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Abstract. The complexity of hardware design methodologies represents
a significant difficulty for non hardware focused scientists working on
CNN-based applications. An emerging generation of Electronic System
Level (ESL) design tools is been developed, which allow software-hardware
codesign and partitioning of complex algorithms from High Level Lan-
guage (HLL) descriptions. These tools, together with High Performance
Reconfigurable Computer (HPRC) systems consisting of standard mi-
croprocessors coupled with application specific FPGA chips, provide a
new approach for rapid emulation and acceleration of CNN-based appli-
cations. In this article CoDeveloper, and ESL IDE from Impulse Acceler-
ated Technologies, is analyzed. A sequential CNN architecture, suitable
for FPGA implementation, proposed by the authors in a previous paper,
is implemented using CoDeveloper tools and the DS1002 HPRC plat-
form from DRC Computers. Results for a typical edge detection algo-
rithm shown that, with a minimum development time, a 10x acceleration,
when compared to the software emulation, can be obtained.

1 Introduction

Cellular Neural Networks (CNNs) based on analogue cells are very efficient for
real-time image processing applications. Analogue CNN chips present however a
complex implementation and a high development cost. This facts make them ap-
propriate just for applications where few layers are sufficient and great amounts
of data must be processed in real time. Another disadvantage is their low preci-
sion, due to undesirable noise effects, or flaws and tolerances in their components
derived from the manufacturing processes. This has favored the search for new
approaches for the implementation of CNN architectures.

One important step in this evolution has been the development of repro-
grammable neural networks. This kind of network, known as CNN-UM (CNN
universal machine) was conceived as a bidimensional array of processing elements
that increase the functionality of the standard CNN model adding new analogue
and digital blocks to the cells and making them reprogramable. The ACE16K[1]
is the last generation of devices with the functionality of the CNN-UM model.



These mixed signal chips were designed using standard 0.35u technology and in-
tegrate a net of 128× 128 cells providing a total processing power of 330GOPS.

During the last decade, the tendency of using reconfigurable hardware (FPGA)
has taken an increasing interest. These devices improve precision and design flex-
ibility, while simultaneously reducing cost and developing time due to the nature
of the devices and development tools provided. With clock frequencies an order
of magnitude lower than that of typical microprocessors, FPGAs can provide
greater performance when executing real-time video or image processing algo-
rithms as they take advantage of their fine-grained parallelism. Thus, FPGAs
has been commonly used as platforms for CNN emulation and acceleration[2–5].
However, the design process is not exempt of difficulties as traditional methodolo-
gies, based on hardware description languages (VHDL, Verilog, etc.) still require
deep hardware skills from the designer.

Recently, a new generation of tools for highly complex circuit design is been
developed. This new methodology, known as ESL (Electronic System Level),
aims to target the problem of hardware-software co-design from system level, un-
timed descriptions, using different flavors of high level programming languages,
such as C, C++ or matlab. An exhaustive taxonomy of the design methodolo-
gies and ESL design environments commercially or educationally available can
be found in [6]. Also, a new generation of hybrid supercomputers, called HPRCs,
is been developed to take full advantage of the new co-design tools. These HPRC
systems provide, the standard microprocessor nodes, plus new closely-coupled
reconfigurable nodes, based on FPGAs chips.

In this paper, we propose a discrete sequential CNN architecture for easy
prototyping and hardware acceleration of CNN applications on programmable
devices. We show the results obtained when accelerating a typical CNN-based
edge detection algorithm on a DS1002, a HPRC platform from DRC Comput-
ers[7]. We then analyze CoDeveloperTM, an ESL IDE from Impulse Accelerated
Technologies, Inc.[8] used for hardware-software co-design, to evaluate its suit-
ability for the non-hardware specialist scientist, and provide some keys to get
better results with these kind of tools. Finally conclusions and future work is
exposed.

2 ImpulseC programming model

ImpulseC uses the communicating sequential process (CSP) model. An algorithm
is described using ANSI C code and a library of specific functions. Communica-
tion between processes is performed mainly by data streams or shared memories.
Some signals can be transfered also to other processes like flags, for non con-
tinuous communication. The API provided contains the necessary functions to
express process parallelization and communication, as standard C language does
not support concurrent programming.

Once the algorithm has been coded, it can be compiled using any standard C
compiler. Each of the processes defined is translated to a software thread if the
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Fig. 1. Typical ImpulseC model

operating system supports them. Other tools do not have this key characteristic,
and can only compile to hardware.

