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ABSTRACT 

This publication addresses the generation of a musical score of percussive un-pitched instruments. A musical event 
is defined as the occurrence of a sound of a musical instrument. The presented method is restricted to events of 
percussive instruments without determinate pitch. Events are detected in the audio signal and classified into 
instrument classes, the temporal positions of the events are quantized on a tatum grid, musical meter is estimated 
and preparatory beats are identified. The identification of rhythmic patterns on basis of the frequency of their 
occurrence enables a robust identification of the tempo and gives valuable cues for the positioning of the bar lines 
using musical knowledge. 

1.  INTRODUCTION

Automatic transcription of music is a research topic of 
great interest with a number of different applications, 
e.g. the synchronization of light effects and music, tools 
for music education and meta-data extraction for music 
information retrieval. The analyzed musical material 
belongs to genres of popular music, but the presented 
method is not restricted to particular musical genres. In 
the following, transcription is defined as the generation 

of a musical score from listening to or analysis of a 
piece of music. The score should contain the rhythmic 
information (e.g. starting time and duration) and the 
pitch information of the notes with determinate pitch 
and the description of the played instruments. Although 
the estimation of other metrical information, namely the 
time signature, is not necessary for the automatic 
synthesis of the transcribed music, it is required for the 
generation of a valid musical score and for the 
reproduction by human performers. Therefore, an 
automatic transcription process can be separated into 
two tasks: the detection and classification of the musical 
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events (i.e. the notes), and the creation of a musical 
score from the detected notes. The latter requires the 
estimation of the metrical structure of the music, the 
quantization of the temporal positions of the detected 
notes in the score, the recognition of preparatory beats 
and determination of the position of the bar lines. In this 
work, the creation of a musical score for percussive 
instruments without determinate pitch from polyphonic 
musical audio signals is described. The detection and 
classification of the events is done with an Independent 
Subspace Analysis method. An event is defined as the 
occurrence of a note of a musical instrument. The audio 
signal is segmented into parts of a few segments length 
using a distance measure between short frames of the 
audio signal represented by a vector of low-level 
features. The tatum grid and higher metric levels are 
estimated from the segmented parts separately. It is 
assumed that the metric structure does not change 
within one segmented part of the audio signal. The 
detected events are aligned with the estimated tatum 
grid. This process corresponds to the well-known 
quantization function in common MIDI sequencer 
software programs for music production. The bar length 
is estimated from the quantized event list and recurring 
rhythmic patterns are identified. Knowledge of the 
rhythmic patterns is used for the correction of the 
estimated tempo and the identification of the position of 
the bar lines using musical expertise.  

As far as we are aware, no previous work exists on the 
generation of a musical score for percussive instruments 
from polyphonic audio signals. There are, however, 
numerous publications regarding the processing steps 
involved here: the detection and classification of 
musical events, the segmentation of the audio signal 
into similar regions and the estimation of the tatum grid 
and the metric structure of music. For an overview of 
research on the detection and classification it is referred 
to [1]. Other previous research of interest to his work is 
reviewed in Section 1.2. The transcription method is 
described in Section 2, experimental results are 
presented in section 3, and conclusions are drawn in 
Section 4. 

1.1. Definition of Musical Terms 

Since this publication deals with some culturally coined 
terms from the domain of music, a short explanation of 
the terms used herein is given. Two independent 
components of rhythmic organization exist: the 
grouping structure and the metrical structure [2]. A 
listener intuitively groups the events contained in a 

sound signal into distinct units such as motives, themes, 
and phrases. In parallel, he or she constructs a regular 
pattern of strong and weak beats to which he or she 
relates the actual musical sounds. Musical groups are 
heard in a hierarchical fashion, i.e. a motive appears as 
part of a theme, and a section containing several themes 
as part of a piece. The metrical structure of music is also 
ordered in a hierarchical manner. Meter can be defined 
as “the measurement of the number of pulses between 
more or less regularly recurring accents” [3] and exists 
only in the presence of pulse series. Here, a pulse is 
defined as one event of a series of equidistant identical 
stimuli. Different pulse series and meters occur on 
different hierarchic strata. The time spans between the 
pulses on the different rhythmic levels exhibit integer 
ratios for mono-rhythmic music. The pulse on the 
lowest level is the tatum [4]. The tatum may be 
established by the smallest time interval between two 
successive notes, but is in general best described by the 
pulse series that most highly coincidences with all note 
onsets. The pulse which determines the musical tempo 
is the beat. The integer ratio between the beat period 
and the tatum period is called micro-time [5]. Pulses at 
bar lines constitute a pulse series on a higher level. The 
number of beats per bar is specified by the nominator of 
the time signature. The denominator determines the 
temporal note value of the beat. The decision about the 
time signature is therefore crucial for the tempo 
estimation. 

