RDY bit

Loads odd
buffer, sets

RDY biit

 Returns even buffer Uses Pass Buffer command

 Passes odd buffer Generates interrupt if FDC event
enabled or Controller polls header
bitsEmpties odd

buffer, clears
RDY bit Loads even

buffer, sets
RDY bit

 Returns odd buffer
Uses Pass Buffer command

 Passes even buffer Generates interrupt if FDC event
enabled or Controller polls header bits

6 12/00

TABLE 1 FAST DATA CHANNEL STANDARD AND ICS EXPANDED COMMANDS

Command Std. Code Standard Binary Code Exp. Code Exp. Binary Code

Channel Address High (Q) (0x9F80) 1001 1111 1000 0ccc (0x7E00) 0111 1110 000c cccc

Channel Address Low (Q) (0x9F00) 1001 1111 0000 0ccc (0x7C00) 0111 1100 000c cccc

Channel Close (Q) (0x9F98) 1001 1111 1001 1ccc (0x7E60) 0111 1110 011c cccc

Channel Initialize (Q) (0x9F90) 1001 1111 1001 0ccc (0x7E40) 0111 1110 010c cccc

Channel Size High (Q) (0x9F88) 1001 1111 1000 1ccc (0x7E20) 0111 1110 001c cccc

Channel Size Low (Q) (0x9F08) 1001 1111 0000 1ccc (0x7C20) 0111 1100 001c cccc

Enable Passed Buffer (Q) (0x9F18) 1001 1111 0001 100e (0x7C60) 0111 1100 0110 000e

FDC Event (Q) (0x9FA0) 1001 1111 1010 eccc (0x7E80) 0111 1110 10ec cccc

FDC Supported (Q) (0x9F1F) 1001 1111 0001 1111 (0x7C7F) 0111 1100 0111 1111

Go to Idle (Q) (0x9FB0) 1001 1111 1011 iccc (0x7EC0) 0111 1110 11ic cccc

Passed Buffer (0x9F10) 1001 1111 0001 0ccc (0x7C40) 0111 1100 010c cccc

Switch Buffers (Pair) N.S. N.S. (0x7C80) 0111 1100 100c cccc

Transfer to Commander (Q) (0x9FE0) 1001 1111 111p sccc (0x7F80) 0111 1111 1psc cccc

Transfer to Servant (Q) (0x9FC0) 1001 1111 110p sccc (0x7F00) 0111 1111 0psc cccc

(Q) = Query (command has a response) i = immediate change
N.S. = Not Supported p = pair flag
c = channel code s = stream flag
e = enable

7 12/00

FDC COMMAND REFERENCE

Fast Data Channel (FDC) Command Descriptions

The following section provides a detailed description of each Fast Data Channel Command.

Channel Initialize (0x9F90)

This command is used to validate and initialize the FDC area.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 1 0 0 1 0 Channel #

This response for this command is the same as for the following command.

Expanded Channel Initialize (0x7E40)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 0 Channel #

A single response word is placed in the Data Low register in the following format:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Status 1 ADDR DATA PC MODE

Status: F - No Errors

7 - Channel already open

6 - No valid FDC area can be opened

5 - FDC Channel number not supported

Channel Address Commands:

These commands are used to retrieve the FDC area base address from the servant. The FDC address and size defines a

memory area within the address space returned by the Channel Initialize command.

Channel Address Low (0x9F00)

The syntax of the Channel Address Low command is defined in the following table.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 0 0 0 0 0 Channel #

This response for this command is the same as for the following command.

Expanded Channel Address Low (0x7C00)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 0 0 Channel #

This response for this command is the same as for the following command.

8 12/00

Channel Address High (0x9F80)

The syntax of the Channel Address High command is defined in the following table:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 1 0 0 0 0 Channel #

This response for this command is the same as for the following command.

Expanded Channel Address High (0x7E00)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 0 0 Channel #

A single response data word is placed in the Data Low register for each command in the following format:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FDC Area Address Low or High Word.

If no valid FDC area allotted, the returned value in the high and low response words is $HFFFF.

