
Tutorial 2: Complex FIR on EDK 10.1i 1

© 2003-2009 Impulse Accelerated Technologies

1 Tutorial 2: Complex FIR on EDK 10.1i

Overview

This detailed tutorial will demonstrate how to use Impulse C to create, compile and optimize a digital
signal processing (DSP) example for the MicroBlaze platform. We will also show how to make use of
the Fast Simplex Link (FSL) bus provided in the MicroBlaze platform.

The goal of this application will be to compile the algorithm (a Complex FIR Filter function) on
hardware on the FPGA. The MicroBlaze will be used to run test code (producer and consumer
processes) that will pass text data into the algorithm and accept the results.

This example makes use of the Xilinx Virtex-5 ML501 Evaluation Platform. The board features is a
Virtex-5 FPGA with a MicroBlaze soft processor. This tutorial also assumes you are using the Xilinx
EDK 10.1i (or later) development tools.

This tutorial will require approximately two hours to complete, including software run times.

Note: this tutorial is based on a sample DSP application developed by Bruce Karsten of Xilinx, Inc. A
more complete description of the algorithm can be found in the Impulse C User Guide. This tutorial
assumes that you have are familiar with the basic steps involved in using the Xilinx EDK tools. For
brevity this tutorial will omit some EDK details that are covered in introductory EDK and Impulse C
tutorials.

Note also that most of the detailed steps in this tutorial only need to be performed once, during the
initial creation of your MicroBlaze application. Subsequent changes to the application do not require
repeating these steps.

Steps

Loading the Complex FIR Application
Understanding the Complex FIR Application
Compiling the Application for Simulation
Building the Application for the Target Platform
Creating the Platform Using the Xilinx Tools
Configuring the New Platform
Exporting Files from CoDeveloper
Importing the Generated Hardware
Generating the FPGA Bitmap
Importing the Application Software
Running the Application

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze2

© 2003-2009 Impulse Accelerated Technologies

1.1 Loading the Complex FIR Application

Complex FIR Filter Tutorial for MicroBlaze, Step 1

To begin, start the CoDeveloper Application Manager by selecting from the Windows Start ->
Programs -> Impulse Accelerated Technologies -> CoDeveloper Application Manager program
group.

Note: this tutorial assumes that you have already read and understand the Complex FIR Filter
example and tutorial presented in the main CoDeveloper help file.

Open the Xilinx MicroBlaze ComplexFIR sample project by selecting Open Project from the File
menu, or by clicking the Open Project toolbar button. Navigate to the
.\ExamplesV3\Embedded\ComplexFIR_MicroBlaze\ directory within your CoDeveloper installation.
(You may wish to copy this example to an alternate directory before beginning.) The project file is also
available online at http://impulsec.com/ReadyToRun/. Opening the project will result in the display of a
window similar to the following:

Files included in the Complex FIR Filter project include:

Source files ComplexFilter.c, Filter_hw.c and Filter_sw.c - These source files represent the
complete application, including the main() function, consumer and producer software processes and
a single hardware process.

Header files ComplexFilter.h and Filter.h - function prototypes and definitions.

See Also

http://impulsec.com/ReadyToRun/

Tutorial 2: Complex FIR on EDK 10.1i 3

© 2003-2009 Impulse Accelerated Technologies

Understanding the Complex FIR Application

1.2 Understanding the Complex FIR Application

Complex FIR Filter Tutorial for MicroBlaze, Step 2

Before compiling the Complex FIR Filter application to hardware, let's first take a moment to
understand its basic operation and the contents of the its primary source files, and in particular
Filter_hw.c.

The specific process that we will be compiling to hardware is represented by the following function
(located in Filter_hw.c):

void complex_fir(co_stream filter_in, co_stream filter_out)

This function reads two types of data:

· Filter coefficients used in the Complex FIR Filter convolution algorithm.

· An incoming data stream

The results of the convolution are written by the process to the stream filter_out.

