
by Paula J. Pingree
Senior Engineer
Jet Propulsion Laboratory, California Institute of Technology
paula.j.pingree@jpl.nasa.gov

Lucas J. Scharenbroich
Staff Engineer
Jet Propulsion Laboratory, California Institute of Technology
lucas.j.scharenbroich@jpl.nasa.gov

Thomas A. Werne
Associate Engineer
Jet Propulsion Laboratory, California Institute of Technology
thomas.a.werne@jpl.nasa.gov

David Pellerin
CTO
Impulse Accelerated Technologies
david.pellerin@impulsec.com

Fast and accurate on-board classification of
image data is a critical part of modern satel-
lite image processing. For Earth sciences
and other applications, space-based smart
payloads make use of intelligent, machine-
learning algorithms and instrument auton-
omy to detect and identify natural
phenomena such as flooding, volcanic
eruptions, and sea ice break-up.

22 Xcell Journal Second Quarter 2008

Developing FPGA Coprocessors
for Performance-Accelerated
Spacecraft Image Processing
C-to-FPGA design techniques speed development of space-based imaging applications.

Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.EMBEDDED AP P L ICAT IONS

Copyright © 2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

The Jet Propulsion Laboratory (JPL), a
National Aeronautics and Space
Administration (NASA) laboratory, has
developed support vector machine (SVM)
classification algorithms used on board
spacecrafts to identify high-priority image
data for downlinking to Earth. These
algorithms also provide onboard data
analysis to enable rapid reaction to
dynamic events (Figure 1). These onboard
classifiers help reduce the amount of data
downloaded to Earth, greatly increasing
the science return of the instrument.

SVM classification algorithms are flying
today, using computational platforms such
as the RAD6000 and Mongoose V proces-
sors. These legacy processors have only lim-
ited computing power, extremely limited
active storage capabilities, and are no longer
considered state-of-the-art. For this reason,
onboard classification has been limited to
only the simplest functions running on only
a subset of the full instrument data: for
example, only 11 of 242 bands in the case
of the Hyperion instrument on the Earth
Observing-1 (EO-1) satellite.

FPGA coprocessors are an ideal candi-
date for these algorithms. FPGAs can pro-
vide significant improvement in onboard
classification capability and accuracy when
compared to the legacy processing plat-
forms now flying.

To evaluate the effectiveness of FPGAs
for SVM algorithms, we implemented a
legacy snow-water-ice-land (SWIL) classi-
fier, originally developed for the
Hyperion instrument, on the Xilinx®

Virtex™-4 FX60 FPGA. To develop the
application more quickly, we took advan-
tage of the Impulse C-to-FPGA compiler
tools provided by Impulse Accelerated
Technologies. These tools support the
rapid development of highly parallel
hardware algorithms and applications.

This article describes our approach to
implementing the Hyperion linear SVM on
the Virtex-4 FX60 FPGA, as well as addi-
tional experiments that we performed using
an increased number of data bands and a
more sophisticated SVM kernel. These
experiments show the potential for more
efficient, higher performance onboard classi-
fication using FPGA-embedded algorithms.

power and lower cost than general-purpose,
single-board computers (SBCs). FPGA plat-
forms offer breakthrough performance over
radiation-hardened SBCs, leading to entire-
ly new architectures for smart payloads.

To evaluate the potential for accelera-
tion using FPGAs, we selected the Xilinx
ML410 evaluation platform for develop-
ment and demonstration of selected smart
payload concepts. The Xilinx ML410 eval-
uation board comes equipped with a
Virtex-4 FX60 FPGA that features two
embedded PowerPC 405 processors and a
large amount of available FPGA logic.

The specific algorithm we chose for our
investigations is the SVM classification
algorithm. Algorithms of this type have
found broad application in general machine
learning and classification tasks, as well as
for onboard remote sensing. An SVM is a
maximum margin classifier that calculates a
separating hyperplane between two labeled
classes such that the distance to the nearest
data in each class is maximized (Figure 2).
By selecting such a maximum margin
hyperplane, the SVM classifier can exhibit
better generalization to new data than other
linear classification methods.

The goal of training a support vector
machine is to learn a set of weights such
that the sign of a weighted sum of dot
products between the training data, xi, and
a test vector – t – will correctly predict the
class of the new data vector.