1.2. Previous Work 

A large body of research is concerned with the temporal 
segmentation of audio signals. Different methods were 
proposed for the segmentation of speech and music, the 
segmentation into notes or phonemes and for the 
segmentation of musical audio signals into similar 
region. The latter task is of interest in our context. Foote 
proposed a method based on a measure of audio novelty 
[6]. Signal features are extracted from short successive 
frames in the spectral domain, and a similarity matrix is 
computed, comprising the distances between the feature 
vectors for each frame. A novelty measure is obtained 
by correlating the similarity matrix with a 
checkerboard-like kernel matrix. In [7], a segmentation 
method using Hidden Markov Models is presented. In a 
recent work [8], the audio signal is represented in a 
feature space by extracting low-level features of sliding 
windows of the signal. A matrix of similarity 
respectively dissimilarity measures is computed from 
the signal representation. A more discriminating 
representation is obtained by transforming the original 
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feature vectors using Linear Discriminant Analysis 
(LDA) [8]. The segmentation is obtained by clustering 
the feature vectors using Dynamic Programming.  

The estimation of the tatum is addressed in various 
publications. Gouyon et. al. [9] estimated the tatum 
period from previous detected note onsets. The most 
frequent inter-onset-interval (IOI) is detected in a 
histogram of IOI. The calculation of the IOI is not 
limited to successive onsets but rather to all pairs of 
onsets in a time frame. Tatum candidates are calculated 
as integer fractions of the most frequent IOI. The 
candidate is selected which best predicts the harmonic 
structure of the IOI histogram according to a two-way 
mismatch error function. The estimated tatum period is 
subsequently refined by calculating the error function 
between the comb grid derived from the tatum period 
and the onset times of the signal. Seppänen [10] 
proposed an IOI-based tatum estimation with a time-
varying histogram representation in order to 
accommodate slight tatum changes (e.g. accelerando 
and ritardando). The phase of the tatum grid is obtained 
by minimizing the average deviation between the note 
onsets and the tatum grid elements.  

The determination of musical meter from audio 
recordings is addressed in [11], [12] and [13]. Gouyon 
et. al. [11] investigated various low-level features and 
their application in an autocorrelation based processing 
for the determination of meter. Using a set of four 
descriptors, 95% of correct classifications were reached 
for the classification of the meter into one of the two 
classes “binary meter” and “ternary meter”. Klapuri [12] 
proposed a combined estimation of beat, meter and 
tatum. The approach presented there involves a 
decomposition of the signal energy into 36 bands using 
a Discrete Fourier Transform, from which the µ-law 
compressed power envelopes are calculated. The power 
envelopes were smoothed, differentiated and half-way 
rectified. The linear summation of adjacent bands yields 
four “registral accent signals”, which are fed into a bank 
of comb-filter resonators to estimate the strength of 
different pulse periods. A probabilistic model is applied 
for the interpretation of the detected periodicities. A 
previous experiment by Scheirer demonstrated that 
amplitude envelopes are a sufficient representation for 
rhythmic analysis [14]. In [13], the use of the 
autocorrelation function for the estimation of the meter 
from musical scores of single melodic lines is proposed. 

 An important prerequisite for the estimation of the 
musical meter from drum notes is a measure for the 

similarity between rhythmic pattern, since the 
perception of musical meter can be characterized as the 
detection of underlying periodicities [2], and some 
methods for the calculation of periodicities compare the 
signal to its shifted version. Rhythmic pattern can be 
represented by a matrix Tij with i=1…n and j=1…m, 
whereas n denotes the number of instruments and m is 
the number of tatum grid elements. The patterns are 
assumed to be quantized. The matrix T can be either a 
Boolean matrix, where events are marked by ones, or it 
may consist of the velocity or intensity values of the 
events. Distance measures for rhythmic patterns 
represented by Boolean matrices include the Hamming 
distance [15] and the interval vector distance [16]. The 
interval vector distance is obtained from the Euclidian 
distance between to patterns represented as vectors of 
IOI.  In [17], rhythmic patterns are represented as a 
“difference of rhythm vector”, a vector of ratios of IOI 
between consecutive notes. The distance measure 
between two patterns, named rhythm error, is defined as   
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Here, r and s denote the two patterns and n is the length 
of each pattern. 