Channel Size Commands:

These commands are used to retrieve the FDC area size. The FDC size identifies the memory area allocated to this

FDC channel starting at the Address returned by the Channel Address Low and Hi commands.

Channel Size Low (0x9F08)

The syntax of Channel Size Low command is defined in the following table.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 0 0 0 0 1 Channel #

This response for this command is the same as for the following command.

Expanded Channel Size Low (0x7C20)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 0 1 Channel #

This response for this command is the same as for the following command.

Channel Size High (0x9F88)

The syntax of Channel Size High command is defined in the following table.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 1 0 0 0 1 Channel #

This response for this command is the same as for the following command.

9 12/00

Expanded Channel Size High (0x7E20)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 0 1 Channel #

A single response word is placed in the Data Low register for each command in the following format:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FDC Area Size Low or High Word.

If no valid FDC area can be allotted, the response in the high and low response words is $H0000.

Go to Idle (0x9FB0)

This command is used to terminate a Stream transfer. It may also be used to force termination of a Normal transfer.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 1 0 1 1 IM Channel #

This response for this command is the same as for the following command.

Expanded Go to Idle (0x7EC0)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 IM Channel #

A single response word is placed in the Data Low register in the following format:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Status 1 1 1 1 1 1 1 1 1 1 1 1

Channel Close (0x9F98)

This command is used to close the FDC channel.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 1 0 0 1 1 Channel #

This response for this command is the same as for the following command.

Expanded Channel Close (0x7E60)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 1 Channel #

A single response word is placed in the Data Low register in the following format:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status 1 1 1 1 1 1 1 1 1 1 1 1

10 12/00

Transfer to Servant (0x9FC0)

This command is used to initiate a data block transfer from the commander to the servant.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 1 1 0 PR ST Channel #

This response for this command is the same as for the following command.

Expanded Transfer to Servant (0x7F00)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 PR ST Channel #

A single response word is placed in the Data Low register in the following format:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Status 1 1 1 1 1 1 1 1 1 1 1 1

Transfer to Commander (0x9FE0)

This command is used to initiate a data block transfer from the servant to the commander.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 1 1 1 PR ST Channel #

This response for this command is the same as for the following command.

Expanded Transfer to Commander (0x7F80)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 PR ST Channel #

A single response word is placed in the Data Low register in the following format:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Status 1 1 1 1 1 1 1 1 1 1 1 1

Status: F - No Errors, data transfer will commence

7 - Request with no valid FDC channel

6 - Request to send data when FDC channel is active

5 - PR bit not legal for this command

4 - Unable to utilize channel pair

3 - Unable to send/receive data for instrument specific reason(s)

2 - Unsupported mode(stream, normal or direction)

11 12/00

FDC Event (0x9FA0)

This command is used to control Standard FDC event generation. Use of this command will disable the Expanded

FDC Events (if enabled).

Bit #
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 1 0 1 0 EV Channel #

This response for this command is the same as for the following command.

Expanded FDC Event (0x7E80)

This command is used to control Expanded FDC event generation. Use of this command will disable the Standard

FDC Events (if enabled).

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 0 EV Channel #

A single response word is placed in the Data Low register in the following format:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Status 1 1 1 1 1 1 1 1 1 1 1 1

Status: F - No Errors

7-Passed Buffer command not utilized.

FDC Supported (0x9F1F)

This command is used to determine FDC support.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1

A single response word is placed in the Data Low register in the following format:

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C7 C6 C5 C4 C3 C2 C1 C0 MP EX RM Min. Rev Maj. Rev

Expanded FDC Supported (0x7C7F)

This command is used to determine Expanded FDC support.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1

A single response word is placed in the Data Low register in the following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 Max. Channel Numbe MP EX RM Min. Rev Maj. Rev

12 12/00

Enable Passed Buffer (0x9F18)

This command requests that the passed buffer command be utilized by the servant.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 E

This response for this command is the same as for the following command.

