
AB48-11

GPIB 101 - A TUTORIAL ABOUT THE GPIB BUS

ICS
ELECTRONICSICS

division of Systems West Inc.

INTRODUCTION

The purpose of this application note is to provide guidance and un-
derstanding of the GPIB bus to new GPIB bus users or to someone
who needs more information on using the GPIB bus’s features. This
application note is divided into short chapters. New GPIB bus users
are encouraged to read all of the chapters. Experienced users may
want to skip to the chapter that deals with their specific subject.

Application Note AB48-12, deals with bus extension problems and
how to overcome the GPIB Bus limitations.

Please send all comments to sales@icselect.com. Let us know if
there is a subject that needs more coverage or if there is something
you feel we left out of this note.

CHAPTER 1 - HISTORY AND CONCEPT

The GPIB bus was invented by Hewlett-Packard Corporation in 1974
to simplify the interconnection of test instruments with computers.
At that time, computers were bulky devices and did not have standard
interface ports. Instruments then had a connector with parallel BCD
output lines that could be connected to a 10 to 20 column BCD printer.
Data collection was mainly done by printing the current reading as
a line on the printer. Remote control of an instrument was limited
to a few input lines on a rear panel connector that selected a couple
functions or conversion ranges. A special computer interface had to
be designed and built for each instrument that the engineer wanted
to add to his test system. Building even the simplest automated test
system was a several man-month project.

As conceived by HP, the new Hewlett-Packard Instrument Bus
(HP-IB) would use a standard cable to interconnect multiple in-
struments to the computer. Each instrument would have its own
interface electronics and a standard set of responses to commands.
The system would be easily expandable so multi-instrument test
systems could be put together by piggy backing cables from one
instrument to another. There were restrictions on the number of
instruments that a driver could drive (14) and the length of the bus
cable (20 meters).

Hewlett-Packard proposed the concept to US and International
standards bodies in 1974. It was adopted by the IEC committee in
Europe in 1975. In the United States, other instrument companies
objected to the HP-IB name and so a new name, the General Purpose
Instrument Bus (GPIB) was created. The GPIB bus was formally
adopted as the IEEE-STD 488 in 1978.

The GPIB (HP-IB) concept is shown in Figure 1. Controllers have
the ability to send commands, to talk data onto the bus and to listen
to data from devices. Devices can have talk and listen capability.
Control can be passed from the active controller (Controller-in-
charge) to any device with controller capability. One controller in
the system is defined as the System Controller (SC) and it is the
initial Controller-in-Charge (CIC).

Device #1
Talk,
Listen

Controller
Control,
Talk, Listen

Device #n
Talk,
Listen

Piggyback
Cables

Figure 1 IEEE 488 Bus Concept

Devices are addressable as talkers and listeners and have to have a
way to set their address. Each device has a primary address between
0 and 30. Address 31 is the Unlisten or Untalk address. Devices can
also have secondary addresses that can be used to address device
sub-functions or channels. An example is ICS’s 4896 GPIB-to-
Quad Serial Interface which uses secondary addresses to address
each channel. Although there are 31 primary addresses, IEEE 488
drivers can only drive 14 physical devices.

Some devices can be set to talk-only or to listen-only. This lets
two devices communicate without the need for a controller in the
system. An example is a DVM that outputs readings and a printer
that prints the data.

Revised 06-29-06

2
ICS Electronics • 7034 Commerce Circle, Pleasanton, CA 94588 • http://www.icselect.com

Interface
Functions

Device
Functions

INSTRUMENT

GPIB
Interface

Figure 2 IEEE-488 Instrument

The IEEE-488 Standard defined an instrument with interface and
device partitions as shown in Figure 2. Interface messages and
addresses are sent from the controller-in-charge to the device’s
interface function. Instrument particular commands such as range,
mode etc., are data messages that are passed through the Interface
to the device.

Physical Bus Structure

Physically the GPIB bus is composed of 16 low-true signal lines.
Eight of the lines are bidirectional data lines, DIO1-8. Three of the
lines are handshake lines, NRFD, NDAC and DAV, that transfer data
from the talker to all devices who are addressed to listen. The talker
drives the DAV line, the listeners drive the NDAC and NRFD lines.
The remaining five lines are used to control the bus’s operation.

ATN (attention) is set true by the controller-in-charge while it is
sending interface messages or device addresses. ATN is false when
the bus is transmitting data.

EOI (end or identify) can be asserted to mark the last character of
a message or asserted with the ATN signal to conduct a parallel
poll.

IFC (interface clear) is sent by the system controller to unaddress
all devices and places the interface function in a known quiescent
state.

REN (remote enable) is sent by the system controller and used with
other interface messages or device addresses to select either local
or remote control of each device.

SRQ (service request) is sent by any device on the bus that wants
service.

