Application Note

ODT (On-Die Termination) function of QUADP/DDR-IIP SRAM

Introduction:

Signal integrity is critical for high speed applications. Electrical signals are reflected back when they reach the end of a transmission line. Those reflections cause noise, which adversely affects signal integrity. One way to reduce reflections is to properly terminate signals. On-die termination (ODT) is an effective signal termination scheme that embeds the termination resistors on the die.

Basic ODT Concept:

A basic ODT resistive termination scheme consists of a symmetrical pull-up and pull-down circuit between VDDQ and Vss, and the real termination values are calculated by a Thevenin-Equivalent, as depicted in Figure 1 below.

Figure 1. ODT interface between SRAM controller and QUADP/DDR-IIP

ODT Options of QUADP/DDR-IIP:

ISSI's QUADP and DDR-IIP products feature three types of resistive controls for the pull up and pull down termination, which allows an SRAM to turn on/off termination resistance for the pins that have ODT. The ODT pin can have three values: High, Low, or Floating, and each of these values allows for different ODT termination impedance (a certain percentage of RQ as seen in Figure 2). With DDR-IIP devices, which have a common I/O bus, ODT is automatically enabled during Writes to the SRAM and is disabled during SRAM Read operations. With QUADP devices, which have a separate I/O bus, ODT is always enabled during Writes and Reads to the SRAM. Each option is distinguished by the ISSI device top mark.

Example) 72M QUADP Products

IS61QDPB42M36A : No ODT IS61QDPB42M36A1 : ODT Option 1 IS61QDPB42M36A2 : ODT Option 2

	R1	R2	R3
Option1 ³	0.3x	0.6x	0.6x
	RQ ¹	RQ ²	RQ ²
Option2 ⁴	ODT	0.6x	ODT
	disable	RQ ²	disable

Figure 2. Functional representation of ODT

Notes

- 1. Allowable range of RQ to guarantee impedance matching to a tolerance of $\pm 20\%$ is 175Ω <RQ<350 Ω .
- 2. Allowable range of RQ to guarantee impedance matching to a tolerance of $\pm 20\%$ is 175Ω <RQ<250 Ω .
- 3. ODT control pin is connected to VDDQ through $3.5k\Omega$. Therefore it is recommended to connect it to VSS through less than 100Ω to make it low.
- 4. ODT control pin is connected to VSS through $3.5k\Omega$. Therefore it is recommended to connect it to VDDQ through less than 100Ω to make it high.

ODT PIN

1) ODT Pin in Option 1

ODT for K, K#, BWx#, and Ds in QUADP products are always ON.

ODT for DQs in common I/O device will be on and off depending on the status. Read commands turn ODT off as follows:

Off: First Read Command + Read Latency - 0.5 cycle

On: Last Read Command + Read Latency + BL/2 cycle + 0.5 cycle (See the timing chart below)

Example1) BL=2, RL(Read Latency=2.5)

Example2) BL=4, RL(Read Latency=2.5)

Example3) BL=2, RL(Read Latency=2.0)

2) ODT Pin in Option 2

The same ODT rules as option1 apply except for K and K# which are always OFF in Option 2.

ISSI QUADP and DDR-IIP ODT Options:

ODT Option	ODT Condition	ISSI Top Mark	Notes
ODT OFF	No ODT resistor	Α	
ODT Option1	RQ1x0.3(ODT=L)	A1	1
	RQ2x0.6(ODT=H)	A1	2
	RQ2x0.6(ODT=Floating)	A1	
ODT Option2	Disable(ODT=L)	A2	
	RQ2x0.6(ODT=H)	A2	2
	Disable(ODT=Floating)	A2	

- 1. RQ1 (Input Strong): ODT is forced to low input voltage and RQ Range is $175\Omega <$ RQ <350 Ω
- 2. RQ2 (Input Weak) : ODT is forced to high input voltage and RQ Range is $175\Omega < RQ < 250\Omega$