2. METHOD

2.1. Detection and Classification of 
percussive events 

The detection and identification of percussive events is 
explained in detail in [1] and therefore only a short 
description of the applied method is given here. Events 
probably assigned to onsets of percussive instruments 
are detected using a suitable detection function derived 
from differential magnitude sum as well as phase 
congruency information of the musical signals 
spectrogram. Slices of the spectrogram are cut out at the 
note onset times and subjected to Non-negative 
Independent Component Analysis (NICA) [18]. The 
extracted independent frequency bases are furthermore 
regarded as spectral profiles of the contained 
instruments and their corresponding amplitude bases are 
interpreted as detection function for the occurrence of 
the events in time. Salient peaks in the amplitude 
envelopes near the onset-times are accepted as 
percussive events. A number of spectral and time-based 
features is used to eliminate spectral profiles stemming 
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from harmonic sustained sounds and to classify the 
percussive instruments. 

2.2. Segmentation 

The applied segmentation procedure for musical audio 
signals is based on a method initially proposed by Foote 
[6]. In our current implementation, the audio signal is 
divided into n adjacent frames of 30 milliseconds length 
each. The time signal is transformed into the frequency 
domain using the Fast Fourier Transform (FFT). A 
feature vector vi, i=1…n, is calculated for each frame, 
combining the Audio Spectrum Envelope (ASE), the 
Spectral Flatness Measure (SFM) and the Mel-
Frequency Cepstral Coefficients (MFCC) for a number 
of frequency bands. Subsequently, four adjacent feature 
vectors are grouped by averaging the feature values per 
frame.  

A similarity matrix S is constructed by calculating a 
distance measure between all pairs of feature vectors 
Dij=f(vi,vj), and arranging the distances so that the 
matrix element Sij corresponds to the distance Dij. From 
the variety of distance metrics, the Cosine Distance Dc 
was chosen.  

( )
ji

ji
c

vv

vv
jiD

⋅

⋅
=,       (2 ) 

From the similarity matrix, a novelty measure is 
computed by correlating S with checkerboard-like 
kernel matrix K along the diagonal.  
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The size of the kernel influences the width of the 
separated audio segments in a way that larger kernels 
average over short-time novelty and separate longer 
segments. The kernel size is enlarged by forming the 
Kronecker product of K with a quadratic matrix of ones 
and the edges are tapered with a Gaussian distribution. 
The novelty measure shows peaks at time points 
between segments. Because both S and K are symmetric 
matrices, only one half need to be computed. 
Furthermore, S is only computed for pairs of {vi,vj} with 

2/lij ≤− , where l denotes the size of K. The novelty 
measure is smoothed using an FIR-Low-Pass-Filter and 

segment boundaries are detected using an n-point 
running window method. 

2.3. Quantization of the detected events 

The detected events are quantized on the tatum grid. 
The tatum grid is estimated using the note onset times of 
the detected events together with note onset times 
derived by means of a conventional note onset detection 
method. The generation of the tatum grid on basis of the 
detected percussive events only fails than short section 
appear without any drums and therefore an additional 
note onset detection is applied here. 

2.3.1. Conventional note onset detection 

For the detection of note onsets, amplitude envelopes of 
19 frequency bands ranging from 44 Hz to 11276 Hz are 
extracted from the audio signal by means of a Short-
Time Fourier Transform (STFT). A window size of 
1024 samples with a hop size of 128 samples is chosen 
for input audio files with 44.1 kHz sampling frequency. 
The amplitude envelopes Ei are calculated by combining 
the amplitudes of the frequency bins belonging to one 
frequency band and smoothing the signal by means of 
convolution with a Hanning-window of 100 
milliseconds length. The relative difference function Di 
is computed from the amplitude envelopes Ei as 