Interface Messages

Table 1 lists the GPIB Interface Messages and Addresses with their
common mnemonics. MLA, LAD and UNL are listen addresses
with hex values of 20 to 3F. MTA, TAD and UNT are talk addresses
with hex values of 40-5F. A device normally responds to both talk
and listen addresses with the same value. i.e. LAD 4 and TAD 4.
Secondary addresses have hex values of 60-7F.

Devices are designed with different IEEE 488 capabilities so not
all devices respond to all of the interface messages. Universal
messages are recognized by all devices regardless of their address
state. Addressed commands are only recognized by devices that
are active listeners.

Table 1 488.1 Interface Messages and Addresses

 Command Function

 Address Commands
 MLA My listen address (controller to self)
 MTA My talk address (controller to self)
 LAD Device listen address (0-30)
 TAD Device talk address (0-30)
 SAD Secondary Device address
 (device optional address of 0-31)
 UNL Unlisten (LAD 31)
 UNT Listen (TAD 31)

 Universal Commands (to all devices)
 LLO Local Lockout
 DCL Device Clear
 PPU Parallel Poll Unconfigure
 SPE Serial Poll Enable
 SPD Serial Poll Disable

 Addressed Commands (to addressed listeners only)
 SDC Selected Device Clear
 GTL Go to Local
 GET Device Trigger
 PPC Parallel Poll Configure
 TCT Take Control

The Standard also defined a Status Byte in the instrument that could
be read with a Serial Poll to determine the device’s status. Bit 6 of
the Status Byte was defined as the Service Request bit that could be
set when other bits in the Status Byte are set. The other bits were
user defined. The Service Request pulls the SRQ line low to inter-
rupt the controller. The Service Request is reset when the device is
Serial Polled or when the service request cause is satisfied.

488.2 STANDARD

The GPIB concept expressed in IEEE-STD 488 made it easy to
physically interconnect instruments but it did not make it easy for
a programmer to talk to each instrument. Some companies termi-
nated their instrument responses with a carriage return, others used
a carriage return-linefeed sequence, or just a linefeed. Number
systems, command names and coding depended upon the instru-
ment manufacturer. In an attempt to standardize the instrument
formats, Tektronix proposed a set of standard formats in 1985. This
was the basis for the IEEE-STD 488.2 standard that was adopted
in 1987. At the same time, the original IEEE-488 Standard was
renumbered to 488.1.

The new IEEE-488.2 Standard established standard instrument
message formats, a set of common commands, a standard Status
Reporting Structure and controller protocols that would unify the
control of instruments made by hundreds of manufacturers.

The standard instrument message format terminates a message with
a linefeed and or by asserting EOI on the last character. Multiple
commands in the same message are separated by semicolons. Fixed
point data became the default format for numeric responses.

3
ICS Electronics • Phone: (925) 416-1000 • Fax: (925) 416-0105 • http://www.icselect.com

The common command set defined a subset of ten commands that each
IEEE-488.2 compatible instrument must respond to plus additional
optional commands for instruments with expanded capabilities. The
required common commands simplified instrument programming
by giving the programmer a minimal set of commands that he can
count on being recognized by each 488.2 instrument. Table 2 lists
the 488.2 Common Commands and their functions. Probably the
most familiar Common Command is the *IDN? query. This is a
good first command to use with an instrument as its response shows
what the instrument is and demonstrates that you have communica-
tion with the instrument. The most of the remaining commands are
used with the IEEE-488.2 Status Reporting Structure.

The IEEE-488.2 Standard Status Reporting Structure is shown in
Figure 3. The new Status Reporting Structure expanded on the Sta-
tus Byte in 488.1 by adding a Standard Event Status Register (ESR
Register) and an Output Queue. Enable registers and summation
logic was added to the Status Registers so that a user could enable
selected bits in any status register.

The ESR Register reports standardized device status and command
errors. Bit 6 in the ESR Register is not used and can be assigned
for any use by the device designer. The Standard Event Status En-
able Register is used to select which event bits are summarized into
the Status Byte. When an enabled bit in the Event Status Register
becomes true, it is ORed into the summary output which sets the
ESB bit (bit 5) in the Status Byte Register. Bits in the ESR Register
stay set until the register is read by the *ESR? query or cleared by
the *CLS command.

The Output Queue contains responses from the 488.2 queries. Its
status is reported in the MAV bit (bit 4) of the Status Byte. Typically
this bit is not enabled because the user normally follows a query by
reading the response.

The 488.2 Status Byte contains the ESB and MAV bits plus five
user definable bits. Bit 6 is still the RQS bit but it now has a dual
personality. When the Status Byte is read by a Serial Poll, the RQS
bit is reset. When the Status Byte is read by the *STB? query, the
MSS bit is left unchanged. Service Request generation is a two
step process. When an enabled bit in the ESR Register is set, the
summary output sets the ESB bit in the Status Byte Register. If the
ESB bit is enabled, then the RQS bit is set and a SRQ is generated.
Reading or clearing the ESR Register, drops the summary output
which in turn, resets the ESB bit in the Status Byte. If no other
enabled bits in the Status Byte are true, bit 6 and the SRQ line will
be reset

Saving the Device Configuration

488.2 and SCPI compliant devices accept commands whose values
are saved in an internal nonvolatile memory. The 488.2 *SAV 0
command is used to save the values. The device may also save its
current output settings along with the configuration values so be sure
that all outputs are in the desired state before sending the device
the *SAV 0 command.