The entire application can then be executed and tested for correctness. De-
bugging and profiling the algorithm is thus strait forward, using standard tools.
Then computing intensive processes can be selected for hardware synthesis, and
the included compiler will generate the appropriate VHDL or Verilog code for
them, but also for the communication channels and synchronization mechanisms.
The code can be generic of optimized for a growing number of commercially
available platforms. Several pragmas are also provided that can be introduced
in the C code to configure the hardware generation, for example, to force loop
unrolling, pipelining or primitive instantiation.

The versatility of their model allows for different uses of the tool. Let’s con-
sider a simple example, with 3 processes working in a dataflow scheme, as shown
in Figure 1. In this case, Producer and Consumer processes undertake just the
tasks of extracting the data, send them to be processed, receive the results and
store them. The computing intensive part resides in the central process, that
applies a given image processing algorithm. A first use of the tool would consist
in generating application specific hardware for the filtering process, that would
be used as a primitive of a larger hardware system. The Producer and Consumer
would then be “disposable”, and used just as a testbench to check first, the cor-
rect behavior of the filtering algorithm, and second, the filtering hardware once
generated.

A different way of using the tool could consist in generating an embedded
CPU accelerated by specific hardware. In this case, Producer and Consumer
would be used during the normal operation of the system, and reside in an
embedded microprocessor. The filter would work as its coprocessor, accelerat-
ing the kernel of the algorithm. CoDeveloper generates the hardware, and re-
solves the software-to-software and hardware-to-hardware, communication mech-
anisms, but also the software-to-hardware and hardware-to-software interfaces,
for a number of platforms and standard buses. This is a great help for the de-
signer that gets free of dealing with the time-consuming task of interface design
and synchronization.

Finally, the objective can be accelerating an external CPU by means of a
FPGA board. In this case, the software processes would reside on the host mi-
croprocessors, that would communicate to the application specific hardware on
the board by means of a high performance buses (HyperTransport, PCI, Gigabit
Ethernet, etc.).
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Fig. 2. a) Different architectures used to implement a CNN. The parallel architecture
implements a complete CNN, while the sequential uses a single cell which moves on the
input array to process the information. b) different types of cell: recurrent and unrolled

3 Proposed discrete sequential CNN architecture

Regardless of the language used, implementing a CNN on an FPGA requires to
take into account a number of considerations. Conceived as a massively parallel
array of analogue processors [9], the original CNN model must be transformed
for digital implementation on an FPGA. First, it is necessary to translate their
continuous nature into the discrete domain, providing an approximation with
sufficient accuracy that minimizes the hardware resources. The implementation
will depend on the application type, size of the data array and processing speed
restrictions. Two different architectures, sequential or parallel, can be used to
emulate CNN-based systems.

Parallel architectures devote specific hardware resources to implement each
of the CNN cells. As in analog chips, these architectures provide a complete
implementation of the CNN, which gives them the highest degree of parallelism
and processing speed. On the other hand, they require larger amount of hardware
resources, which limits their implementation to a few tens of cells per FPGA.
Larger CNNs would require several FPGAs, rising orders of magnitude the cost
and complexity of the system.

Sequential architectures are the solution when the network is too large or it is
not feasible to use multi-FPGA platforms. These architectures include just one
or several functional units, multiplexed in time, to emulate the full processing of
the CNN. The computation effect is equivalent to a single cell which shifts, from
left to right and from top to bottom, in a similar way as an image is generated
by a video camera. This sequential process allows using small buffers, instead of
the large memories required by parallel architectures, reducing the cost of the
system. Moreover, sequential architectures simplify the I/O interface, providing
a serial communication, which simplifies the connection with other circuits, and
allows for the development of multi-layer and multi-FPGA systems. Figure 2-a
shows main differences between sequential and parallel architectures.

Given that CNN discrete models are recurrent algorithms, cells can be imple-
mented as recursive or iterative, regardless of the network architecture (parallel
or sequential). The recursive implementation uses a closed-loop circuit, while



in the iterative approach, the cell is unfolded in a number of sequential stages
that can be implemented as separate circuits. Recurrent cells use less hardware,
however, its processing speed will be lower because they have to run more re-
cursive iterations per data. Iterative cells will be faster, as cell stages can work
as pipelined circuits, but also consume more resources. Figure 2-b shows both
types of cells.

The use of iterative cells in a sequential architecture establish a trade-off
between area and speed that optimizes both, resource utilization and processing
time. With respect to the parallel architecture, its sequentiality allow to emulate
complex systems using simple I/O interfaces and smaller memory buffers. On the
other hand, the implicit parallelism of the cells improves the processing speed,
which enables their use in real-time applications.

