
AB48-44

Rev 08-30-2011

Introduction

Now that ICS has released a true 64-bit GPIB-32.DLL, many
engineers want to write 64-bit applications to take advantage
of the larger address space available with 64-bit operating
systems. Another reason to convert existing programs is the
eventual end of 32-bit platforms at some point in the future.
However the process of converting 32-bit GPIB applications
to 64-bit applications is new and confusing to many engineers.
This Application Bulletin attempts to clear up the mystery
surrounding the conversion process by giving the user some
conversion guidelines and by including some conversion
examples for Visual Basic and Visual C++. The directions in
this Application Bulletin will apply to other 32-bit programs
that use external libraries.

Obtaining the Example Files

The fi les used for this bulletin can be found on Example
Programs page on ICS’s website at http://www.icselect.com/http://www.icselect.com/
ab_prgms.htmab_prgms.html. Download the AB48-44_Programs fi le to
your computer and unzip the fi le to a temporary folder. Within
the zip fi le are all of the fi les needed to build a 32 or 64-bit
GPIB application. In addition to these fi les there are 32-bit
and 64-bit example projects for Visual Basic and Visual C++.
You should have the fi les shown in Figure 1.

Examining the Downloaded Files

The unzipped fi le is broken down into three folders; 32bit,
64bit and Example Programs.

The 32bit Folder contains all of the fi les needed to build a
32-bit Visual Basic or Visual C++ application. The GPIB-

32.DLL is required to run ICS’s 488-USB2 and 488-LPCI
GPIB controllers. Visual C++ uses two fi les: the GPIB-32.lib
library fi le to link the application to the GPIB-32.DLL and
the ICSdecl.h fi le which contains the C function calls to the
GPIB-32.DLL. Visual Basic requires just the GPIB-32.vb fi le
to make the function calls to the GPIB-32.DLL.

The last fi le, ICS_Spy.exe, is a utility program that is used to
assist in troubleshooting hardware and software problems.
ICS_SPY is most useful in monitoring the calls made to the
GPIB-32.DLL. The ICS_SPY has a help menu for the which
explains how to use the program.

The 64bit Folder is a similar to the 32bit folder but contains all
of the 64-bit equivalent fi les. The GPIB-32.DLL in this folder
is a 64-bit DLL and cannot be used interchangeably with the

32bit Folder
 GPIB-32.DLL
 GPIB-32.lib
 GPIB-32.vb
 ICS_Spy.exe
 ICSdecl.h
 64bit Folder
 GPIB-32.DLL
 GPIB-32.lib
 GPIB-32.vb
 ICS_Spy.exe
 ICSdecl.h
 Example Software Folder
 32Bit Examples Folder
 VB 2005 - Visual Basic Project
 VC 2005 - Visual C++ Project
 64Bit Examples Folder
 VB 2005 - Visual Basic Project
 VC 2005 - Visual C++ Project

Figure 1 Unzipped Download Files

Converting 32-bit GPIB Test Programs to 64-bit Programs

2

32-bit DLL in the 32bit folder. Both DLLS are named GPIB-
32.DLL to maintain the standard naming conventions. Care
should be taken to not mix-up the two fi les. GPIB-32.vb
and ICSdecl.h are identical fi les to their 32-bit count parts
and are interchangeable. ICS_Spy.exe is a 64-bit application
which works identical to the 32-bit version. Both programs
can monitor calls to either GPIB-32.DLL.

The Example Software Folder is broken down into two sub-
folders. One for the 32-bit examples and another for the 64-
bit examples. Each sub-folder contains a Visual Basic 2005
project and Visual C++ 2005 project. The 32-bit projects will
be used later to show how to make a 32-bit application into
a 64-bit application.

Steps to Convert a 32-bit Visual C++ Project

For this you will need the example program located at “..\Ex-
ample Software\32-bit Examples\ VC 2005” and a copy of the
64bit GPIB-32.lib located within the “..\64Bit” Folder.

Start by opening the project in Visual Studio and attempting
to compile. If the project compiles correctly then move on to
the fi rst step. The following steps should work for any Visual
Studio software that is 2005 or later. Microsoft may make
changes to the interface system making these instructions
inaccurate for future releases of Visual Studio. If your project
does not compile look over the errors you are receiving for
hints as to why your system may not be handling this project
correctly.

Step 1. Locate the 64bit GPIB-32.lib fi le located within “..\64bit
Folder” and copy it into the example program’s working
directory (“..\Example Software\32-bit Examples\VC
2005\vc32_GPIBKybd\vc32_GPIBKybd”) This should
replace the existing 32-bit version of GPIB-32.lib that
was already within the folder.

Step 2. Open the ‘Confi guration Manager’ by click the ‘Build’
menu then go to the bottom of the list where you will see
“confi guration manager...”.

Step 3. Within the drop down menu in the upper right hand cor-
ner, under “Active Solution platform:” select ‘<New...>’,
in the popup window make sure the new platform is set
to ‘x64’ then click “Okay”.

Step 4. Click “Close”, recompile and run your application.
If you have errors then continue reading the following
sections to ensure no mistakes were made.

Steps to Convert a 32-bit Visual Basic Project

For this you will need the example program located at “..\Ex-
ample Software\32-bit Examples\ VB 2005”.