Table 2 488.2 Common Commands

Command Function

Required common commands are:
 *CLS Clear Status Command
 *ESE Standard Event Status Enable Command
 *ESE? Standard Event Status Enable Query
 *ESR? Standard Event Status Register Query (0-255)
 *IDN? Identification Query (Company, model, serial
 number and revision)
 *OPC Operation Complete Command
 *OPC? Operation Complete Query
 *RST Reset Command
 *SRE Service Request Enable Command
 *SRE? Service Request Enable Query (0-255)
 *STB? Status Byte Query Z (0-255)
 *TST? Self-Test Query
 *WAI Wait-to-Continue Command

Devices that support parallel polls must support the following three
commands:

 *IST? Individual Status Query?
 *PRE Parallel Poll Register Enable Command
 *PRE? Parallel Poll Register Enable Query

Devices that support Device Trigger must support the following com-
mands:

 *TRG Trigger Command

Controllers must support the following command:

 *PCB Pass Control Back Command

Devices that save and restore settings support the following com-
mands:

 *RCL Recall configuration
 *SAV Save configuration

Devices that save and restore enable register settings support the
following commands:

 *PSC Saves enable register values and enables/
 disables recall

Saving the Enable Register Settings

The enable register settings cannot be saved with the *SAV 0
command. The 488.2 Standard defined a PSC flag which enables
clearing the ESE and SRE registers at power turn-on. The enable
registers are restored to a 0 value at power turn-on when the PSC
flag is set on. The *PSC 0 command disables the PSC flag and
saves the enable register values. The following example saves the
current SRE and ESE settings. e.g.

 ESE 192; SRE 32; *PSC 0 ‘saves ESE and
 SRE settings as the
 power on settings.

4
ICS Electronics • 7034 Commerce Circle, Pleasanton, CA 94588 • http://www.icselect.com

Figure 3 488.2 Status Reporting Structure

Note that a later *PSC 1 command sets the PSC flag which will
cause the registers to be cleared at the next power turn-on and revert
to their default values.

488.2 differences from 488.1

The 488.2 Standard downgraded the use of the Device Clear
command so that it does not reset a device’s outputs and in-
ternal memory as might be expected for a 488.1 device. In-
stead, check the device’s manual and use an *RST or an
*RCL 0 command to reset a 488.2 device and restore its power
turn-on condition.

Common Controller Protocols

The 488.2 Standard defined several protocols that a 488.2 compli-
ant GPIB controller would execute. The protocols are essentially
subroutines that operate on all of the GPIB devices connected to
the system. These protocols operate in systems that contain 488.2
compliant devices. Table 3 lists the 488.2 Common Controller Pro-
tocols. The Reset protocol and the AllSpoll protocol are mandatory
for all 488.2 GPIB Controllers. FindLstn is probably the most used
protocol as it finds and lists all of the devices on the bus. FindLstn

is typically used at the start of a program to verify that the needed
devices are connected to the system.

SCPI COMMANDS

The 488.2 Standard had made it easier to communicate with a
GPIB instrument but each instrument still had a unique command
set Even in a family of instruments from the same manufacturer,
different instruments often had different command sets, reflecting
the ideas of the instrument designer. The US Air Force recognized
this problem in the early 1980s and initiated Project Mate to try to
overcome this problem. The Mate Project concept was to create
Translation Module Adapters (TMAs) to convert instrument unique
commands into the Air Force’s CIIL language. The TMAs could
be external hardware adapters or internal firmware converters. The
Air Force’s CIIL language was a subset of Atlas. Its drawback was
that it did not address the instrument model and it had very clumsy
construction. The other part of the problem was that CIIL language
instruments, when developed, did not sell well enough to justify
the development costs.

Hewlett-Packard worked on the problem and in 1990, proposed a
Test Measurement Language (TML) that was based on an instrument
model. It was a tree-branch type of language that allowed the same
commands to be used for instruments from different manufacturers.
TML included major command branches that could control virtually
all of an instrument’s subsystems. It was an open structure so that
other manufacturers could add commands they felt necessary. HP
offered to licensed TML to any instrument manufacturer for a small
fee and a pledge to obey the TML specification. Almost immediately,
Tektronix and some other companies objected to HP controlling
the TML specification. HP promptly offered it to a consortium
which rechristened it as Standard Commands for Programmable
Instruments (SCPI).

SCPI commands use common command words (keywords) and
programming syntax to give all instruments a common “look and
feel”. Control of any instrument capability that is described in
SCPI should be implemented exactly as specified. Guidelines are
included for adding new commands in the future without causing
programming problems.

