
ICS

AB48-25d

APPLICATION
BULLETIN

INTRODUCTION

ICS's Model 4899, 4809 and 4819 GPIB-to-Modbus Control-
lers simplify controlling Modbus devices from the GPIB bus
by converting simple GPIB commands into Modbus RTU
packet messages.  This application note describes how these
GPIB Controllers generate Modbus messages and how to use
them to control Modbus devices.  Modbus control is demon-
strated with an example GPIB-to-Modbus Temperature Con-
trol program that uses a Watlow F4 to control temperatures.
The example program is a Visual Basic program that runs on
a PC with Windows 95, 98, 2K or XP.  ICS's website also has
LabVIEW VIs that can do setpoints and ramp profiles.

MODBUS PROTOCOL

The Modicon Corporation, now AEG Schneider, created a
serial protocol known as Modbus for controlling industrial
process control systems.  The Modbus protocol is an ex-
tremely reliable protocol for exchanging data in noisy indus-
trial applications.  The Modbus protocol is a packet exchange
protocol where the controller receives a response to each
packet that it sends to a device.  Each packet contains the
address of the controller that is to receive the information, a
command field that says what to do with the data fields and a
CRC (Cyclic Redundancy Checksum) field that is used to
validate the packet.  The Modbus protocol uses two coding
schemes, ASCII or HEX characters.  The HEX character
format is known as the RTU protocol and it is the protocol
supported by the 4809, 4819 and 4899 Controllers.

Modbus devices pass data and commands through address-
able registers.  Each register has a different function as
defined by the device designer, i.e.  temperature setpoint,
reading, alarm setting etc.  The registers may be read only,
write only or read-write.  Figure 1 shows an Modbus HEX
RTU message packet.  The Address and Command fields are

CONTROLLING MODBUS DEVICES FROM THE GPIB BUS

Packet Format:  Addr    Cmd   Registers....  .data   CRC

  Figure 1   Modbus Packet

8-bits.  The Register-Data fields hold multiple 16-bit words
and contain the register address and data values.  The data
field is a signed 16-bit word.  The CRC field is a 16-bit binary
word.  The RTU message packet is transmitted as asynchro-
nous 8-bit serial characters with single start and stop bits.
Each character holds 8 bits or 2 HEX characters.

CONTROLLER OPERATION

The 4809, 4819 and 4899 are IEEE 488.2 compatible GPIB
devices that can control single or multiple Modbus slave
devices.  They accept simple GPIB bus commands that are
used to create Modbus RTU packets that are transmitted
serially to the Modbus slave device(s).  The data transmission
can be to a single Modbus device over a RS-232 link or to
multiple Modbus devices over an RS-485 network.  The
Controller's SCPI parser accepts IEEE-488.2 common com-
mands, SCPI commands and Modbus commands.  The IEEE-
488.2 and SCPI commands are used to setup the Controller's
Status Reporting Structure or to configure its GPIB and Serial
interfaces.  Any commands that end in a '?' are a query and the
Controller responds by outputting the requested data on the
GPIB bus the next time it is addressed as a talker.

The 4809, 4819 and 4899 include a list of commands for
controlling Modbus devices.  These commands specify the
Modbus slave device address, a read or write operation, a
register number and data or the number of registers to be read.
When the Controller receives a read (R) or write (W) com-
mand, it converts the GPIB characters into HEX bytes,
assembles the packet, and transmits it to the Modbus device.

ICS
ELECTRONICSICS

division of Systems West Inc.

3-20-041



2
ICS Electronics     7034 Commerce Circle, Pleasanton, CA 94588     Phone: (925) 416-1000     Fax: (925) 416-0105

If the packet is successfully received by the Modbus device,
the Modbus device will generate a response packet that either
acknowledges receipt of the message or returns the requested
data.  The Controller receives the response packet and checks
it for a valid checksum and byte count.  If the packet is a valid
response to a read command, the returned data is held in the
GPIB transmit buffer and outputted onto the GPIB bus the
next time the Controller is addressed to talk.  If the packet is
a command acknowledgment message, there is no further
action.  If the packet is invalid or contains a Modbus Excep-
tion Error code, then the code is placed in the Modbus Err
Register and the ERR LED lights.

