
API Documentation December 2011 1

Pico Computing
API Documentation

December 2011

Contents
1. Overview ... 2

2. Architecture .. 2

3. Channel Basic Concepts .. 3

3.1 Address Space of a Pico Channel ... 4

3.2 Channel Number Arithmetic .. 5

3.3 Pacing Registers ... 5

3.4 Granularity ... 6

3.5 Timeouts .. 7

3.6 Pico Streams .. 8

4. Software .. 8

4.1 The Class cPicoChannel ... 9

4.1.1 Constructor and Destructor .. 9

4.1.2 Blocking Functions .. 12

4.1.3 Non-Blocking Functions .. 12

4.1.4 Memory Access Functions .. 13

4.1.5 Channel Options ... 14

4.1.6 Loading the FPGA ... 15

4.1.7 Other Service Functions .. 15

4.2 Access to Pico Channel Server ... 16

4.2.1 PicoDaemon.. 16

4.2.2 PicoChannelServer .. 17

4.2.3 Pico Remote Server Example .. 17

4.2.4 User Defined Server Functions ... 18

4.3 DeviceIOControl .. 19

4.4 Defines Associated with Channels ... 19

4.5 Creating a Sample Program ... 20

5. Firmware ... 21

5.1 Implementing a Channel in Firmware ... 21

API Documentation December 2011 2

1. Overview

Pico Computing Application Programmer Interfaces (APIs) provide the link between your application software running on a
Windows or Linux computer and the hardware algorithm (or firmware) implemented in the FPGA.
The hardware-software interfaces provided by Pico include a number of software library functions which depend upon
firmware components in the FPGA. The goal of these interfaces is to abstract away the details of communication to provide a
platform-portable method of programming Pico Computing products.

Pico Computing FPGA platforms can interface with host computers using PCI Express or USB. Depending on the Pico platform
you are using, the bandwidth and latencies of data transferred between host computer and FPGA may vary substantially. These
variations depend on the electrical characteristics of the interface, for example the number of PCI Express lanes being used, but
also on the nature of the application and the size of individual data elements being transferred. As an application programmer,
you can have a significant impact on the final performance of these interfaces by learning and using appropriate APIs and
methods for your target platform and application.

This manual describes the PicoBus and PicoStream interfaces. These are firmware concepts designed to move data to and from
Pico Cards using the best available mechanisms - typically using Bus Mastering technology. The PicoBus interface provides a
light weight interface between the PCIe infrastructure and the Pico cards. The PicoStream interface adds additional data
buffering, making it better suited high data throughput. The software construct, Pico Channel, dovetails with these two
firmware constructs.

2. Architecture

The Pico Channel software API is modeled on file reads and writes. The firmware is modeled on a standard bus device (Picobus)
or a streaming interface (PicoStream). The software end of the channel is a C++ class (cPicoChannel). The firmware end of a
channel can be thought of as a peripheral device attached to the PicoBus or PicoStream, defined in the FPGA logic of the Pico
Card. Pico channels provide the software machinery for Bus Mastering between the Pico Cards and a PC-host.

Pico streams are similar to Pico channels, with the addition of a FIFO buffer between the host PC and the firmware.
Both channels and streams use bus mastering to maximize throughput. Bus mastering is a process whereby the firmware takes
temporary control of the PC bus. Bus mastering is attractive because it takes much of the burden off the processor and is
significantly faster than single word transfers. Bus mastering is frequently referred to as DMA. Although this is technically
incorrect, both strategies have a similar purpose - speed and independence from the processor. The terms bus mastering and
DMA are used interchangeably throughout the Pico documentation.
The class cPicoChannel makes calls to the system driver, Pico32.sys, Pico64.sys, or CyUSB.sys (used only by the Pico E101 card).
PicoXX.sys operates in its own address space and at the innermost ring of the operating system. PicoXX.sys is responsible for
very low level functions such as buffer management, interrupt handling, and the scheduling of I/O calls to support the upper
level classes.

PicoXX.sys delivers this data to a PCIe/USB endpoint. On the E16 and E101, these are on a dedicated, 3rd party chip. On the E17,
M501 and M503, the PCIe endpoint is instantiated in firmware logic. Output from this core is sent into a DMA engine in
firmware logic called the PicoBus; this is sometimes further translated into a PicoStream. Data in this format is made available
to the User Logic, which is what you, the firmware developer, is to develop.

The Pico driver fits within the software stack as illustrated below:

API Documentation December 2011 3

`

3. Channel Basic Concepts

The cPicoChannel is a C++ class that provides access to a Pico Computing card. cPicoChannel allows data to be transferred to
and from the FPGA and can also be used for control purposes. For example you can load FPGA bit images using member
functions of cPicoChannel. A channel can be used move data to & from memories on the card, and to directly access specific
registers for device status.

The channel interface to all Pico cards is modeled on file reads and writes:
channel.Read(void *bufP, int size) is used to move data from the Pico card to the PC
channel.Write(void *bufP, int size) is used to move data from the PC to the Pico card.