The obvious benefit of SCPI for the ATE programmer is in reducing
of the learning time for programming multiple SCPI instruments
since they all use a common command language and syntax. A
second benefit of SCPI is that its English like structure and words
are self documenting, eliminating the needs for comments explaining
cryptic instrument commands. A third benefit is the interchange-
ability of newer SCPI instruments for older models or for another
manufacturer’s instrument with the same capabilities, and a reduc-
tion in programming maintenance when devices wear out and need
replacement.

Po
w

er
 O

n
U

se
r R

eq
ue

st

C
om

m
an

d
Er

ro
r

Ex
ec

ut
io

n
Er

ro
r

D
ev

ic
e

D
ep

en
de

nt
 E

rro
r

Q
ue

ry
 E

rro
r

R
eq

ue
st

 C
on

tro
l

O
pe

ra
tio

n
C

om
pl

et
e

Standard
Event Status

Register
*ESR?

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Lo
gi

ca
l O

R

&
&

&
&

&
&

&
& Standard

Event Status
Enable

Register
*ESE <NRf>

*ESE?

Queue
Not-Empty

7 5 4 3 2 1 0

Lo
gi

ca
l O

R

&
&

&
&

&
&

&

7 6 3 2 1 0
RQS

MSS
ESB MAV

{

{Service
Request

Generation

Output Queue

Status Byte Register
read by Serial Poll

read by *STB?

Service Request
Enable Register

*SRE <NRf>
*SRE?

Capabilities

5
ICS Electronics • Phone: (925) 416-1000 • Fax: (925) 416-0105 • http://www.icselect.com

SCPI Command Structure and Examples

SCPI commands are based on a hierarchical structure that eliminates
the need for most multi-word mnemonics. Each key word in the
command steps the device parser out along the decision branch -
similar to a squirrel hopping from the tree trunk out on the branches
to the leaves. Subsequent keywords are considered to be at the same
branch level until a new complete command is sent to the device.
SCPI commands may be abbreviated as shown by the capital letters
in Figure 4 or the whole key word may be used when entering a
command. Figure 4 shows some single SCPI commands for setting
up and querying a serial interface.

SYSTem:COMMunicate:SERial:BAUD 9600 <nl>
 ‘Sets the baud rate to 9600 baud

SYST:COMM:SER:BAUD? <nl> ‘Queries the baud rate

SYST:COMM:SER:BITS 8 <nl> ‘Sets 8 data bits

Figure 4 SCPI Command Examples

Power users may concatenate multiple SCPI commands together
on the same line using semi colons as command separators. See
Figure 5 below. The first command is always referenced to the root
node. Subsequent commands are referenced to the same tree level
as the previous command. Starting the subsequent command with
a colon puts it back at the root node. IEEE 488.2 common com-
mands and queries can be freely mixed with SCPI messages in the
same program message without affecting the above rules. Check
your device manual for any command limitations.

SYST:COMM:SER:BAUD 9600; BAUD? <nl>

SYST:COMM:SER:BAUD 9600; :SYST:COMM:SER:
 BITS 8 <nl>

SYST:COMM:SER:BAUD 9600; BAUD?; BITS 8;
BITS?; PACE XON; PACE?<nl>

Figure 5 Compound Command Examples

A typical response to the last command example in Figure 5 would
be: 9600;8; XON<nl>

The response includes three items because the command contains
three queries. The first item is 9600 which is the baud rate, the
second item is 8 (bits/word) which is the current setting. The third
item XON means that XON is active. It is always a good idea to
check the devices’ error light or read its ESR register with the *ESR?
query when first using a compound command with a device to be
sure that it was accepted by the device’s parser.

SCPI Variables and Channel Lists

SCPI variables are separated by a space from the last keyword in
the SCPI command. The variables can be numeric values, boolean
values or ASCII strings. Numeric values are typically decimal
numbers unless otherwise stated. When setting or querying reg-
ister values, the decimal variable represents the sum of the binary
bit weights for the bits with a logic ‘1’ value. e.g. a decimal value
of 23 represents 16 + 4 + 2 + 1 or 0001 0111 in binary. Boolean
values can be either 0 or 1 or else OFF or ON. ASCII strings can
be any legal ASCII character between 0 and 255 decimal except for
10 which is the Linefeed character.

Channel lists are used as a way of listing multiple values. Chan-
nel lists are enclosed in parenthesis and start with the ASCII ‘@’
character. The values are separated with commas. The length of
the channel list is determined by the device. A range of values can
be indicated by the two end values separated by a colon. There is
a space between the ‘@’ and the first value. e.g.

(@1,2,3,4) ‘lists sequential values
(@ 1:4) ‘shows a range of sequential values
(@ 1,5,7,3, 4) ‘lists random values

Figure 6 Channel List Examples

SCPI Error Reporting

SCPI provides a means of reporting errors by responses to the SYST:
ERR? query. If the SCPI error queue is empty, the unit responds
with 0, “No error” message. The error queue is cleared at power
turn-on, by a *CLS command or by reading all current error mes-
sages. The error messages and numbers are defined by the SCPI
specification and are the same for all SCPI devices.