The GPIB Controller expects to receive a response packet
from the Modbus device within a preset time period or it
declares a timeout error.  The timeout period is programmable
and is factory set to 100 milliseconds.  (Customer tests have
shown that 300 milliseconds is a better value for the Watlow
F4 Controller as it occasionally gets busy.)  If the received
packet was not a valid packet, or was an exception message,
then the Controller sets the appropriate bit(s) in the Question-
able Register and puts a decimal error value in the Modbus
Error register.  Both registers are part of the Controller's
IEEE-488.2 Status Reporting Structure.  The GPIB Control-
ler can be programmed to generate an SRQ if an error occurs
by setting the appropriate enable bits in the Status Reporting
Structure.  If an enabled error bit becomes set, the register's
summary signal cascades into the Status Byte Register and
generates a Service Request by asserting the SRQ line.  The
SRQ line stays asserted until the unit is serial polled or until
the bits that caused the SRQ are reset.  (Refer to AB48-11 or
to the 4899's Instruction Manual for a description of the
IEEE-488.2 Status Reporting Structure and how to use it to
generate SRQs.)

MODEL 4809 and 4899 DIFFERENCES

The 4809 and 4899 are functionally identical but physically
different units.  The 4809 is a PC board assembly that can be
mounted inside a host chassis.  The 4899 is packaged in ICS's
small Minibox case and can be rack mounted or run on a
benchtop.

MODEL 4819 DIFFERENCES

The Model 4819 is a PC board assembly that is intended to be
mounted perpendicularly on the rear panel of the host chassis
so that its GPIB connector can protrude though the rear panel.
It also has a RS-232 interface connector that brings the serial
Modbus signals out to the rear panel.  The 4819's internal
serial interface only has RS-232 signals so it can only drive
one Modbus Controller.  Its firmware functions are the same
as those in the 4899 and 4809 Controllers.

 MODBUS CONNECTIONS

The 4809/4819/4899's RS-232 interface connects to a single
slave device over distances of less than 100 feet.  The 4809
and 4899's RS-422/RS-485 interface can drive multiple slave
devices at distances up to 1200 feet.  Terminating networks
with pullup and pulldown resistors are required on RS-422 or
RS-485 networks that use tristated transmitters.  The 4809/
4819/4899 Instruction Manual shows how to connect the
GPIB-to-Modbus Controllers to various Modbus devices.

OVERALL SYSTEM

Figure 2 shows a typical system configuration.  The PC is the
system controller and with a GPIB controller card installed in
it.  A standard GPIB cable connects the PC to the 4899 GPIB-
to-Modbus Interface.  (It could also be a Model 4809 or a 4819
GPIB-to-Modbus Interface.)   The 4899's RS-232 serial
interface is connected to a Watlow F4 Controller as shown in
Figure 9.

WATLOW

Figure 2    System Configuration

MODBUS COMMAND SET

Although the 4809, 4819 and 4899 are IEEE-488.2 compat-
ible devices and incorporate a SCPI parser for their own
functions, they have a very simple set of commands for
controlling Modbus devices.  (See Table 1 on page 3.)   The
'C' command sets the Modbus device address for addressing
multiple devices on the serial network.  The 'R' command
reads a Modbus register.  The 'W' command writes a value to
a Modbus register.  The register numbers and functions come
from the Modbus device's manual.  Some examples for the
Watlow F4 Controller are:

C 1 'sets 4899 to address Modbus device #1
R 0,1 'reads model # at register 0
R 100,1 'reads input value #1
W 300,125 'sets setpoint #1 to 125 °C



3 03/04
ICS Electronics     7034 Commerce Circle, Pleasanton, CA 94588     Phone: (925) 416-1000     Fax: (925) 416-0105

VISUAL BASIC EXAMPLE SOFTWARE

ICS has developed an example Visual Basic program, called
TempCtlr, that shows how a 4809, 4819 or a 4899 GPIB-to-
Modbus Interface can be used to control a Watlow F4 Tem-
perature Controller.  The example routines can be easily
incorporated in a final application program.  The program is
written in Microsoft Visual Basic version 6 and can be run by
anyone with Visual Basic version 6 or the VB6 Runtime File.
Although the program description describes how the program
works with a Model 4899, it works the same with the 4809 or
4819 Interface cards.  The program uses the National Instru-
ments command set and requires an ICS, Measurement Com-
puting or National Instruments GPIB Controller card in-
stalled in the PC.