Expanded Enable Passed Buffer (0x7C60)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 1 1 0 0 0 0 E

A single response word is placed in the Data Low register in the following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Status 1 1 1 1 1 1 1 1 1 1 1 1

Status: F - No Errors

7 - Passed Buffer command not utilized.

Passed Buffer (0x9F10)

This command informs the servant that the commander has passed the buffer to the servant.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 0 0 0 1 0 Channel #

This command does not have a response.

Expanded Passed Buffer (0x7C40)

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 0 1 0 Channel #

This command does not have a response.

Expanded Switch Buffers (0x7C80)

This command is used to command the servant to switch input buffers and pass the current buffer to the commander.

This command is not supported by the Standard FDC command set, but may be used with the Standard commands.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 1 0 0 Channel #

This command does not have a response.

13 12/00

Fast Data Channel Events (Interrupt Response)

The Module generates FDC events when enabled by the Standard FDC Event command. The response word is

generated when the channel passes the FDC area to the commander. The format of the return value for FDC events is

described below.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 Channel # Servants Logical Address

Expanded Fast Data Channel Events (Interrupt Response)

The Module generates Expanded FDC events (with User Defined protocol event format) when enabled by the Ex-

panded FDC Event command. The response word is generated when the channel passes the FDC area to the com-

mander. The format of the return value for expanded FDC events is described below.

Bit #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 Channel # Servants Logical Address

Note: Refer to the Fast Data Channel Specification VXIbus-10 for detailed information on the usage of the FDC

Event command.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

14 12/00

Addendum
VXI-5543 Command Reference

A.1 Introduction

This addendum reprints ICS's VXI Command definitions so the user can find the equivalent commands when converting
the 5536DEMO program over to another VXI Controller

The VXI-5543's VXI Driver Library contains all of the high and low level functions for the control of the VXI bus. These
commands are all ICS's proprietary functions. The advantage of ICS's Driver library is that it contains many high level
functions that simplify the user's programming effort and are easy to use.

A.2 Common Command Parameters

Table A-1 lists the Common Command Parameters used in the VXI-5543's VXI library.

TABLE A-1 VXI LIBRARY COMMON COMMAND PARAMETERS

PARAMETER DESCRIPTION

LA VXI Logical Address integer value, 0 to 255
RegOffset VXI Register Offset integer value, even number 0 to 30
In_String Input string, character pointer to string buffer for input
Max_Len Maximum length, maximum number of characters to input to pointer location
Output_String Output String, character pointer to string for output
Wscmd Word Serial Command, unsigned integer with standard 16 bit VXI

Word Serial Command code
RtnValue Return Value, unsigned integer pointer to location for 16 bit word
Value Output Value, unsigned integer value to output
Trigger_bits Trigger Bit Pattern, integer with trigger enable mask word
Intr_bits Interrupt Bit Pattern, integer with interrupt enable mask word
IRQ_lines VXI IRQ Lines, integer with VXI IRQ enable mask word
Trigger_line TTL Trigger Line, integer with TTL Trigger line number, 0 to 7
ModelCode VXI Device Model Code, unsigned integer with manufacturers model code
IRQ_line VXI IRQ Line, integer with VXI IRQ line number 1 to 7
MODID_line VXI MODID Line, integer with MODID line number, 0 to 12
Status_ID VXI Status ID, unsigned integer with device Status ID code
Display_Flag Display Flag, integer with display enable flag, 0 to 1
Error_Code Error Code, integer with VXI library error code, 0 to 10
void no parameters required

Note: Function descriptions which end with a (Q) are queries and return a response which must be read before sending
the device another command. Use vxiWSqry with these commands.

A.3 VXI Word Serial Commands

VXI Word Serial Commands are single word commands that contain binary coded information. The VXI Specification
provides a list of standard commands but not all instruments are required to respond to all commands. When in doubt check
the device's manual before using a particular command. In addition, the VXI Specification also allows for user defined Word
Serial Commands to accomplish a function unique to that instrument. For this reason, it is a good idea to check a device's
manual before programming it to learn what commands it responds to.