Table 3 488.2 Common Controller Protocols

 Keyword Function

 ALLSPOLL Serial polls all devices on the bus
 FINDLSTN Finds and lists all of the devices on the bus
 FINDRQS Finds the first device asserting SRQ
 PASSCTL Passes control of the bus
 REQUESTCLT Requests control of the bus
 RESET Resets all bus devices
 SETADD Sets a devices’s GPIB bus address
 TESTSYS Self-tests the system

6
ICS Electronics • 7034 Commerce Circle, Pleasanton, CA 94588 • http://www.icselect.com

CHAPTER 2 - GETTING STARTED

Now that you have a background on the GPIB bus you probably
want to know how to use the GPIB bus to get things done. This
Chapter deals with some general suggestions for putting the system
together.

Bus Controllers

Most GPIB Bus controllers now are PCs with an add-on GPIB
Controllers. These add-on controllers take the following forms:

 1. ISA or PCI Cards installed in PCs
 2. PCMCIA Cards in Portable PCs
 3. Serial Port to GPIB Controllers
 4. USB to GPIB Controllers
 5. Ethernet to GPIB Controllers

Cards installed in PCs have the benefit of being the lowest cost form
of the GPIB Controller. This category includes ISA, AT, and PCI
bus cards. PCI cards are the most popular as there is no longer any
demand for ISA and AT bus cards. GPIB Controller cards are also
available for the PC/104 bus. Cards can be obtained from Hewlett-
Packard, ICS Electronics, IOtech, Measurement Computing and
National Instruments.

PCMCIA cards are available for portable or laptop computers. There
popularity is waning as the cable connectors are too delicate for
rugged applications. The USB to GPIB Controllers are now more
popular than the PCMCIA cards. PCMCIA Card GPIB Controllers
can still be obtained from Agilent, ICS Electronics, IOtech, and
National Instruments.

Serial-to GPIB Controllers can be connected to a Computer’s COM
port or run at remote location by being connected to a modem and
phone line. Some Serial-to GPIB Controllers have RS-422/RS-
485 interfaces and can be run at the end of a very long serial cable.
These Serial-to GPIB Controllers are convenient for adding a
GPIB controller to a older portable computer that does not have a
PCMCIA slot. Serial-to-GPIB Controllers can be obtained from
ICS Electronics, IOtech, and National Instruments.

USB to GPIB Controllers can be connected to the USB connector
on the newer Desktop PCs and portable PCs. Requirements are
that the computer must be running Windows 98 or a later operat-
ing system. USB Controllers are available from ICS Electronics,
Agilent and National Instruments.

Ethernet to GPIB Controllers can be connected to the company
network or to the Internet and run from remote locations. Some
are VXI-11.2 compliant so they can be operated by any computer
that can make RPC calls in the client program. Ethernet to GPIB
Controllers are available from Agilent, ICS Electronics and National
Instruments. The National Instrument’s controller uses a private
protocol and can only be run with their software.

GPIB Bus Cables

Standard GPIB cables can be obtained from a number of sources
including your GPIB Controller card manufacturer. They are avail-
able with the standard piggyback connectors at both ends or with a
straight-in cable connector on one end of the cable. Use good quality
multi-shielded cables to avoid EMI/RFI problems. If in doubt, ask
your GPIB cable provider if the cables have passed a CE test. If so,
they should be able to provide you with a CE certificate.

Total GPIB cable length in a system should not exceed 20 meters.
For maximum data transfer rates, cable length should not exceed 2
meters between devices.

GPIB cables are often shipped with a ‘brightener’ on the connector
contracts. This ‘brightener’ is a waxy organic substance to keep
the contacts bright. If you start getting bad data, clean the GPIB
connector contacts. Use a mild soap solution (a couple of drops of
a dish detergent in a cup of water) to wash off the brightener. Clean
the contacts with alcohol and blow dry the connector.

Device Addresses

GPIB devices can be assigned any primary address between 0 and
30. Assign a different address to each GPIB device. Avoid using
addresses 0 and 21 as these may be used by the GPIB controller.
GPIB controllers have their own GPIB address. (The GPIB address
is software set and is not the GPIB controller card’s internal PC
bus address). National Instruments’ controllers typically use GPIB
address 0. HP and ICS Electronics controllers typically use GPIB
address 21. Also don’t use address 31 as a GPIB device address as
31 is the Unlisten and Untalk address.

GPIB Devices typically use a dip switch with five rockers to set
the GPIB address. The rocker bit weights are 16, 8, 4, 2, and 1.
Other rockers may set talk-only or listen-only modes and should
be left off for use in a system with a GPIB Bus Controller. Always
reset the instrument or power it off and back on after changing its
address setting.