The complex_fir function begins by reading the coefficients from the filter_in stream and storing the
resulting data into a local array (coef_mem). The function then reads and begins processing the data,
one at a time. Results are written to the output stream filter_out.

The repetitive operations described in the complex_fir function are complex convolution algorithm.

The complete test application includes test routines (including main) that run on the MicroBlaze
processor, generating test data and verifying the results against the legacy C algorithm from which
complex_fir was adapted.

The configuration that ties these modules together appears toward the end of the Filter_hw.c file, and
reads as follows:

void config_filt (void *arg) {
int i;

co_stream to_filt, from_filt;
co_process cpu_proc, filter_proc;

to_filt = co_stream_create ("to_filt", INT_TYPE(32), 4);
from_filt = co_stream_create ("from_filt", INT_TYPE(32), 4);

cpu_proc = co_process_create ("cpu_proc", (co_function)
call_accelerator, 2, to_filt, from_filt);

filter_proc = co_process_create ("filter_proc", (co_function)
complex_fir, 2, to_filt, from_filt);

co_process_config (filter_proc, co_loc, "PE0");
}

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze4

© 2003-2009 Impulse Accelerated Technologies

As in the Hello World example (described in the main CoDeveloper help file), this configuration
function describes the connectivity between instances of each previously defined process.

Only one process in this example (filter_proc) will be mapped onto hardware and compiled by the
Impulse C compiler. This process (filter_proc) is flagged as a hardware process through the use of
the co_process_config function, which appears here at the last statement in the configuration
function. Co_process_config instructs the compiler to generate hardware for complex_fir (or more
accurately, the instance of complex_fir that has been declared here as filter_proc).

The ComplexFilter.c generates a set of Complex FIR Filter coefficients and also a group of input
data being processed.

The Filter_sw.c will run in the MicroBlaze embedded processor, controlling the stream flow and
printing results.

See Also

Compiling the Application for Simulation

1.3 Compiling the Application for Simulation

Complex FIR Filter Tutorial for MicroBlaze, Step 3

Simulation allows you to verify the correct operation and functional behavior of your algorithm before
attempting to generate hardware for the FPGA. When using Impulse C, simulation simply refers to the
process of compiling your C code to the desktop (host) development system using a standard C
compiler, in this case the GCC compiler included with the Impulse CoDeveloper tools.

To compile and simulate the application for the purpose of functional verification:

1. Select Project -> Build Software Simulation Executable (or click the Build Software
Simulation Executable button) to build the FIR_Accelerator.exe executable. A command
window will open, displaying the compile and link messages as shown below:

2. You now have a Windows executable representing the Complex FIR Filter application
implemented as a desktop (console) software application. Run this executable by selecting
Project -> Launch Simulation Executable. A command window will open and the simulation
executable will run as shown below:

Tutorial 2: Complex FIR on EDK 10.1i 5

© 2003-2009 Impulse Accelerated Technologies

Verify that the simulation produces the output shown. Note that although the messages indicate that
the ComplexFIR algorithm is running on the FPGA, the application (represented by hardware and
software processes) is actually running entirely in software as a compiled, native Windows executable.
The messages you will see have been generated as a result of instrumenting the application with
simple printf statements such as the following:

#if defined(MICROBLAZE)
 xil_printf ("COMPLETE APPLICATION\r\n");
 return 0;
#else
 printf ("COMPLETE APPLICATION\r\n");
 printf ("Press Enter to continue...\r\n");
 c = getc(stdin);
#endif

Notice in the above C source code that #ifdef statements have been used to allow the software side of
the application to be compiled either for the embedded MicroBlaze processor, or to the host
development system for simulation purposes.

See Also

Building the Application for the Target Platform

1.4 Building the Application for the Target Platform

Complex FIR Filter Tutorial for MicroBlaze, Step 4

The next step in the tutorial is to create FPGA hardware and related files from the C code found in the
Filter_hw.c source file. This requires that we select a platform target, specify any needed options, and
initiate the hardware compilation process.