SVMs also incorporate what is known
as the kernel trick, a method allowing them
to be extended from purely linear to non-
linear classifiers. This method involves for-
mulating the training and testing
algorithms in terms of dot products and
then replacing the dot products with a ker-
nel function that represents a dot product
after passing the arguments through some
non-linear function. The kernel function
permits the high-, or even infinite-dimen-
sional, dot products in the non-linear space
to be computed using terms from the orig-
inal, low-dimensional space.

SVMs are well suited to onboard
autonomy applications. The property that
makes SVMs particularly applicable is the
asymmetry of computational effort in the
training and testing stages of the algo-

FPGAs for Onboard Computation
Onboard computation has become a sig-
nificant bottleneck for advanced, space-
based scientific and engineering
applications. Currently available spacecraft
processors have high power consumption,
are expensive, require additional interface
boards, and are limited in their computa-
tional capabilities.

Recently developed hybrid FPGAs, such
as the Xilinx Virtex-4 FX device, offer the
versatility of running diverse software appli-
cations on embedded processors while at the
same time taking advantage of reconfig-
urable hardware resources, all on a single
chip. These tightly coupled, single-chip
hardware/software systems offer lower

Second Quarter 2008 Xcell Journal 23

H

H

H

–

+

margin

Figure 1 – NASA uses smart payloads to
classify Earth image data and reduce the

amount of data required for downloading
(Image courtesy of NASA).

Figure 2 – Calculating a separating hyperplane
using an SVM. The circled data points are the

support vectors that lie on the margin.

EMBEDDED AP P L ICAT IONS

rithm. Classifying new data points requires
orders-of-magnitude less computation
than training because the process of train-
ing an SVM requires solving a quadratic
optimization problem.

SVM training requires O(n 3) operations,
where n is the number of training examples.
In contrast, testing a new vector with a
trained SVM requires only O(n) operations.
Faster training algorithms that exploit the
specific structure of the SVM optimization
problem exist, but the training remains the
primary computational bottleneck.

After training the SVM, many of the
weights, wi, will be equal to zero. This
means that these terms can be ignored in
the classification formula. Input vectors
that have a corresponding non-zero weight
are called support vectors. Reducing the
number of support vectors is key to suc-
cessfully deploying an SVM classifier on
board a spacecraft, where there are severe
constraints on the amount of CPU
resources available.

Previously deployed classifiers have used
such reduced-set methods, but were still
constrained to operate on only a subset of
the available classification features.
Removing such bottlenecks is critical to
realizing the full potential of SVMs as an
onboard autonomy tool.

Partitioning the Problem
When using FPGAs with embedded proces-
sors, efficient partitioning of algorithms
between software and hardware is important
to achieve high performance. For the
FPGA-based development of the SVM, we
implemented a previously software-only
legacy algorithm in the FPGA hardware fab-
ric to take advantage of the FPGA’s high-
speed parallel processing capabilities. The
image file input and classification file output
are managed within the embedded
PowerPC processor using the CompactFlash
card provided on the ML410 board.

In this implementation, the software
side of the application is coded in C and
compiled to the embedded PowerPC 405
processor using the Xilinx EDK tools.
The embedded software application reads
an input image file consisting of 857,856
pixels. The image file is read from the

CompactFlash card installed in the
ML410 board.

The software-side application streams
the image data to the SVM, which is also
written in C but has been compiled
(using the Impulse C-to-FPGA compiler)
to FPGA hardware. The SVM hardware
process performs the required SVM oper-
ation on the image and streams the results
back to the PowerPC 405 processor. The
processor then writes the pixel classifica-
tions (e.g., snow, water, ice, land, cloud,
or unclassified) to an output file on the
CompactFlash card (Figure 3).

The PowerPC ran the software portion
of the task, which sends data to and collects
data from the SVM hardware module. We
chose to use the PowerPC instead of a
MicroBlaze™ processor because the
PowerPC can operate at triple the clock fre-

quency of the MicroBlaze processor. Also,
the MicroBlaze processor would be instan-
tiated in valuable FPGA fabric, whereas the
PowerPC exists external to the fabric.