The program has three forms: a Main Form, a GPIB Com-
mands and Setup Form and a Profile Generator Form.  The
Main Form contains controls that send commands to the
GPIB interface to control the Modbus device, display its
responses, set static temperatures, set humidity and run tem-
perature profiles.  Figure 3 shows the Main Form when the
program is first started.  The GPIB Commands Form contains
controls that query and set the 4809/4819/4899's GPIB ad-
dress, its 488.2 Status Reporting Structure and its serial
interface.  The Profile Generator Form has controls that create
temperature controlling profiles with ramps and soak times.

  

Figure 3   TempCtlr Main Form

TABLE 1    MODBUS COMMANDS

Syntax            Default Meaning

C addr 1 Modbus Address Command.  Sets Modbus
slave device address for subsequent com-
mands.  Value for addr is 1 to 255.

L[?] w - Loopback Command.  Writes a 16-bit word,
w, out to a Modbus device and returns a
single response word to the GPIB bus.  The
question mark is optional.  Value for w is 0 to
65535.

R[?] reg, num - Read Register Command.  Reads one or
multiple Modbus device registers.  User
specifies starting register reg and number of
registers to be read num. The [?] is an op-
tional symbol so programs like ICS's
GPIBKybd program can recognize the
comand as a query and automatically read
the response.  Values for reg are 0 to 32767.
Values for num are 1 to 64.  Responses are
returned as 16-bit decimal or HEX values
separated by commas.  Output format se-
lected with the Format command.  i.e.

R? 0,1 reads Watlow Model Number.  Re-
sponse is 5270 for Watlow Model F4

R? 0,3 reads three successive registers.  Re-
sponse is 5270,0,123 for the Watlow F4
Controller.

W reg, w - Write Register Command.  Writes a 16-bit
value, w to a single Modbus device register,
reg. Values for reg are 0 to 32767.    Values
for w are 0 to 65535.  An example is:
W 100, 55  writes the decimal value 55 to
register 100.

WB reg, num, w(0).w(n) Write Block Command.  Writes
multiple 16-bit words, w(i) to multiple regis-
ters.  Starting register, reg.   Number, num
specifies how many words are to be written.
Values for reg are 0 to 32767.  Values for
num are 1 to 64.  Values for w are 0 to 65535.

D time 100 Timeout Command.  Sets timeout value of
Modbus response message in milliseconds.
Timeout is the total time for the message to
be received by the 4899 or 4809.  Value for
time is 1 to 65,535 milliseconds.  Default is
100.

D? Queries the current timeout setting.

E? - Read Error Command.  Reads and clears the
Modbus Error Register and bit 6 in the Event
Status Register.  Returns a error code whose
value is 0 to 255.  Error values are:
0 No errors present
1 Exception Code 1
2 Exception Code 2
3 Exception Code 3
100 CRC Error
101 Timeout Error indicates no char-

acters received
2nn Partial or corrupted message

nn is number of received bytes.

Table 1 Notes:
1. All values are in decimal. To enter HEX values, use #h value.
2. Response parameter format set by SCPI FORMat command.
3. Negative values start with a minus '-' sign.
4. Separate multiple values by a comma.



4
ICS Electronics     7034 Commerce Circle, Pleasanton, CA 94588     Phone: (925) 416-1000     Fax: (925) 416-0105

RUNNING THE PROGRAM

To run the TempCtlr program, click on TempCtlr.exe.  When
the Main Form appears, click the Initialize Button which
initializes the GPIB Controller Card in the PC, checks for a
4809/4819/4899 type Interface, checks for presence of the F4
Controller and then enables the other controls.  An error
message is displayed if the F4 Controller is not found.

If this is your first time in the program, or if the 4899 is set to
an address other than 4, click on the GPIB Commands and
Setting Button to setup the 4899.

GPIB COMMANDS AND SETUP FORM

The GPIB Commands Form contains controls that sets the
GPIB address the program uses for the 4899, that modifies the
4899's serial interface settings and configures the 4899's
488.2 Status Reporting Structure.  Click the IDN? button to
confirm that you have GPIB communication with the 4899.
If the 4899 is not responding to the program, check its GPIB
address and change the address in the GPIB Address box to
match the 4899's current setting and click Set.  (This changes
the address used by the program, not the 4899's actual GPIB
address.)

 

Figure 4   GPIB Commands and Setup Form with IDN
Message Response

If the serial baud rate needs to be changed, click the correct
baud rate button and then the Set button.  Leave RS485
disabled when using RS-232 signals.  Enable RS485 when
controlling multiple F4s on an RS-485 network.  RS-485
changes will not take affect until the interface sends the next
serial message.