Specifying the Platform Support Package

To specify a platform target, open the Generate tab of the Options dialog as shown below:

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze6

© 2003-2009 Impulse Accelerated Technologies

Specify Xilinx MicroBlaze FSL (VHDL). Also specify hw and sw for the hardware and software
directories as shown, and specify EDK for the hardware and software export directories. Also ensure
that the Generate dual clocks option is checked.

Click OK to save the options and exit the dialog.

Generate HDL for the Hardware Process

To generate hardware in the form of HDL files, and to generate the associated software interfaces and
library files, select Generate HDL from the Project menu, or select the Generate HDL toolbar button
as shown below:

Tutorial 2: Complex FIR on EDK 10.1i 7

© 2003-2009 Impulse Accelerated Technologies

A series of processing steps will run in a command window as shown below:

Note: the processing of this example may require a few minutes to complete, depending on the
performance of your system.

When processing has completed you will have a number of resulting files created in the hw and sw
subdirectories of your project directory.

See Also

Exporting Files from CoDeveloper

1.5 Exporting Files from CoDeveloper

Complex FIR Filter Tutorial for MicroBlaze, Step 5

Recall that in Step 4 you specified the directory EDK as the export target for hardware and software.
These export directories specify where the generated hardware and software processes are to be
copied when the Export Software and Export Hardware features of CoDeveloper are invoked.
Within these target directories (in this case EDK), the specific destination (which may be a subdirectory
under EDK) for each file previously generated is determined from the Platform Support Package
architecture library files. It is therefore important that the correct Platform Support Package (in this
case Xilinx MicroBlaze FSL) is selected prior to starting the export process.

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze8

© 2003-2009 Impulse Accelerated Technologies

To export the files from the build directories (in this case hw and sw) to the export directories (in this
case the EDK directory), select Project -> Export Generated Hardware (HDL) and Project -> Export
Generated Software, or select the Export Generated Hardware and Export Generated Software
buttons from the toolbar.

Export the Hardware Files

Export the Software Files

Note: you must select BOTH Export Software and Export Hardware before going onto the next step.

You have now exported all necessary files from CoDeveloper to the Xilinx tools environment.

See Also

Creating the Platform Using the Xilinx Tools

Tutorial 2: Complex FIR on EDK 10.1i 9

© 2003-2009 Impulse Accelerated Technologies

1.6 Creating a Platform Using Xilinx Tools

Complex FIR Filter Tutorial for MicroBlaze, Step 6

As you learned in the previous Hello World tutorial, CoDeveloper creates a number of hardware and
software-related output files that must all be used to create a complete hardware/software application
on the target platform (in this case a Xilinx FPGA with an embedded MicroBlaze processor). This
section will walk you through the file export/import process for this example, using the EDK System
Builder (Platform Studio) project.

Creating a New Xilinx Platform Studio Project

Now we'll move into the Xilinx tool environment. Begin by launching Xilinx Platform Studio (from the
Windows Start ->Xilinx ISE Design Suite 10.1 -> EDK -> Xilinx Platform Studio) and creating a
new project. The Xilinx Platform Studio dialog appears as shown below:

Select the Base System Builder wizard (recommended), and click OK.

Next, in the Create New XPS Project Using BSB Wizard dialog, click Browse and navigate to the
directory you created for your Xilinx EDK project files. For this tutorial we choose the directory name
EDK , which is also the directory name we specified earlier in the Generate Options dialog. Click
Open to create a project file called system.xmp (you can specify a different project name if desired):

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze10

© 2003-2009 Impulse Accelerated Technologies

Now click OK in the Create New XPS Project Using BSB Wizard dialog. The Base System Builder -
Welcome page will appear. Select I would like to create a new design (the default), then click Next
to choose your target board.