))E(log(diffD ii =                    (4 ) 

where the operator diff is the difference function, log is 
the natural logarithm and i is the band index. Note 
onsets are detected by searching for maxima in the 
relative difference function of each frequency band 
above a static and an adaptive threshold. The adaptive 
threshold decays from a value which is set on the 
detection of a preceding note onset to half of its value 
after 200 milliseconds. It is furthermore required that Ei 
drops below a threshold between two subsequent note 
onsets that is computed as a function of the envelope 
values of the two peaks corresponding to the onset 
times. An arbitrary intensity value is calculated for each 
note onset as the maximum value of the difference 
function at the note onset time, and is subsequently 
weighted by the middle ear transfer function. The phase 
congruency information, calculated by summation of 
the phase, is applied to detect note onset times more 
accurately [19]. 



Uhle, Dittmar Generation of Musical Scores

Page 5 of 9 

2.3.2. Tatum Grid Estimation 

Two alternative approaches to the estimation of the 
tatum grid are compared. As a first approach, the tatum 
grid is estimated using a two-way mismatch procedure 
(TWM). Originally proposed for the fundamental 
frequency estimation [20], this method has also been 
applied before to the estimation of the tatum grid, as 
described in [9]. A series of trial values for the tatum 
period is derived from the histogram of IOI. Various 
authors suggest the calculation of IOI between all note 
onset times within a certain range rather than between 
adjacent notes only. The histogram of the IOI is 
generated and smoothed by means of an FIR-low-pass 
filter. Tatum candidates are obtained by dividing the IOI 
corresponding to peaks in the IOI-histogram by a set of 
values v={1, 2, 3, 4}. A raw estimate of the tatum period 
is derived from the IOI-histogram after applying the 
TWM. Subsequently, the phase of the tatum grid and a 
more exact estimate of the tatum period are computed 
by means of the TWM between the note onset times and 
several tatum grids with periods near the previously 
estimated tatum period. 

The second method refines and adjusts the tatum grid by 
computing the best match between the note onsets 
vector and the tatum grid utilizing the correlation 
coefficient Rxy between the note onset vector x and the 
tatum grid y. 
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To follow small tempo variations, the tatum grid is 
estimated for adjacent frames of 2.5 seconds length 
each. Transitions between the tatum grids of adjacent 
frames are smoothed by low-pass-filtering the IOI 
vector of the tatum grid points and reconstructing the 
tatum grid from the smoothed IOI vector. Subsequently, 
each event is assigned to its nearest grid position. The 
score can then be written as a matrix Tik, i=1…n and 
j=1…m, with n denoting the number of detected 
instruments and m equalling the number of tatum grid 
elements. The intensities of the detected events can be 
either adopted or discarded, yielding a Boolean matrix. 

2.4. Estimation of the time signature 

The quantized representation of percussive events 
delivers valuable information for the estimation of 
musical meter. The periodicity on the bar level is 
identified in two steps: calculation of a periodicity 
function and estimation of the bar length. 

Common periodicity functions are the autocorrelation 
function (ACF) and the average magnitude difference 
function (AMDF) as illustrated in equation (6) and (7) 
respectively, where x is the signal and τ denotes the lag. 
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The AMDF has been successful applied to the 
estimation of the fundamental frequency for musical 
and speech signals [21] and to the estimation of musical 
meter [22]. 

In the general case, a periodicity function measures the 
similarity i.e. dissimilarity between the signal and its 
time shifted version. Various similarity measures are 
reported in the literature [13], [16], [17]. The Hamming 
Distance (HD) is known from the information theory 
[15] and calculates the dissimilarity between two 
Boolean vectors b1 and b2 according to equation (8). 

( )21 bbsumHD ∨=          (8 ) 

An appropriate extension for the comparison of 
rhythmic patterns is different weighting of simultaneous 
hits and rests. The similarity B between two sections of 
the score T1 and T2 is than calculated by weighted 
summation of the Boolean operations 