Start by opening the project in Visual Studio and attempting
to compile. If the project compiles correctly then move on to
the fi rst step. The following steps should work for any Visual
Studio software that is 2005 or later. Microsoft may make
changes to the interface system making these instructions
inaccurate for future releases of Visual Studio. If your project
does not compile look over the errors you are receiving for
hints as to why your system may not be handling this project
correctly.

Step 1. Open the ‘Confi guration Manager’ by click the ‘Build’
menu then go to the bottom of the list where you will see
“confi guration manager...”.

Step 2. Within the drop down menu in the upper right hand cor-
ner, under “Active Solution platform:” select ‘<New...>’,
in the popup window make sure the new platform is set
to ‘x64’ then click “Okay”.

Step 3. Click “Close”, recompile and run your application.
If you have errors then continue reading the following
sections to ensure no mistakes were made.

Step 4. Confi rm that your application is targeting the correct
CPU type. Click ‘Project’ then ‘properties’ from the drop
down menu. In the new window on the left click ‘Compile’
then the ‘Advanced Compile Options...’. The last option
will be ‘Target CPU’ and should be set to ‘x64’.

Some Important Facts about 64-bit applications

1. Some older applications use functions that Windows no
longer supports or has changed the function for 64-bit
applications. These types of errors are common and must
be fi xed to build your program.

2. A 32-bit application requires the use of a 32-bit DLL and
lib/obj fi le, and a 64-bit application requires the use of
a 64-bit dll and lib/obj fi le. When changing a program
over to 64-bit make sure the project settings are pointing
to the correct set of fi les.

3. 64-bit applications can only be built and ran on a 64-bit
operating system, but 32-bit applications can be built and
ran on either a 32-bit or on a 64-bit operating system.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

3

4. The GPIB-32.DLL may be installed in possibly two
locations on a 64-bit operating system. The 64-bit ver-
sion is installed in the System32 folder, while the 32-bit
version is installed in the sysWOW64 folder. If you are
having diffi culties linking to the correct DLL then copy
the DLL you wish to use into your project’s working
directory. Based on Microsoft’s default search path this
will become the default GPIB-32.DLL.

Frequently Ask Questions:

I’m receiving LNK Error’s when compil-
ing my 64-bit application, however my
code compiles fi ne for my 32-bit appli-
cation?

The most likely cause to this type of LNK Error is an incorrect
.lib fi le. The GPIB-32.Lib fi le is specifi c to 32-bit or 64-bit.
The 64-bit version of the library cannot be used with a 32-bit
application and the reverse is true. Copying the correct .lib
fi le into your project should fi x this issue.

How can I tell if I have the correct
.lib in my project?

There is not a good way to tell if the .lib fi le you are
using is built for a 32-bit or 64-bit application. The
easiest way to handle this problem is to take a copy of
the .lib from the ICS Dev fi les folder and copy over
the .lib in question. Using updated .lib fi les with older
GPIB-32.DLL’s will not cause any problems.

I need to have one project build both a
32-bit and 64-bit versions of my proj-
ect do I need to switch the 32-bit and
64bit .lib fi les before each compile?

Yes, since your program is linking to GPIB-32.Lib this fi le
must match the target OS of your project. There are two ways
to get around manually switching these fi les back and forth.
The fi rst is a change to the code contained within the ICS_Decl.
h fi le. At the top you will see the line ‘pragma comment(lib,
“GPIB-32.LIB”)’ replace this line with the follow

#if _WIN64
 #pragma comment(lib, “GPIB-32(x64).LIB”)
#else
 #pragma comment(lib, “GPIB-32(x86)LIB”)
#endif

Change the name of the 32-bit GPIB-32.lib within your
working directory to “GPIB-32(x86).LIB”, and your 64bit
GPIB-32.lib to “GPIB-32(x64).LIB”. This Code will auto-
matically select the appropriate library fi le based on the target
operating system.

The second way to automate this change is by making a change
within the project defi nitions. Since project defi nitions are
directly connected to the solution platform, changes may be
made for the 64-bit application without affecting the 32-bit
version. Before changes to the project defi nitions are made
two new folders should be made to contain the 32-bit and
64-bit library fi le. Create a “32bit” folder within the working
directory along with a “64bit” folder. Place the GPIB-32.lib
fi les within their respective folders. Place the 32bit .lib within
the “32bit” folder and the 64bit .lib within the “64bit” folder.
Now open up your project defi nitions and navigate to ‘linker’,
‘input’ ,’additional dependencies’ and type in the location for
the GPIB-32.lib that applies to your project. Save the settings
and do the same for the other platform’s project defi nitions.
Remember to remove ‘Pragma Comment(lib, “GPIB-32.lib”)
from ICS_Decl.h and your project should link correctly to both
.lib without having to change the name of the .lib fi les.

Summary

This application note provided working examples on how to
convert a 32-bit application to a 64-bit application in Visual
Studio 2005. The directions also apply to Visual Studios
2008 and 2010. The examples can be used with other GPIB
test programs and as guidance when converting other 32-bit
programs with library fi les to 64-bit programs.

There are many issues that may arise while developing a 64-bit
application. For debugging questions and further informa-
tion visit Microsoft Support at: http://windows.microsoft.http://windows.microsoft.
com/en-US/windows-vista/32-bit-and-64-bit-Windows-fre-
quently-asked-questionquently-asked-questions

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

4