Click ESE? to confirm that bit 6 in the ESE register is enabled.
The response is a decimal value equal to the sum of the binary
weights of the enabled bits.  Bit 6 has a decimal value of 64
and needs to be on to activate automatic Modbus Error
warning on the Main Form.  If not, use the ESE Setting box

to enable bit 6.  Refer to Section 3 of the 4899's Instruction
Manual for more information about the other 488.2 controls
shown on the GPIB Commands and Setup Form.   When done,
set PSC to 0 to save the SRE and ESE settings.  Use the *SAV
control if you want to save any other parameters.  Click the
Return to the Main Form button to exit the form.

MAIN FORM

On the Main Form, verify that the Current Address box value
matches the address of your Modbus device.  (Watlow F4s
default to address 1).  If not, change the address and click the
Set Modbus Address control to enable the remaining Modbus
controls.

The Modbus Device Queries box has controls that generate
preprogrammed queries to the Modbus device.  Click on Read
Model (Number) to verify communication with your Modbus
device.  Read Model reads register #0 and displays the result
in the Command Response text box.  Figure 5 shows the
response (5270) from a Watlow Model F4 controller.  The
other controls, Read S/N, Read Soft(ware), Read Rev(ision)
and Read Date query the remaining F4 identification registers
(registers 1 thru 5).  Change the Msg Format setting from
ASCII to HEX to see the difference in the query response
values.  This control also affects the output data so leave it in
ASCII when done unless you want to send and receive HEX
values.

  

Figure 5   Main Form with F4 Model Number

The remaining Modbus Device Query buttons let you read the
4899's Modbus Error Register, read Temperature (register



5 03/04
ICS Electronics     7034 Commerce Circle, Pleasanton, CA 94588     Phone: (925) 416-1000     Fax: (925) 416-0105

100) and Humidity (register 104).  You can easily modify
these routines to read other Modbus registers.

The Modbus Commands box lets you manually generate
Modbus read or write commands for any Modbus device.   To
read a register, click the Read Option Button.  This sets up the
Reg# and Number-of-Register boxes.  Enter the number of
the register to be read in the Reg# Box.  Enter the number of
sequential registers to be read in the Number-of-Registers
Box.  If you make a mistake, use the Clear Entry or the cursor
to clear out the boxes.  Click the Send Command button to
send the read message to the Modbus device.  The response
will appear in the Command Response box.

To write to a register, click the Write Option Button.  Enter the
number of the register to be written to in the Reg# Box.  Enter
the data in the Output Data Box.  When writing to multiple
sequential registers, separate the values with a comma.  Click
Send Command to send the write message to the Modbus
device.

If a Read ERR Reg flag appears, the 4899 detected a Modbus
error.  Click the Read Err button to read the 4899's Modbus
Error Register.  If the value is 0, the 4899 may have detected
a command or user error.  Use the Read ESR control to read
the 4899's ESR register.  Refer to the ESR register bit
definitions in Figure 3-1 of the 4809/4819/4899 Instruction
Manual to determine the cause of the error.  Figure 6 shows
the Modbus Error Register message after writing an out-of-
range value to register 4003 in the Watlow F4 Controller.

  

Figure 6   Main Form with Modbus Error Register
Response

STATIC TEMPERATURE AND HUMIDITY

The Static Commands box contains controls that set tempera-
ture and humidity setpoints and display the current values and
time readings.  To verify the temperature control functions,
the F4 was connected to a AC relay which powered a lamp
that was used to heat a small Temperature Chamber.  A type
J thermocouple was used to sense the chamber temperature.
Figure 9 shows the F4 test setup.

Note that this routine does not modify any control loop
parameters.  Those parameters are set by your temperature
chamber supplier and should only be changed after consult-
ing with your supplier.

Before running the Static Command Loop, select the tem-
perature units and set the desired temperature and humidity
by entering a value in the box and clicking the Set Temp or the
Set RH button.  Clicking Run Loop enables the Visual Basic's
timer function to read and display temperature, humidity and
time from the F4 once a second.  If the temperature setpoint
value was entered with a decimal point, the F4 display and the
response will show a decimal point.  If the setpoint was
entered without a decimal point, the F4 and the response show
just integers.  Figure 7 shows a 40° setpoint and the Tempera-
ture and Time displays active.

  

Figure 7   Main Form with a Static Setpoint and Tem-
perature Display

You can stop the static set point operation by entering OFF in
the temperature box and clicking the Set SetPt control.  The
reading loop is stopped by clicking the Stop Loop button.