15 12/00

The VXI-5543 outputs Word Serial Commands that do not require a response with vxiWScmd function. Word Serial
Commands that expect a response should be outputted with the vxiWSqry function. For convenience sake and for better
program documentation, the VXICMDS.H include file defines the Word Serial Commands with English like names. Table
A-2A lists the Word Serial Commands, their HEX value and English name. Table A-2B lists the Word Serial Command error
response codes.

TABLE A-2A VXI WORD SERIAL COMMANDS

WORD SERIAL COMMAND CODE FUNCTION

AbortNormOp 0xc8ff Abort Normal Operation (Q)
AssgnHandLine 0xa900 Assign Handler Line (Q)
AssgnIntrLine 0xaa00 Assign Interrupter Line (Q)
AysncModeCntl 0xa800 Asynchronous Mode Control (Q)
BeginNormOp 0xfcff Begin Normal Operation (Q)
BeginNormOpT 0xfdff Begin Normal Operation Top (Q)
ByteAvail 0xbc00 Byte Available
Byte AvailEnd 0xbc00 Byte Available End of Mesg
ByteReq 0xdeff Byte Request (Q)
Clear 0xfff Clear
ClearLock 0xefff Clear Lock
ControlEvent 0xaf00 Control Event (Q)
ControlResponse 0x8f00 Control Response (Q)
EndNormOp 0xc9ff End Normal Operation (Q)
GrantDev 0xbf00 Grant Device
IndentCmdr 0xbe00 Identify Commander
ReadHandlers 0xc7ff Read Handlers (Q)
ReadHandLine 0x8c00 Read Handler Line (Q)
ReadIntrLine 0x8d00 Read Interrupter Line (Q)
ReadIntrpters 0xcaff Read Interrupters (Q)
ReadMODID 0xccff Read MODID (Q)
ReadProto 0xdfff Read Protocol (Q)
ReadProtoErr 0xcdeff Read Protocol Error (Q)
ReadSTB 0xcfff Read STB (Q)
ReadServArea 0xceff Read Servant Area (Q)
ReleaseDev 0x8e00 Release Device (Q)
SetLock 0xeeff Set Lock
SetLowerMODID 0xae00 Set Lower MODID (Q)
SetUpperMODID 0xad00 Set Upper MODID (Q)
Trigger 0xedff Trigger

TABLE A-2B WORD SERIAL COMMAND RESPONSE CODES

WORD SERIAL COMMAND CODE FUNCTION

WScmdOK 0xfffe Word Serial command OK
WScmdFAIL 0x7ffe Word Serial command FAILED

16 12/00

4.4 Command Quick Reference List

The Quick Reference List is divided into the followings sections:

Table A-3 lists the VXIbus Commands and Functions
Table A-4 lists the Returned Error Codes

TABLE A-3 VXIBUS LIBRARY COMMANDS

 COMMAND DESCRIPTION

VXI CONTROL FUNCTIONS

void vxiArmTrig(int Trigger_bits) Arm TTL VXI Trigger line(s) for output

void vxiClrIRQ(void) Clear all VXI IRQ lines

void vxiClrMODID(void) Clear all VXI MODID lines

int vxiGetAddr(int ModelCode, Get Logical Address of device with occurrence of Model Code
int Occurrence)

int vxiGetAttrib(int LogicalAddr, Get Device Attribute
int AttribName,long *Value)

int vxiOpen(void) Read Initialization and Commander table files

void vxiPlsTrig(void) Pulse armed VXI TTL Trigger lines

void vxiSetAttrib(int LogicalAddr, Set Device Attribute
int AttribName, long Value)

void vxiSetIRQ(int IRQ_line) As a device, set VXI IRQ line true

void vxiSetMODID(int MODID_Line) As a device, set VXI MODID line

void vxiSysReset(int Display_Flag) Send SysReset to VXI chassis

void vxiTrigger(int Trigger_Line) Pulse VXI TTL Trigger line

VXI REGISTER FUNCTIONS

int vixRdReg(int LA, int RegOffset, Read a hex value from VXI register (RegOffset)
unsigned *RtnValue)

vxiRdA24Reg(long BaseAddr, long RegOffset, Reads a hex value from A24 VXI address space
unsigned int *RtnValue)

vxiRdA32Reg(long BaseAddr, long RegOffset, Reads a hex value from A32 VXI address space
unsigned int *RtnValue)

int vxiWrReg(int LA, int RegOffset, Write hex value to VXI register (RegOffset)
unsigned Value)

vxiWrA24Reg(long BaseAddr, long RegOffset, Writes a hex value to A24 VXI address space
unsigned int Value)

