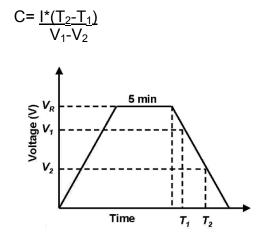


Supercapacitor technical guide

Capacitance

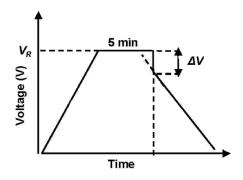

Charge method

Test condition Capacitor voltage less than .05V Ambient temperature 25° C T₁= time to reach 63.2% of the applied voltage.

Discharge method

- 1. Constant current charging 10mA/F to rated voltage.
- 2. Constant voltage applied for 5 minutes.
- 3. Constant current discharge at 10mA/F down to 0.1V

Where


C= capacitance in Farads I = discharge current V= rated voltage V₁= 80% or rated voltage V₂= 40% of rated voltage T₁= starting time of test T₂= time to reach V₂

ESR_{AC}

Measured using 4-probe impedance analyzer under the following conditions Condition: Potentiostat mode AC amplitude: 5mV Frequency: 1 kHz, +/-100 Hz

ESR_{DC}

Constant current charging to rated voltage Hold part at rated voltage for 5 minutes Constant current discharge to 0.1V

Where R_d is the ESR_{DC} in Ohms ΔV is the voltage drop after 10mS I= discharge current

Leakage current

Charge capacitor to rated voltage at 25°C thru a 1k Ohm resistor Leakage current is measured after specified amount of time for the part being tested.

Maximum current

Current needed for a 1 second discharge from the rated voltage to ¹/₂ rated voltage

 $\label{eq:lmax} \begin{array}{l} \mbox{Imax} = \frac{1/2V_r}{t/C + R_d} & \mbox{or} \quad \mbox{Cxdv/dt} = \mbox{Cx}(0.5V_r/1) = 0.5x \mbox{CxV}_r \end{array}$

Where t= discharge time (1 second) C= capacitance in farads R_d= ESR_{DC} Vr= rated voltage

Maximum stored energy

Emax= $\frac{1}{2}$ CV² (Joules or watt –seconds)

or $Emax = \frac{1/2 CV^2}{3600}$ (Wh)

Gravimetric Specific energy

(Wh/kg) = <u>Emax</u> Weight (kilograms)

Specific Power

V²/ (4*ESR_{DC} *Weight or volume)

Short Circuit Current

 $I_{sc}=V_r/ESR_{dc}$