Some GPIB devices use front panel controls to set their GPIB
addresses. These devices save the GPIB address in a nonvolatile
memory. Follow the manufacturer’s instructions when changing
their GPIB address setting.

Some newer GPIB devices like ICS’s Minibox interfaces use SCPI
commands to change and set their GPIB bus address. Use the
‘SYST:COMM:GPIB:ADDR aa’ command where aa is the new
GPIB address to change the address setting. The address change
is immediate. Next, send the device the ‘*SAV 0’ command at its
new GPIB address to save the new address.

7
ICS Electronics • Phone: (925) 416-1000 • Fax: (925) 416-0105 • http://www.icselect.com

Interactive Keyboard Control Programs

Keyboard control programs are programs that let you interactively
control and query a GPIB device by entering device related com-
mands on the PC keyboard. The better programs do most of the work
for you so you do not have to know the GPIB command syntax to
use them. Some GPIB Controllers are supplied with these kind of
programs If you have one, use it to check out your GPIB controller
and devices before writing your program.

ICS’s GPIBkybd program is a graphical Windows program that let
the user control GPIB devices by simply entering a device specific
message in a text box and by clicking on buttons to send the mes-
sage and/or perform a simple command like Serial Poll or Device
Clear. ICS’s GPIBKybd program runs the 488.2 FindLstn protocol
to find your GPIB device(s) when the program is started. The found
devices are listed in the Response box and the program sets the de-
vice address to the lowest found device address. ICS’s GPIBKybd
program interfaces with the GPIB32.DLL so it can operate GPIB
controllers cards from ICS Electronics, Measurement Computing,
National Instruments and any other manufacturer who supplies an
equivalent GPIB-32.DLL. You can download a free copy of ICS’s
GPIBKybd program from ICS’s website at http://www.icselect.
com/prgupdates.html.

Older control programs like National Instruments’ ibic program
are low level, DOS command line programs that use NI’s older ib
commands to control GPIB devices. National Instruments’ ibic
program requires you enter the controller card’s ‘ib’ type command
to communicate with the device.

Using a Keyboard Control Program

The best way to start with a Keyboard Controller program is to
start with a known good device. Its best if it is an IEEE-488.2
compatible device.

1. Turn on the device and start the program
2. Set the program to the same address as the test device. ICS’s

GPIBKybd program should have found the device when it was
started. For NI’s ibic, do an ibfind to get the device handle.

3. Send the device an IFC to clear the GPIB interface by clicking
the IFC button. For NI’s ‘ibic’, do a ibsre(0,1) and a Send-
IFC(0).

4. Send the device the *idn? query and read back the device
response. If there is no response, the device is probably not
488.2 compatible.

5. Perform a Serial Poll to see if the device can respond the GPIB
controller. Repeat the serial poll one more time if the first
response was not 0.

6. Once you have proved that you have communication with the
GPIB device, you can send it device specific commands and
read back its responses. The device specific commands are
found in the programming section of the device’s instruction
manual.

CHAPTER 3 - WRITING GPIB PROGRAMS

GPIB programs are simple programs with three major sections:
Initialization, main body and the closing. Most programs use just
6 to 8 commands so it is not necessary to learn all of the GPIB
commands to develop a good GPIB program. Program complexity
increases with the number of devices being controlled and number
of tests. Programs can be written in C/C++ or in Visual Basic. Test
programs can also be developed with graphical languages such as
National Instrument’s LabVIEW, Agilent’s VEE or Measurement
Computing’s SoftWire.

This chapter provides directions for initializing the GPIB Controller
and bus and for sending data to or reading data back from a GPIB
device. Program examples are shown in BASIC syntax with ICS
Electronics and with National Instruments’ style commands. (NI
commands include their original 488 command set and the newer
488.2 command set.) The directions given can be applied to other
manufacturer’s command sets.

GPIB Command Concept

GPIB commands in a program are like the layers of an onion. The
inner layer is the device specific command that you want the device
to have. i.e.

*RST, *IDN? or SYST:COMM:SERIAL:BAUD 9600

The next layer is the command required by your GPIB controller
card to send or receive data or carry out some action on the GPIB
bus. Examples are:

 ieOutput(DevAddr%, “*RST”)
 ieEnter(DevAddr%, Rdg$)
 or ieTrigger(DevAddr%)

The third layer is the calling convention that your programming
language or programming style dictates. Some commands can be
called with the standard CALL command. Other commands or
languages equate an error variable to a return value that indicates if
the command was successfully executed. Some examples are:

CALL ieOutput(DevAddr%, OutputStr$, Len)
ioerr% = ieOutput(DevAddr%, OutputStr$, Len)

Error Processing

Most GPIB command libraries have a way of determining whether
the command was successfully executed by the GPIB controller.
This does not mean that the device did what you wanted, just that
the GPIB controller got the command to the device.