212121 TTcTTbTTaB ∨⋅−¬∧¬⋅+∧⋅=      (9 )

where the weights a, b and c are initially set to a=1, 
b=0.5 and c=0. The similarity measure M is obtained by 
summation of the elements of B, as in equation (10).  
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This similarity measure resembles the Hamming 
distance in a sense that it considers the differences 
between matrix elements in a similar manner. In the 
following explanations, the distance measure derived 
from equation (10) is named modified Hamming 
distance (MHD). Additionally, the influence of distinct 
instruments can be controlled by means of a weighting 
vector vi, i=1…n, which can be set either using musical 
knowledge, e.g. assigning more importance to snare 
drums or to deep resonating instruments, or depending 
on the frequency and regularity of occurrence of the 
instruments. 
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Additionally, the similarity measures for Boolean 
matrices can be extended by weighting B with the mean 
value of T1 and T2 in order to incorporate the intensity 
values. Distances respectively dissimilarities are 
interpreted as negative similarities in the following 
evaluation. The periodicity function P=f(M, l) is 
obtained by calculating the similarity measure M 
between the score T and its shifted self by lag l. The 
time signature is estimated by comparing P to a number 
of metric models. The implemented metric models Q 
are constituted by a train of spikes at typical accent 
positions for different time signatures and micro-times. 
The best match between P and Q is obtained if the 
correlation coefficient assumes its maximum. In the 
current state of the system, 13 metric models for 7 
different time signatures are implemented. 

2.5. Detection of recurring patterns of the 
percussive events 

Recurring patterns are detected in order to detect the 
preparatory beats and to derive a robust tempo estimate 
by applying musical knowledge. For the detection of 
drum patterns, a score T’ is generated of the length of 
one bar b, by summation of the matrix elements T with 
similar metrical position, 

( )∑
=

−+=
p

k
bkjiTT

1
1,'    (12 ) 

where b denotes the estimated bar length and p the 
number of bars in T. In the following, T’ is named the 
score histogram. Drum patterns are obtained from the 
score histogram T’ by searching for score elements T’i,j  

with large histogram values. Patterns of a length of 
more than one bar are retrieved by means of repetition 
of the above described procedure for integer multiples 
of the measure length. The pattern length with the most 
hits relatively to the pattern length is chosen to derive 
the most representative pattern. 

2.6. Generation of the musical score 

The identified rhythmic patterns are interpreted using a 
set of rules derived from musical knowledge. In the 
current stage of the development, fairly simple concepts 
have been applied. Equidistant occurrences of single 
instruments are identified and evaluated with respect to 
the instrument class. This leads to identification of 
playing styles which occur frequently in popular music. 
One example is the very frequent use of snare drums or 
hand claps on the second and fourth beat in four-four 
time. This concept, named “backbeat”, serves as an 
indicator for the position of the bar lines. If the 
“backbeat”-pattern is present, the bar starts between 
snare strokes.  

Another cue for the positioning of the bar lines is the 
occurrence of kick drum events, which is represented by 
means of a histogram. It is assumed that the start of a 
musical measure is marked by the metric position where 
most kick drum notes occur. Although the applied ideas 
are simple, they are very powerful for the analysis of 
popular music. The generated musical scores are 
subsequently represented by a matrix similar to a “piano 
roll” representation. 

3. EXPERIMENTS AND RESULTS

An important prerequisite for a correct generation of a 
musical score and successful tempo and meter 
estimation is a correct quantization of the detected 
events on the tatum grid. In a first experiment, the tatum 
estimation methods are compared. The time signatures, 
tempos, micro-times and tatum periods from 161 
musical excerpts of 30 seconds length each are 
automatically estimated and compared to manually 
detected values. The results in terms of correct 
classifications of all rhythmic features and of the tatum 
period are illustrated in Table 1. The correct estimation 
of time signature, tempo and micro-time is valuable 
indicator for the performance of the estimation of the 
tatum grid. An item was correctly classified, if all 
rhythmic features together (time signature, tempo and 
micro-time) were estimated correctly. The results are 
presented separately for each of the 465 segments, and 
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for the most representative segment of each excerpt. 
The most representative segment is defined here as the 
segment with the largest temporal duration. Only 
segments were considered with a minimum duration of 
6 seconds. In the first experiment, the modified 
Hamming distance has been applied and the intensity 
values have not been considered for the periodicity 
calculation. There are two common errors in meter 
estimation process: the confusion of the correct tempo 
with its double or half value and the misinterpretation of 
ternary four-four time as six-eight time or vice versa, 
resulting in a wrong estimation of tempo and micro-time 
(whereas the length of the musical measure is estimated 
correctly). 