An implementation of a CNN model suitable for hardware projection, using
the proposed approach, was introduced in a previous paper[5]. This architecture
is based on a discrete model of the CNN obtained from the method of Euler
equations, whose dynamics are shown in equations 1 and 2.

Xij [n] =
∑

k,l∈Nr(ij)

Akl[n − 1]Ykl[n − 1] +
∑

k,l∈Nr(ij)

Bkl[n − 1]Ukl + Iij , (1)

Yij [n] =
1

2
(|Xij [n] + 1| − |Xij [n]− 1|) (2)

A single cell is used to sequentially process full image information. The cell
can be unfolded in a number of stages which depend on the application re-
quirements. Each stage will have two sequential inputs and outputs used for
connection with previous and following stages. Figure 3 shows the stage struc-
ture, formed by two 3 × 3 convolutions, a three-input adder and a comparator
to resolve the activation function. The fixed-point convolution kernel has been
efficiently designed using circular memories, three multipliers and the logic to
resolve the network contour conditions (Dirichlet conditions). This architecture
can emulate a complete CNN up to 1024×1024 cells processing grayscale images.
Its correctiveness and efficiency has been validated in other studies [10, 11].

Next section shows the results obtained when implementing our model using a
high level description on a HPRC. Our objective is to evaluate the performance
of both, the new C-to-hardware synthesizers, and the software-hardware co-
execution platforms, when accelerating CNN applications, by non hardware-
focused scientists.

4 Evaluation platform

Traditional platforms, that use commodity FPGA boards that communicate
with a host workstation using high speed interfaces (like USB, PCI or Ether-
net), are the preferred solution for standalone or not highly-coupled applications.
However, when accelerating algorithms using FPGA as coprocessors, the main
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Fig. 3. Proposed architecture. Sequential unfolded cells, with details on stage structure

bottleneck usually comes from the communication between the software and
hardware stages of the algorithm.

A new generation of High Performance Reconfigurable Computers (HPRC)
are addressing this fact providing tightly coupled standard microprocessors and
reconfigurable devices. Examples of these reconfigurable supercomputers are the
SRC-7, the SGI Altix 350 and the Cray XD1[12–14]. These platforms have the
potential to exploit coarse-grained parallelism, as well as fine-grained (known
as instruction-level) parallelism, showing orders of magnitude improvement in
performance, power and cost over conventional high performance computers
(HPCs)[16–20].

In our case, the development platform DS1002 from DRC Computer Corpo-
ration was used to benchmark the proposed CNN architecture. This is a single
server system that includes a standard PC workstation enhanced with a DRC
Reconfigurable Processor Unit (RPUTM). The DS1002 is a 2-way system with an
AMD OpteronTMModel 275 on one socket and a RPU110-L200 on the other. The
RPU includes a Virtex-4 LX200, 2GB of DDR2 RAM and 128MB of low latency
RLDRAM. Communication between the main processor and the FPGA board
is carried out by 3 HyperTransportTM(HT) links. The current HT interface is
limited to 8bits × 400MHz (double data rate) providing a theoretical through-
put of 800MB/s per direction, or agregated 1.6GB/s, for a total bandwidth of
9.6GB/s.

The testbed designed for the CNN implementation is shown in Figure 4. Ev-
ery cell stage has been implemented as a single process. Producer and consumer
processes were merged in a single process to maximize efficiency, as it just has to
read image data, send pixels to the hardware processes, receive processed pixels
and write images back to disk. Images were sized 640× 480 pixels, coded 8 bits
grey-scale.

The whole system was coded using standard ANSI C syntax and specific func-
tions from the ImpulseC API for process intercommunication. Different versions
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Fig. 4. Block diagram of the DRC Development System 1002 as used for the CNN
implementation

of the cell, with 1, 2, 4, 8 y 16 cascaded stages (processes), were implemented to
observe the effect on the precision and the processing speed.

The entire system was compiled using the standard gcc compiler[21] to ex-
ecutable software for both a conventional Windows XPTM-based PC, and the
Linux-based DS1002 (Kubuntu 6.06 LTS). Subsequently, the system was sep-
arated in software and hardware processes. The Producer-Consumer was com-
piled to be executed in the Opteron. The cell stage processes, however, were
compiled to VHDL using ImpulseC tools. Finally, the RPU was programmed
with the circuit synthesized from the VHDL description and combined with the
Producer-Consumer for software-hardware co-execution. The obtained results
are depicted in section 4.1.

4.1 Results

Table 1 summarizes the hardware resources consumed by each cell version, that
spans from the 760 slices of the single-stage cell, to the 11201 of the most com-
plex. The critical resource resulted to be multipliers, that in the case of the
16-stages cell (with 6 multipliers per stage) ends up 100% of the DSP48 blocks
availables in this device.