The error variable is set when the command is executed. The vari-
able can be set by equating it to the command because the command
returns the error variable. In other cases, the error is a separate vari-
able that can be checked. It is a good plan to test the error variable
after every command to be sure there were no problems with the

8
ICS Electronics • 7034 Commerce Circle, Pleasanton, CA 94588 • http://www.icselect.com

command or with the device. This is done by adding a conditional
test to the program after each instruction.

CALL ieOutput(DevAddr%, OutputStr$, Len)
ioerr% = ieOutput(DevAddr%, OutputStr$, Len)
Call ProcessError(ioerr%)

In the above example, the subroutine ProcessError tests the variable.
If ioerr% is not zero, ProcessError will displays the appropriate
error message in a box to the user. Examples of the Process Error
routine are found in ICS’s example Visual Basic programs.

Call = Send(Bd, Addr, OutString$, EOTMode)
If (ibsta AND EERR) then
 Call ReportError(Addr, “ Did not respond”)
End If

In this example, the test was done in the program. If the error variable
, ibsta, was true, then ReportError was called to display the error.

GPIB Controller Initialization

The GPIB Controller Card is initialized to be sure that it is the
System Controller and Controller-in-charge of the bus. The bus is
initialized to be sure that all of the devices are in a non-addressed
state after their power turn-on. This is done by having the GPIB
Controller issue an Interface Clear command (IFC pulse) and assert
the REN line. It is also a good idea to check or set the bus timeout.
The bus timeout is the amount of time that the program will wait
for a device to respond to a command before proceeding.

In the 488-PC2 Command Set, this is done with the following
commands:

ioerr% =ieInit(IOPort, MyAddr, Setting) ‘initializes the
 Driver
ioerr% =ieAbort ‘sends IFC, sets REN on
ioerr% = ieTimeOut (Time) ‘sets bus timeout

The 488-PC2 Command Set returns an error status value in the ioerr%
variable when it is finished. If the value is zero, the command was
successfully executed. A nonzero value means the command was
not executed correctly and that the device probably was not there
and/or did not receive the Output String. When error variables are
used, each command should be followed with a step that calls a
routine to check the error variable. i.e.

ioerr% =ieAbort ‘sends IFC, sets REN on
Call ProcessError (ioerr%) ‘checks the error variable

In the NI 488.2 Command Set, the initialization is done with the
following commands:

Call SendIFC(Bd%) ‘sends IFC
Call ibsre(Bd%, 1) ‘sets REN on
Call ibtmo(Bd%, T3s) ‘sets Timeout to 3 seconds

The NI 488 command, ibsre, is used to set REN because there is not
an equivalent NI 488.2 command. The NI 488 command, ibtmo,
is used to set the timeout because there is not equivalent NI 488.2

command. T3s is a predefined constant for 3 seconds. If timeout
is set to 0 (or TNONE), the GPIB bus (and your program) will be
held as long as it takes for a device to complete its instruction. The
0 setting is not recommended except when debugging hardware.

NI 488 commands can be included in an NI 488.2 program when
there is not an equivalent NI 488.2 function. The NI 488.2 Com-
mand Set returns errors in the command status in iberr and sets
ibsta. ibsta should be checked after every command to be sure the
command was executed correctly.

Sending Data to a Device

Data or device commands are normally sent to a device as strings
of ASCII characters. Typical device commands are DVM setup
commands, baud rate commands to a GPIB-to-Serial converter, or
digital data to a Parallel interface.

In the 488-PC2 Command Set, ASCII data is sent by first specifying
the string and then calling the ieOutput command:

Outstring$ = “Command to be sent”
L = Len(Outstring$)
ioerr% = ieOutput(DevAddr, OutString$, L)

In the NI 488.2 Command Set, ASCII data is sent by specifying the
Output String and then calling the Send command.

Outstring$ = “Command to be sent”
Call = Send(Bd, Addr, OutString$, EOTMode)

You can also embed the command string in the call line. e.g.

Call = Send(Bd, Addr, “Command to be sent”, EOTMode)

EOTMode is a flag that tells the Send command how to terminate
the command string. All IEEE 488 command strings need to be
terminated with a linefeed character or by asserting the EOI line
on the last character. If the output data is binary data, terminate
the output by only asserting EOI on the last character. NLend is a
predefined constant that sends a linefeed with EOI asserted after the
last data character. The above command then becomes:

Call = Send(Bd, Addr, OutString$, NLend)

Reading Data from a Device

ASCII data strings are read from a device by first specifying an
empty string and then reading the data into the string. Data is read
until a terminator is found or the defined Input string is full. Typical
terminators are linefeed or EOI asserted on the last character. An
example in the 488-PC2 Command Set is:

Instring$ = String$(Lin, 32) ‘fills the string with spaces
ioerr% = ieEnter(DevAddr, Instring$, Lin)

where Lin is the length of the input buffer. The 488-PC2 Command
Set uses the ieEOL command to set the input terminator. The ieEOL
command defaults to LF or EOI sensed.