TWM CM 

correct 88.8% / 84.0% 81.3% / 73.9% 

tatum period 95.6% / 95.0% 92.3% / 91.3% 

Table 1: Results of the two-way mismatch procedure 
(TWM) and the correlation method (CM), for the most 
representative segment (left) and all segments (right) 

The estimation of the tatum grid is affected by timing 
deviations and erroneously detected events. The two- 
way mismatch procedure shows a more robust 
behaviour than the correlation method and is used in the 
following experiments. Although there is no large 
difference in the estimation of the tatum period, the 
results of the meter estimation indicate a better 
performance regarding the tatum tracking if the TWM is 
applied. 

 The influence of different similarity measures on the 
estimation of time signature, tempo and micro-time has 
been investigated with and without consideration of the 
intensity values of detected notes. The results are 
illustrated in Table 2. The presented values were 
obtained from the most representative segments. The 
best results were obtained using the modified Hamming 
distance without consideration of the intensity values. 
Wrong tempo estimates were caused by confusion with 
the double or half tempo of the correct tempo, or by 
confusion between binary and ternary micro-time, e.g. 
for pieces in six-eight time.  

MHD ACF AMDF

without 
intensities 

88.8% 88.2% 81.3% 

with 
intensities 

83.8% 84.4% 76.9% 

Table 2: Comparison of the performance of different 
similarity measures for the estimation of time-signature, 

tempo and micro-time 

The influence of segmentation on the analysis was 
examined by comparing the meter estimation results 
from the analysis with and without precedent 
segmentation. The results in terms of correct estimated 
rhythmic features and tatum periods are illustrated in 
Table 3. 

with
Segmentation 

without 
Segmentation 

correct 88.8% 75.7%

tatum period 95.6% 89.1% 

Table 3: Experimental results of the investigation on 
the influence of precedent segmentation 

In a third experiment, the scores from 40 musical 
excerpts of 30 seconds duration were generated and 
manually evaluated. Only excerpts with correct 
estimation of tatum period, tempo, and time signature 
have been considered. The evaluation has been carried 
out in an audio-visual manner, where errors in the 
generated score were detected by comparing the 
visualized and synthesized score to the original audio 
signal. The error types in this experiment are an 
insertion or a miss of tatum grid elements and a wrong 
positioning of the bar lines. Insertions or misses 
occurred 3 times and were mainly located at segment 
boundaries. The positioning of the bar lines failed in 5 
cases. The error occurred if no rhythmic patterns were 
detected. The assumption, that the start of a measure is 
marked by the metric position with most occurrences of 
kick drum events is not appropriate in many cases. 
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Some problems occurred in the analysis of the musical 
items. Although the applied segmentation procedure 
does successful identify segment boundaries of the 
musical signal, variations of rhythmic pattern occur 
within segments and lead to errors in their recognition. 
The tempo was estimated falsely as half of the correct 
tempo due to misinterpreted back-beat patterns played 
by the kick drum, e.g. in reggae music. A confusion of 
the tempo value with the double or half occurred 
frequently in cases where no patterns were identified. 

4. CONCLUSIONS AND FUTURE WORK

A system has been presented for the generation of 
musical scores of percussive instruments from 
automatically detected events. This process involves the 
analysis of the audio signal with respect to its rhythmic 
structure. A number of interesting conclusions have 
been obtained from experimental results. Musical 
knowledge can be applied if the occurring musical 
instruments in the signal are previously known. This 
increases the performance of the estimation of the 
rhythmic features under consideration. The precedent 
segmentation is advantageous for the analysis of 
musical items. The presented methods works well in 
many cases, but it fails if the drums play very 
expressive. The estimation of recurring patterns enables 
a robust analysis even if the automatic detection of the 
events is not reliable, e.g. if the analyzed signal features 
low audio quality or quiet percussive sounds. A crucial 
point in the analysis is the estimation of the tatum grid, 
especially if the model of equidistant pulses is not 
appropriate. The consideration of the intensity values of 
the detected events leads to degradation of the 
performance. There is some room for improvements. 
The training of various other patterns would probably 
increase the performance of the method regarding the 
estimation of tempo and measure length and positioning 
of the bar lines. An additional segmentation procedure 
considering the detected events would yield 
improvements in the recognition of the rhythmic 
patterns. 
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