Choose your development board from the dropdown boxes. This example will use the following board
(you should choose the reference board you have available for this step):

 Board Vendor: Xilinx
 Board Name: Virtex-5 ML501 Evaluation Platform
 Board Revision: 1

Click Next to continue with the Base System Builder wizard. In the next wizard page, make sure that
MicroBlaze is selected as the processor:

Click Next to continue with the Base System Builder wizard.

Note: the Base System Builder options that follow may be different depending on the development
board you are using.

The next steps will demonstrate how to configure the MicroBlaze processor and create the necessary
I/O interfaces for our sample application.

Tutorial 2: Complex FIR on EDK 10.1i 11

© 2003-2009 Impulse Accelerated Technologies

See Also

Configuring the New Platform

1.7 Configuring the New Platform

Complex FIR Filter Tutorial for MicroBlaze, Step 7

Now that you have created a basic MicroBlaze project in the Base System Builder wizard, you will
need to specify additional information about your platform in order to support the requirements of your
software/hardware application. Continuing with the steps provided in the Base System Builder wizard,
specify the following information in the Configure processor page, making sure to increase the local
data and instruction memory as shown:

System Wide Setting
Reference Clock Frequency: 100 MHz
Processor-Bus Clock Frequency: 100 MHz

Processor Configuration
On-chip H/W debug module (default setting)
Local memory - Data and Instruction : 8 KB
Cache setup: Enable

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze12

© 2003-2009 Impulse Accelerated Technologies

Click Next to continue with the wizard. You will now be presented with a series of pages specifying the
I/O peripherals to be included with your processor. (The actual layout of these pages will depend on
your screen resolution.) Select one RS232 device peripheral by setting the following options:

 I/O Device: RS232_Uart
 Peripheral: XPS UARTLITE
 Baudrate: 9600
 Data Bits: 8
 Parity: NONE
 Use Interrupt: disabled

Disable all the I/O interfaces on the 2nd page:

Tutorial 2: Complex FIR on EDK 10.1i 13

© 2003-2009 Impulse Accelerated Technologies

Click Next to continue. On the 3rd page, disable all the I/O interfaces except the DDR2_SDRAM:

 I/O Device: DDR2_SDRAM
 Peripheral: MPMC

Click Next. In the Add Internal Peripherals page, click the Add Peripheral and select the
XPS_TIMER peripheral as shown below:

Choose to use only one timer, and no interrupt.

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze14

© 2003-2009 Impulse Accelerated Technologies

Choose the cache settings as follows:

On the Software Setup dialog that appears, unselect both the Memory test option and the Peripheral
selftest option :

Click Next to continue.

You have now configured the platform and processor features. The Base System Builder wizard
displays a summary of the system you have created:

Click Generate to generate the system and project files, then click Finish to close the wizard.

The System Assembly View of the Platform Studio should look like this:

See Also

Tutorial 2: Complex FIR on EDK 10.1i 15

© 2003-2009 Impulse Accelerated Technologies

Importing the Generated Hardware

1.8 Importing the Generated Hardware

Complex FIR Filter Tutorial for MicroBlaze, Step 8

You will now create the target platform in the Xilinx Platform Studio. This procedure is somewhat
lengthy but will only need to be done once for any new project.

Adding the ComplexFIR Hardware IP Core

Next, add the module representing the ComplexFIR Filter hardware process to your development
system. Select the Project Local pcores -> USER in the IP Catalog tab on the left. Right-click
fsl_filt and select Add IP as shown.

The fsl_filt module will appear in the list of peripherals in the System Assembly View on the right.

Adding FSL Busses

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze16

© 2003-2009 Impulse Accelerated Technologies

Next you will need to set some parameters related to this hardware process, setting up the
communication with the FSL bus. In the IP Catalog tab, select the Fast Simplex Link (FSL) Bus IP
core. Right-click it and select Add IP as shown:

This will need to be done two times, because we will need two Fast Simplex Links to connect the
MicroBlaze processor and fsl_filt core together. When you have added two of the FSL cores, your
project should look like this:

Making FSL Connections

The microblaze_0 module needs to be configured in order to link to two FSL links. Right-click on
microblaze_0 and select Configure IP as shown:

Go to the Bus Interfaces tab and change Number of FSL Links to 2 as shown:

Tutorial 2: Complex FIR on EDK 10.1i 17

© 2003-2009 Impulse Accelerated Technologies

Click OK. Now we just need to connect the microblaze_0 to the fsl_filt_0 with the two new FSL links.