6
ICS Electronics     7034 Commerce Circle, Pleasanton, CA 94588     Phone: (925) 416-1000     Fax: (925) 416-0105

GENERATING A PROFILE

The Profile Controls box on the Main Form contains controls
to create, run or delete temperature profiles.  Click the Create
Profile button to bring up the Profile Generator form shown
in Figure 8.

To create a profile, enter an unused profile number in the box
(start with number 1) and click Set Profile.   If the F4 responds
that this is a valid unused profile number, the Step Generator
box controls are enabled.  If not, go back to the Main Form and
delete ALL profiles by entering ALL into the profiles text box
and clicking Delete.

The Step Choice coding in the TempCtlr program follows the
Watlow suggested flowchart for programming a profile.  The
example program implements the Autostart, Time Ramp,
Ramp Rate, Soak and End steps.  The user can add the Jump
step if it is needed in his application.

To start a profile, you can use either Autostart which starts the
profile at a preset time of day (like an alarm clock) or Time.
Time is really the Time Ramp function but it will do an
immediate start profile step when programmed for a short
period of time.  The TempCltr program defaults to 10 sec-
onds.

Click the Time option to create the first step.  This displays the
Start Time boxes.  Leave the start time at 00:00:10 for an
immediate start or enter a short delay time.   Click Set.  Enter
the current temperature in the Temperature text box and click
Set Temp to complete step 1.  This enables the Rate and Soak
steps.  Each subsequent step increments the Step number in
the Step Number box.

For a temperature ramp you can use either a Time or Rate step.
Time works as described above where you enter a ramp time
and ending temperature.  Follow the above instructions but
enter a real ramp time and an ending temperature.  Click either
the Ramp or Soak options to add more steps to the profile.  For
a Rate Ramp step, enter the Ramp rate in degrees/minute * 10.
(e.g.  Enter 50 for 5 degrees per minute).  Click Set.   Enter the
end temperature value and click Set Temp.   Figure 8 shows
the Profile generator form making a 5 degree/minute Rate
ramp.

For a Soak step, enter the Soak Time and click Set.

To end the profile, click End which makes the last step and
saves the profile.  Return to the Main Form to run the Profile.

      

Figure 8   Profile Generator Form making a Ramp

RUNNING THE PROFILE

On the Main Form, enter the profile number in the profile text
box and click Run Profile to start the profile.  The profile can
be stopped by clicking the Stop Profile control.   To delete a
profile, enter the profile number in the profile text box and
click Delete.  Click Confirm to finish the delete process.  If
things get too mixed up, enter ALL in the profile text box and
click Delete to erase all profiles.

VISUAL BASIC TempCtlr PROJECT

The  TempCtlr program can be downloaded from ICS's
website as VB5_TempCtlr.zip.  Load the program into a
temporary directory and unzip it to extract the TempCtlr files.
The TempCtlr.exe file is an executable version of the TempCtlr
program that runs with ICS, ComputerBoards or National
Instruments GPIB Controller Cards.

Visual Basic programs are referred to as projects.  The
TempCtlr project contains three .frm files plus the three .bas
files: NIGlobal.bas, VBib-32.bas and Module1.bas.  The frm
files contain the controls (buttons, frames, text boxes etc.) and
code to execute the control functions.  frmMAIN is the top or
main form.  The NIGlobal.bas file contains the GPIB con-
stants and variables used in all Visual Basic programs.   The
VBib-32.bas file contains the library declarations for the calls
to the GPIB DLL.  The Module1.bas file contains the program's
global variables and the SendCmd, ReceiveResp and gpiberr
subroutines.

To adapt the TempCtlr program to a GPIB card with another
command set, you have to replace the NIGlobal.bas and



7 03/04
ICS Electronics     7034 Commerce Circle, Pleasanton, CA 94588     Phone: (925) 416-1000     Fax: (925) 416-0105

Figure 9     TempCtlr Program Test Connections

VBib-32.bas files with the equivalent file(s) for the other
card.  You will also have to change the calls in the rest of the
program to call the equivalent functions for the new GPIB
card.  This is fairly simple to do since most of the GPIB calls
are to the SendCmd and ReceiveResp subroutines in the
Module1.bas file.  After changing these two subroutines, all
you have to do is to correct the initialization commands in the
Main Form and the 488.2 commands in the 488.2 Form.
Follow the instructions from the GPIB Card manufacturer
when preparing Visual Basic programs for your card.