Because the 256-MB DIMM is the
largest source of memory on the board,
we used it as main memory for the pro-
gram. The processor local bus (PLB) is a
high-speed bus (compared to the on-chip
peripheral bus [OPB]) that allows for fast
data transfer to/from the memory and
SVM core peripherals. The 16-GB
CompactFlash card holds the input and
output data files, which are too large to fit
on the DIMM. The UART was used for
debugging output. The OPB is a low-
speed bus that serves as the default inter-
face between the processor and the
SystemACE™ interface controller and
UART peripherals.

24 Xcell Journal Second Quarter 2008

Input
Image File

Output
Image File

Data Input/Output

SVM

Figure 3 – Software/hardware partitioning for the SVM algorithm

EMBEDDED AP P L ICAT IONS

Second Quarter 2008 Xcell Journal 25

In support of partitioned software/hard-
ware applications such as this, the Impulse
tools include a library of C-compatible func-
tions that implement a number of process-
to-process communication methods. These
methods include streaming, shared memory,
and message passing. For this application,
the Impulse C streaming programming
model was the obvious choice.

In Impulse C streaming applications,
hardware and software processes communi-
cate primarily through buffered data
streams implemented directly in hardware.
This buffering of data makes it possible to
write parallel applications at a relatively
high level of abstraction without the cycle-
by-cycle synchronization that would other-
wise be required.

Figure 4 illustrates the design flow for
C-to-hardware compilation using the
Xilinx FX60 FPGA as a target.

On the software side of the application
(in this case on the PowerPC 405 proces-
sor used for hardware-level testing),
Impulse C functions are used to open and
close data streams, read or write data on
the streams, and, if desired, send status
messages or poll for results. In the case of
the Virtex-4 FX, stream reads and writes
can be specified as operations that take
advantage of either the PLB or the auxil-
iary peripheral unit (APU) interface.

Generating Parallel FPGA Hardware
To create the hardware portion of our appli-
cation, we used the Impulse C compiler to
generate synthesizable HDL files ready to
use with the Xilinx EDK tools. In addition
to generating HDL files, the Impulse com-
piler also generates additional files required
by the EDK tools, including the needed
PLB and APU bus interfaces. The Impulse
C compiler performs a variety of low-level
optimizations, including C statement
scheduling and loop pipelining, saving
application developers a great deal of time
that would otherwise be spent performing
tedious, low-level hardware optimization.

The Impulse C compiler performs these
optimizations and generates hardware in
the form of either VHDL or Verilog. This
hardware can then be synthesized using
FPGA tools such as Xilinx ISE™ software
and Platform Studio. On the processor
side, the compiler generates run-time
libraries ready for use on the embedded
PowerPC processor.

Validating the Algorithm
The output of the combined software/hard-
ware application is a file comprising a col-
umn of integers indicating the resulting
class of each pixel in the image. To validate
the results of the experiment and see the
results, we used MATLAB to reformat the
column of integer values to the original

pixel-wise dimensions of the image. Each
class was assigned an arbitrary color, and the
number of pixels belonging to each class
was tabulated. We could then easily calcu-
late the percentage of pixels belonging to
each class as well as visualize the resulting
file of classified pixels as a colored image.

This validation was required to meet
two goals of this project. First, it was nec-
essary to validate both the pixel classifica-
tion results from the legacy (software-only)
version of the SVM and the generated
hardware implementation of the SVM.
This was necessary to verify that the integer
and floating-point calculations performed
in the FPGA (in hardware) returned the
same results (within acceptable margins) as
those observed in software currently flying.

C Language
Applications

Generate
FPGA

Hardware

Generate
Hardware
Interfaces

Generate
Software
Interfaces

HDL
Files

C Software
Libraries

The Impulse C compiler performs these optimizations and generates hardware
in the form of either VHDL or Verilog. This hardware can then be synthesized using

FPGA tools such as Xilinx ISE™ software and Platform Studio.

Figure 4 – Design flow from C-code to FPGA-embedded application

EMBEDDED AP P L ICAT IONS

We began the validation process by com-
paring the pixel classification percentage
results to those reported by the SVM used in
the currently flying EO-1 satellite. The clas-
sification percentages show good agreement,
particularly for the snow and water classes.