The following connections should be made:

microblaze_0 MFSL0 connects to fsl_v20_0, and then to fsl_filt_0 SFSL0.
microblaze_0 SFSL1 connects to fsl_v20_1, and then to fsl_filt_0 MFSL1.

Expand the microblaze_0 and the fsl_filt_0 modules. Make connections by clicking the boxes as
indicated in the two red circles shown below:

Connecting Clock and Reset Ports

Next, you need to configure the clock and reset signals for each FSL IP Core. Click on the Ports filter
in the System Assembly View and expand fsl_v20_0 and fsl_v20_1 modules. For each FSL bus, set
FSL_Clk to sys_clk_s and set SYS_Rst to sys_bus_reset as shown:

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze18

© 2003-2009 Impulse Accelerated Technologies

Configuring the Clock

The ComplexFIR hardware requires a different clock source. For this purpose, we configure the
clock_generator_0 by selecting the Configure IP as shown below:

The Clock Generator dialog appears. We add a new clock output CLKOUT3 named pcore_co_clk.
The frequency is set to be 50,000,000 Hz, which is half of the 100,000,000 Hz system bus frequency.
Make sure the Buffered value is TRUE.

Click OK to exit the Clock Generator dialog.

Select the Ports filter in the System Assembly View and expand fsl_filt_0. This should reveal ports
co_clk and FSL_Rst. The co_clk has to be connected to the pcore_co_clk clock that we configured
in the previous steps. The FSL_Rst should be tied to sys_bus_reset.

Note: if co_clk is missing from the fsl_filt_0 section, then will need to return to step 4 of this tutorial
and specify the Dual Clock option in the CoDeveloper Generate Options page.

Specify the Addresses

Now you will need to set the addresses for each of the peripherals specified for the platform. This can
be done simply by selecting the Addresses tab and clicking on the Generate Addresses button. The
addresses will be assigned for you automatically:

Tutorial 2: Complex FIR on EDK 10.1i 19

© 2003-2009 Impulse Accelerated Technologies

You have now exported all necessary hardware files from CoDeveloper to the Xilinx tools
environment and have configured your new platform. The next step will be to generate FPGA
bitstream.

See Also

Generating the FPGA Bitmap

1.9 Generating the FPGA Bitmap

Complex FIR Filter Tutorial for MicroBlaze, Step 9

At this point, if you have followed the tutorial steps carefully you have successfully:

· Generated hardware and software files from the CoDeveloper environment.

· Created a new Xilinx Platform Studio project and created a new MicroBlaze-based platform.

· Imported your CoDeveloper-generated files to the Xilinx Platform Studio environment.

· Connected and configured the Impulse C hardware process to the MicroBlaze processor via the
FSL bus.

You are now ready to generate the bitmap.

First, from within Platform Studio select the menu item Hardware -> Generate Bitstream:

Note: this process may require 10 minutes or more to complete, depending on the speed and memory
size of your development system.

After the bitstream is generated, the Output Console Window displays the following message:

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze20

© 2003-2009 Impulse Accelerated Technologies

Now we can move on to add software application.

See Also

Importing the Application Software

1.10 Importing the Application Software

Complex FIR Filter Tutorial for MicroBlaze, Step 10

You will now import the relevant software source files to your new Xilinx Platform Studio project.

On the Applications tab of the Project Information Area, create a new software project by double-
clicking Add Software Application Project...

Type in the project name: ComplexFIR.

Click OK to exit.