WRITING THE APPLICATION PROGRAM

The following suggestions apply to an application program
for the 4809, 4819 or 4899 GPIB-to-Modbus Interfaces.  The
initialization routine should set all of the fixed parameters
such as timeouts, format, ESE settings, Modbus device ad-
dress etc. and verify presence of all devices.  When some of
the Send and Receive commands are executed in the example
program, the error variable is tested after the command to
check for errors.  This only assures the command was cor-
rectly executed.  It does not mean that the 4809/4819/4899 or
the Modbus device liked the command or executed it.  Add
additional tests to read the Modbus Error Register in the 4809/
4819/4899 or to check the 4809/4819/4899's ESR register to
determine if it or the Modbus device had a problem with the
command.  Bit 6 will be on if there was a Modbus error.  One

method of doing this is to enable SRQ generation when an
error occurs and then check the SRQ line after each com-
mand.  It will be asserted if the 4899/4809/4819 detected a
Modbus error.  To reduce your coding effort, the SRQ and
Modbus error tests can be put into the command subroutines
in Module1.bas.

Next set the Modbus device address to match the address of
the actual Modbus device and send the C command with the
address value.  If you have only one device, you will not need
a text box to enter the address.  The 4809/4819/4899 defaults
to a value of 1 which should match the Watlow's F4 default
value.  If you have multiple Modbus devices, the cmdChgAddr
routine can serve as an address example.  In either case, the C
command and Modbus device address have to be sent to the
4809/4819/4899 before executing a read or write command.
You can skip this step if you use the default address of 1 or
have saved the Modbus address in the 4809/4819/4899's
memory with the *SAV 0 command.

The cmdRdModel or cmdSend routines show how to read or
write to a Modbus device register.  Be sure the 4809/4819/
4899's format is set correctly before executing the R or W
commands.  The recommendation is to put a format setting
command in the initialization procedure after reading the
unit's IDN message.  Read routines should provide a short
delay after sending the query (R? reg,n) before addressing the
4809, 4819 or 4899 to talk to give the Modbus device time to
receive the message and to respond to it.

WATLOW

1
2
3
4
5
6
7
.
.

25

ICS 4899
or 4809
GPIB to
Modbus

Controller

TXD
RXD

Gnd

115 VAC
115 VAC Ret
AC Chassis Gnd

IN  OUT

Crydom
Solid State
AC Relay

Lamp

Thermocouple

F4
Rear Panel
Terminals

Temperature
Chamber

1
2
3
.
.

12
13
14
15
16

42
43
44

59
60
61
62

1

2

3

4



8
ICS Electronics     7034 Commerce Circle, Pleasanton, CA 94588     Phone: (925) 416-1000     Fax: (925) 416-0105

When setting the Modbus timeout, check your Modbus device's
manual for its expected response times and set the timeout for
the worst case time plus 2 milliseconds per character in the
longest message packet.   Add a safety margin of 30 to 50
milliseconds.  The 4809/4819/4899s default to 100 millisec-
onds.  Some users have reported that 300 ms is a more reliable
timeout value for the Watlow F4 Controller as it occasionally
gets busy with an internal calibration routine.

The Set Static Setpoint and the Profile generating routines can
be incorporated directly into your test program.  The example
used the simple ON-OFF control option as it was the easiest
to implement with the lamp heat source.  However in a real
system, the user may want to use one of the more sophisti-
cated PID functions.

Acknowledgments and Copyrights
HP is a trademark of Hewlett-Packard Corporation, Palo Alto, CA
ICS is a trademark of Systems West Inc., Pleasanton, CA
NI is a trademark of National Instruments, Austin, Texas
Watlow is a trademark of Watlow Electric Manufacturing Company, Winona, MN

SUMMARY

This application note has shown how ICS's Model 4809, 4819
and 4899 GPIB-to-Modbus Controllers are used to control
Modbus slave devices over a serial link.  This note also
describes an example Visual Basic program that can be used
with a Watlow F4 to control process temperatures.  While
Watlow's new F4 series Process Controller was used as the
Modbus device to develop the program, most of the program
and its concepts should work with other Modbus devices.  The
example program can also be used as a starting point for the
user's own temperature control program.  The Visual Basic
source files and an executable copy of the program can be
downloaded from ICS's website at http://www.icselect.com
as a self exploding zip file.