9
ICS Electronics • Phone: (925) 416-1000 • Fax: (925) 416-0105 • http://www.icselect.com

 In the NI 488.2 Command Set the input example is:

Instring$ = String$(Lin, 32) ‘fills the string with spaces
ioerr% =Receive(Bd, Addr, Instring$, Term)

Term or Termination is the flag used to signal the end of the data.
Term can be set to any ASCII character between 0 and FF HEX and
the Receive process will stop when that character is detected. If
Term is set to the predefined STOPend constant, the Receive process
stops when EOI is detected.

Clearing a Device

Some devices have buffers that accumulate unwanted data and it
occasionally becomes necessary to clear out the old data or return
a device to a known condition. This is done by sending the device
the Device Clear Command. In the 488-PC2 Command Set this is
done with:

ioerr% = ieDevClr(DevAddr)

In the NI 488.2 Command Set, this is done with :

Call DevClear(Bd, Addr)

Reading the Device Status

Some times it is desirable to read the device’s Status Register to see
if it has data, has a problem or has completed some task. Devices
report their status (Status Register contents) in response to Serial
polls. 488.2 devices also report their status in response to the *STB?
query. Consult the device’s instruction manual for the meaning of
the bits in its Status Register.

In the 488-PC2 Command Set, the status register is serial polled
and the value placed in the DevStatus variable by:

DevStatus = ieSPoll(DevAddr)

For the NI 488.2 Command Set use:

Call ReadStatusByte(Bd, Addr, DevStatus)

Serial Polling the device will cause it to reset its RQS bit and it
will no longer assert the SRQ line. However multiple devices
may be asserting the SRQ line and requesting service. The user’s
program should retest the SRQ line and Serial Poll the remaining
instruments that are enabled to set the SRQ line until all devices
have been serviced.

When the Serial Poll returns a value that indicates that the device is
requesting service, the user may have to examine the Status Register
bits to see why the device requested service. If a Register Summary
bit is asserted, the user will have to query that register to learn why
the device requested service. i.e.

If (Status% AND 32)=32 then
 Send(Bd, Addr, “*ESR?”, EOTMode)
 Instring$=” “
 Call Receive(Bd, Addr, Instring$, Term)

Sending Bus Interface Messages and Addresses to a
Device

Sometimes it is necessary to send Bus Interface Messages or Ad-
dress commands to a device to address a device as a talker or as a
listener or to enter a special configuration mode. Interface Mes-
sages or Addresses are sent to a device with ATN on. They can be
represented by an equivalent ASCII character. Refer to Chapter 1
for a list of these commands.

The 488-PC2 Command Set uses the Interface Message mnemonics.
The user specifies the command string and then calls the ieSend
command. The ieSend command interprets the mnemonics and
converts them into GPIB bus bytes. In the following example,
CmdStr$ is set to the escape sequence used with some of ICS’s
Miniboxes to put them in their command mode. Consult the GPIB
Controller’s Command Reference section for the ieSend command
mnemonics.

CmdStr$ = “UNL LISTEN 4 UNL LISTEN 4 UNL”
L = Len (CmdStr$)
ioerr% = ieSend(DevAddr, CmdStr$, L)

In the NI 488.2 Command Set, the Interface Messages and Addresses
are sent by specifying the equivalent ASCII characters. i.e.

CmdStr$ = Chr$(&H3F) + CHR$(Addr + 32)+ Chr$(&H3F)
 + CHR$(Addr + 32) + Chr$(&H3F)
Call SendCmds(Bd, CmdStr$)

Where Addr is the device’s address. The NI 488.2 SendCmds
command outputs the bytes passed to it in CmdStr$ without the
interpretation done by ICS’s ieSend command.

Device Addresses

The format of the device address in ICS’s command set depends
upon the operating system. In DOS, the device address format is
pp or pp ss where pp is a primary address and ss is a secondary
address. Valid addresses are:

 0 to 30 for pp
 100 to 3030 for pp ss

In Windows, the device address also includes the card number. The
format becomes cardno pp or cardno pp ss. ICS adopted the Hewlett-
Packard convention and numbered the first card as 7. Subsequent
cards are numbered 6 down to 4. Valid device addresses are:

 700 to 730 for cardno pp
 70000 to 73030 for cardno pp ss

To address a device at primary address 4,

 Address = 7 & 04 = 704

To address a device with a primary address of 4 at secondary ad-
dress 2,

 Address = 7 & 04 & 02 = 70402

10
ICS Electronics • 7034 Commerce Circle, Pleasanton, CA 94588 • http://www.icselect.com

The NI 488.2 Commands use two variables, Bd and Address to ex-
press the device address. Bd contains the Card number and is 0 for
the first card. Address is a 16 bit variable with the secondary address
in the upper byte and the primary address in the lower byte.

 Address = [ss + 96]*256 + pp

To address a device at primary address 4,

 Address = 0 + 4 = 4

To address a device with a primary address of 4 at secondary ad-
dress 2,

 Address = [02+96] *256 + 4
 = [98] *256 + 4
 = 25088 +4 = 25092