Tutorial 2: Complex FIR on EDK 10.1i 21

© 2003-2009 Impulse Accelerated Technologies

A new project ComplexFIR is added to the project list. Right-click Sources under Project:
ComplexFIR and select Add Existing Files. A file selection dialog appears. Enter the code directory,
and select all the C files are shown below:

Click Open to add the source files shown to your project. These files comprise the software application
that will run on the MicroBlaze CPU.

Next, right-click Headers and select Add Existing Files. A file selection dialog appears. Enter the
code directory and select all three header files shown below. Click Open to add the files shown to your
project.

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze22

© 2003-2009 Impulse Accelerated Technologies

After you are done with adding files to the ComplexFIR project, right-click Project: ComplexFIR and
select Build Project.

You will now see the following messages in the Console Window Output:

From this, we can see that the size of the generated ELF file is larger than the BRAM size of 8KB.
Therefore, we need to put this application on the external DDR2_SDRAM for execution.

To do this, first we select Generate Linker Script option from the Project: ComplexFIR menu:

The Generate Linker Script interface appears. Configure all the section memory in the Sections
View field as DDR2_SDRAM as shown.

In the Heap and Stack View, change heap and stack size to 0x4000 bytes, and change the heap
and stack memory to DDR2_SDRAM as shown.

Click OK to generate the linker script.

Now you will need to rebuild the project to reflect the changes in section mapping.

Tutorial 2: Complex FIR on EDK 10.1i 23

© 2003-2009 Impulse Accelerated Technologies

Make sure that the Default: microblaze_0_bootloop project is the BRAM initialization application, as
shown in the above picture. Other applications are marked with a red cross. This will let the bootloop
reside in the BRAMs in the initialization process.

Next, run the Update Bitstream to initialize the BRAMs from the XPS menu as shown below:

Download the bitstream to the device by selecting Device Configuration -> Download Bitstream.

Next, you will run the application from XMD.

See Also

Running the Application

1.11 Running the Application

Complex FIR Filter Tutorial for MicroBlaze, Step 11

Setting up Terminal Window and Connecting Cables

Open Tera Term or Windows HyperTerminal. Use the same communication settings you chose
when defining the peripheral in Base System Builder (9600 baud, 8-N-1). Turn off flow control, if
available.

Impulse ComplexFIR Filter Tutorial for Xilinx ML401 MicroBlaze24

© 2003-2009 Impulse Accelerated Technologies

Connect the serial port of your development machine to the RS232 interface on your development
board. Make sure the download (JTAG) cables are connected on the development board. Also ensure
that the board is configured to be programmed. Turn on the power to the board.

Running Application from XMD

Now let's run the application on the development board.

Select menu Debug -> Launch XMD...

An XMD Debug Options dialogue will come up for the first time opening XMD. Just click OK to
continue.

A Cygwin bash shell will come up. It runs a script, connecting to the MicroBlaze processor and the
debugger inside the FPGA. We can learn the base address of the DDR2_SDRAM is 0x90000000.

Now we can download the ComplexFIR project ELF file to the target board using XMD command dow
as shown below.

dow ComplexFIR/executable.elf
con

Now watch Tera Term window again. You should see the messages generated by the software
process indicating that the test data has been successfully filtered. The execution with hardware
acceleration is 39 times faster than software only running on MicroBlaze microprocessor.

Tutorial 2: Complex FIR on EDK 10.1i 25

© 2003-2009 Impulse Accelerated Technologies

Congratulations! You have successfully completed this tutorial and run the generated hardware on the
development board.

See Also

Tutorial 2: Complex FIR on EDK 10.1i

	Tutorial 2: Complex FIR on EDK 10.1i
	Loading the Complex FIR Application
	Understanding the Complex FIR Application
	Compiling the Application for Simulation
	Building the Application for the Target Platform
	Exporting Files from CoDeveloper
	Creating a Platform Using Xilinx Tools
	Configuring the New Platform
	Importing the Generated Hardware
	Generating the FPGA Bitmap
	Importing the Application Software
	Running the Application