Another important parameter, the number of clock cycles necessary to pro-
cess a pixel, shown a perfect correspondence between the CoDeveloper debugger
estimations and the real execution of the algorithm. Using 3 multipliers per con-
volution, each stage takes 27 cycles/pixel, a number that is maintained when
the stage number increases, due to the pipelined behavior of the cell. We used
a 133MHz clock for the CNN, as we met that, for this system, the HT provided
enough bandwidth between microprocessor and RPU for clock frequencies under
200MHz.

Figure 5 shows processing time for CNN execution on three different plat-
forms: all software Core2DuoTMWindows XPTMbased, all software OpteronTMLi-
nux based, and hardware-software co-execution. Working with 640 × 480 pixel



Table 1. Summary of timing information and used resources for different stages. Per-
centages are referred to DRC-RPU FPGA (V4LX200-11).

Area(%used) 1 stage 2 stages 4 stages 8 stages 16 stages

Slices 760(0) 1455(1) 2847(3) 5657(6) 11201(12)
Flip flops 784(0) 1482(0) 2878(1) 5670(3) 11254(6)
DSP48 6(6) 12(12) 24(25) 48(50) 96(100)
BlockRAM 6(1) 10(2) 18(5) 34(10) 66(19)
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Fig. 5. processing time for the CNN applied to one 640× 480 pixel image and diferent
stage per cell on the three platforms.

images, the 2.4GHz Core2Duo is the fastest for the single-stage cell, with just
0.05s. Beginning with 2 stages cells and following, the FPGA accelerated DS1002
platform is faster, getting a constant mark of 0.07s. The linear behavior shown
by the three platforms allows extrapolating the acceleration provided by the
FPGA for any number of stages/cells.

This results show that, the proposed CNN architecture, applied to 640 ×
480 pixel images, would process a theoretical maximum of (133e6/27)/(640 ∗
480) = 16.03frames/s. This is 10.25 times faster than a standard PC (Core2Duo,
2.4GHz), that takes 0.718s in processing an image with 16-stages cell.

5 Discussion

The results obtained in our first experiments with different CNN architectures
show that this kind of algorithms can benefit from custom hardware coprocessors
for accelerating execution, as well as for rapid prototyping from C-to-hardware
compilers. However, to obtain any advantage, both, an algorithm profiling and
a careful design are mandatory. These are the key aspects we have found to be
useful:

– The algorithm should make an intensive use of data in different processing
flows, to make up for the time spent in the transfer to/from the accelerator.



– The algorithm can make use of several data flows, taking advantage of the
massive bandwidth provided by the several hundred o I/O bits that FPGA
devices include.

– The working data set can be limited to 1-2MB, so that it may be stored in
the internal FPGA memory, minimizing access to external memory.

– The algorithm should use integer or fixed point arithmetic when possible,
minimizing the inference of floating point units that reduce the processing
speed and devour FPGA resources.

– The algorithm must be profiled to identify and isolate the computational
intensive processes. All parallelizing opportunities must be identified and
explicitly marked for concurrent execution. Isolation of hardware processes
means identifying the process boundaries that maximize concurrency and
minimize data dependencies between processes, to optimize the use of on-
chip memory.

– Maximize the data-flow working mode. Insert FIFO buffers if necessary to
adjust clock speeds and/or data widths. This makes automatic pipelining
easier for the tools, resulting in dramatic performance improvement.

– Array partitioning and scalarizing. Array variables usually translate to typi-
cal sequential access memories in hardware, thus if the algorithm should use
several data in parallel, they must be allocated in different C variables, to
grant the concurrent availability of data in the same clock cycle.

– Avoiding excessive nested loops. This could difficult or avoid correct pipelin-
ing of the process. Instead, try partitioning the algorithm in a greater number
of flattened processes.

6 Conclusions

HPRC systems are showing greater performance with respect to other HPC
approaches, particularly taking into account that they provide also increments
of several orders of magnitude in the GFlops/euro and GFlops/watio ratios.

Our first experiments have demonstrated the viability of applying HPRC
platforms and ESL tools to rapid prototyping of CNN-based image processing
algorithms, provided that some requisites comply. Our first results, still under re-
finement, have shown a 10x acceleration for the hardware-software co-execution
on a HPRC DS1002 from DRC Computers, with regards to the algorithm exe-
cuted on the same machine as pure software.

Future work will be directed to the development of more complex algorithms,
based on CNNs and standard DSP processing stages, for on-line stellar image
acquisition and preprocessing, as part of our collaboration with the FastCam[22]
initiative.
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