Image visualizations were also impor-
tant in this effort. Our resulting visualiza-
tions show excellent agreement with the
results from the EO-1 (Figure 5).

In addition to the qualitative compar-
ison of the images, we also conducted a
pixel-by-pixel comparison of the legacy
algorithm results and our classifications.
The pixel-by-pixel classification compari-
son showed that 76.8% of the pixel clas-
sifications in our results matched those of
the Autonomous Sciencecraft Experiment
(ASE). We believed that the remaining

discrepancies were caused by the differ-
ences in the training data sets of the
SVMs, but nonetheless we decided to ver-
ify the hardware implementation on a
pixel-by-pixel basis.

To completely validate the algorithm,
we compared the outputs of a software
implementation, using the same input
data, to the version implemented in hard-
ware by the Impulse C compiler. The two
implementations produce identical classifi-
cations on a pixel-by-pixel basis. The com-
bination of the good agreement of our
results with the legacy ASE results, as well
as the independent results from the soft-
ware platform, led us to believe that our
implementation was valid. All of these val-
idations were performed using a combina-
tion of C language and MATLAB
programming methods, with no need to
use hardware design methods or hardware
description languages.

Extending the Algorithm
Having successfully implemented the legacy
SVM designed for Hyperion, we then con-
sidered two extensions to the C-language
algorithm: using a larger number of bands
with the same linear kernel SVM and creat-
ing a new SVM with a nonlinear kernel. For
the expanded linear kernel SVM, we arbi-
trarily selected 30 of the available 242 bands
in the image. For the non-linear kernel
SVM, we used the same 11 bands as the
legacy SVM, but with a modified kernel.
Because training data was not available for
the original legacy SVM, we could not gen-
erate new SVMs that would be comparable
to it, so we used new training data to gen-
erate the two new SVMs. We also generat-
ed a new, 11-band linear-kernel SVM for
comparison to the legacy SVM.

Using the C-to-hardware compiler, we
were able to quickly experiment with these
alternative implementations and compare
results, both in terms of accuracy and in
terms of performance. The hardware
implementation of these SVMs produced
results that agree very well with the soft-
ware simulations of the algorithms and
demonstrate significant increases in over-
all system performance.

We were also able to determine (using
Xilinx synthesis tools) the FPGA fabric uti-
lization percentages for each of these
SVMs, as shown in Table 1.

Conclusion
FPGAs with embedded processors are
demonstrating levels of performance and
efficiency that were previously impossible
using traditional processors. Hardware
acceleration of SVM algorithms promises
to dramatically improve onboard data pro-
cessing in future science missions.

By using embedded FPGAs such as the
Virtex-4 FX60 device, we can implement
increasingly advanced SVMs with “room to
grow” in onboard resources. Our results
demonstrate that we can achieve even our
most advanced SVM extension, a polyno-
mial kernel, using just one-third of the
DSP blocks and slices available in the
Virtex-4 FX-60 FPGA.

Software-to-hardware design tools
played an important role in the fast proto-
typing and development of these SVM
algorithms. The Impulse C tools allowed us
to more easily manage the complexity of
the application and to experiment with
alternative implementations. For testing
and algorithm validation, the Xilinx
ML410 board provided an excellent and
cost-effective development target.

26 Xcell Journal Second Quarter 2008

[The color key is blue = water, cyan = ice, dark purple = snow,
lavender = unclassified]

Figure 5 – A comparison of the results from
a) the legacy 11-band SVM implementation,

b) the FPGA-accelerated implementation, and
c) the original hyperspectral image.

FPGA Resources Total on V4FX60 Linear (11 bands) Linear (30 bands) (2,1) Polynomial
Slices 25,280 1,151 (4%) 2,253 (8%) 2,082 (8%)
Slice Flip-Flops 50,560 1,290 (2%) 1,337 (2%) 2,519 (4%)
Four-Input LUTs 50,560 1,838 (3%) 3,110 (6%) 3,287 (6%)
FIFO16/RAMB16s 232 2 (1%) 2 (1%) 5 (2%)
DSP48s 128 4 (3%) 4 (3%) 12 (9%)

Table 1 – Device utilization for an FPGA-based SVM algorithm

EMBEDDED AP P L ICAT IONS