17 12/00

vxiWrA32Reg(long BaseAddr. Writes a hex value to A32 VXI address space
 long RegOffset,unsigned int Value)

WORD SERIAL FUNCTIONS

int vxiEnter(int LA, Read Word Serial Message string from VXI device
char *In_String, int Max_Len)

int vxiEnterB(int LogicalAddr, char *MsgPtr, Read Word Serial Binary Message
 long MaxLen, long *ByteCount)

int vxiOutput(int LA, Send Word Serial Message string to VXI device
const char* Output_String)

int vixOutputB(int Logical Addr, Output Word Serial Command
 char *MsgPtr,long Count, long *SentCount)

int vxiWScmd(int LA, unsigned WScmd) Send hex Word Serial Command

int vxiWSqry(int LA, unsigned Wscmd, Send hex Word Serial Command and get Response
unsigned *RtnValue)

INTERRUPT FUNCTIONS

void vxiCloseIntr(void) Remove ISR vector and clear Intr and IRQ masks

void vxiEnaIntr(int Intr_Bits) Enable summary interrupt register with mask

void vxiEnaIRQ(int IRQ_lines) Enable VXI IRQ line detector

void vxiEnaTrig(int Trig_line) Enable VXI TTL Trigger line detector for line

int vxiGetIntr(void) Get status of summary interrupt register

int vxiGetIRQ(void) Get status of VXI IRQ lines

int vxiGetTrig(void) Get status of VXI TTL Trigger detector

void vxiInitIntr(int Intr_mask, int IRQ_mask) Initialize ISR and set Intr and IRQ masks

int vxiSrvIntr(int *LogicalAddr, int *Status, Test IRQ interrupt and service VXI IRQ
int *Intr_Status)

int vxiSrvIRQ(int IRQ_numb, Service VXI IRQ and get STATUS/ID word
unsigned *Status_ID)

DISPLAY and LED FUNCTION

void vxiDispCmdrTable(void) Display commander table information

void vxiDispSysInfo(void) Display system information (S/N etc.)

void xiErrorDisp(int Error_Code) Display VXI error message on console device

 COMMAND DESCRIPTION

18 12/00

void ClrAccessLED(void) Clears Access LED

void SetAccessLED(void) Sets Access LED

TIME UTILITIES

void far msDelay(unsigned ms) Suspends program execution for ms milliseconds.

unsigned long far icsTimer(void) Reads high resolution system timer. Returns number of 215 µsec
periods since midnight.

bool is TimeOut(msMark) Sets background time mark when first called. Later calls check to see if
system time is greater than the time mark. msMark is in milliseconds.

TABLE A-4 RETURNED ERROR CODES

ERROR CODE ERROR ERROR MESSAGE - vxiErrorDisp()
NUMBER

No_Error 0 No Errors detected
Buss_Err 1 ***BUS ERROR (*BERR) ***
WrtRdy_Err 2 ***WRITE Ready Time Out ERROR ***
RdRdy_Err 3 *** READ Ready Time Out ERROR ***
DIR_Err 4 *** DIR Time Out ERROR ***
DOR_Err 5 *** DOR Time Out ERROR ***
Proto_Err 6 *** PROTOCOL ERROR (*ERR)
BusGrnt_Err 7 *** Bus Not Granted ERROR ***
RspRead_Err 8 *** Response Not Read ERROR***
LA_Err 9 *** Logical Address ERROR ***
Reg_Err 10 *** Register Offset ERROR ***
undefined undefined *** Undefined ERROR code ***

 COMMAND DESCRIPTION

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