The firmware on the Pico Card may be 32bit or 128bit based:

E16, E17, and E101 cards are 32bit based
The M501 and M503 cards are 128 bit based

The firmware on the Pico Card interfaces to the PicoBus using the following signals. These signals are referred to as the PicoBus:

picoAddr[31:0], picoDataIn[31:0], PicoDataOut[31:0], PicoRd, PicoWr, and PicoClk
or

API Documentation December 2011 4

picoAddr[31:0], picoDataIn[127:0], PicoDataOut[127:0], PicoRd, PicoWr, and PicoClk

A channel occupies a part of the memory mapped address space of the PC host. Data is moved to and from the PC-host using
Bus Mastering memory transfers or single word transfers. The firmware implemented on the Pico Card side of the interface is
'memory mapped' - a range of addresses are assigned that are unique to the particular channel. The processing of data as it
arrives or leaves the Pico Card is entirely the province of the firmware implemented on the Pico Card. The firmware may:

 Process the data as it is written from the PC or read to the PC.

 Store the data in a FIFO.

 Store the data in a RAM on the Pico Card for subsequent processing.

The particular firmware that handles data sent over the DMA interface is user defined, and referred to as a user logic device, as
it exists in user logic. As data is transferred to and from the Pico card two independent addresses are being manipulated. The
first is the physical address in the PC-host memory. This is entirely handled by PicoXX.sys and does not concern the application
developer in the least. The second address is the address within the address space of the channel. This address is of
fundamental concern to the developer. The address is referred to as the Pico Address. Necessarily, the Pico Address will be
within the memory mapped range of the channel. As each 32-bit or 128-bit word is written to or read from the FPGA, both the
physical address in the PC host memory and the Pico Address are incremented (by exactly four or sixteen). Other than this auto-
increment property, as an application developer you have full control over the Pico Address and can use it for a large number of
purposes. The Pico Address may be used to signal specific functions in the peripheral device - a simple and zero bandwidth way
of communicating with the firmware.

The number of bytes written to or read from a channel is controlled by either the software or the firmware:
When a channel write or read is performed the number of bytes transferred is specified in the read / write call.
When picoXX.sys accesses the device the pacing registers (provided by the user logic devices) specify how many words can be
transferred. Pacing registers are not strictly required in any particular user logic device, but without them the user must provide
some alternate means of data flow control, as well as use separate API calls.

There are also a number of other properties of a channel, such as granularity and variable length timeouts, which grant the
designer highly nuanced control over the operation of a channel.

3.1 Address Space of a Pico Channel

The address space [0x1000,0000 - 0x7FFF,FFFF] is dedicated to all channels on any one Pico card. You can create a user logic
device that uses this entire address space. However, to support multiple devices simultaneously the following two limitations
should be observed:

1. The address space used by the device should be limited to 0x10,0000 (1048576 bytes or one
megabyte).

2. The beginning address of the address space should be 0x1010,0000 + n*0x10,0000 (n=1 thru
1791).

3. pacing registers must be provided at these addresses:
0x1000,0000 + n * 0x10 (n=1 thru 1791) e.g. 0x10000010 is the read pacing register for channel 1

Pacing registers are used by PicoXX.sys to control the pace at which data is written to or read from the device.

Channels #1 thru #9 (0x1010,0000 - 0x10AF,FFFF) are used by various devices generated by Pico Computing. The remaining
channel numbers are available to users.

The Pico Address (picoAddr) is the address supplied to the user logic. The value of picoAddr will always be within the memory
mapped address space of the user logic device. If a DMA operation is specified that will cause the picoAddr to stray beyond the
bounds of the channel, the operation will be split into two (or more) sub-operations and the picoAddr will be reset before the
second sub-operation.

On each read or write operation the picoAddr is incremented. picoAddr is incremented by 4 (32bit architectures) or 16 (128bit
architectures). The picoAddr value wraps around when it reaches the end of the range. For example:

API Documentation December 2011 5

cPicoChannel channel(12);

channel.Read(buf32P, 16);

On 32-bit architectures, command would retrieve:
word 0x10C00000, 0x10C00004, 0x10C00008, 0x10C0000C
from the Pico Card

On 128-bit architectures, command would retrieve:

and store the results at
buf32P[0], buf32P[1], buf32P[2], buf32P[3]

word 0x10C00000 and store the results at
buf128P[0]

The next call of the same command would read 16 bytes (four words) would transfer word 0x10C00010 thru 0x10C0001F. Near
the end of the address range a Read would transfer 0x10CFFFF8, 0x10CFFFFC, and then wraparound to 0x10C0000.

The steady progression of addresses passed to the Pico Card through DMA can be changed as follows:

channel.SetPicoAddr(0);

This would set the picoAddr back to the beginning of the range (ie 0x10C00000 for channel 12). Note that the value of picoAddr
carries twenty bits of precision. In other words the picoAddr is relative to the memory mapped address space determined by
the channel number. The system will automatically add the channel number into the uppermost bits of the actual address.

3.2 Channel Number Arithmetic

The channel number is used to specify which part of the address space the device occupies. Each channel occupies 0x100000
(1,048,576 bytes) bytes of addressable space within the available address range [0x1010,0000 - 0x7FFF,FFFF]. 16 bytes of space
in the 0x100XXXXX space is also associated with the larger space. These are referred to as the pacing registers. The default
channel space and pacing register space are defined as follows:

Channel Low PicoAddr High PicoAddr Pacing Registers

1 0x10100000 0x101FFFFF 0x10000010 - 0x10000001F

2 0x10200000 0x102FFFFF 0x10000020 - 0x1000002F

n 0x10000000 + n * 0x100000 0x100FFFFF + n* 0x100000 0x10000000 + n*0x10

1791 0x7FF00000 0x7FFFFFFF 0x100007F0 - 0x100007FF

The following macros can translate channel number to raw channel address or raw pacing register address, or vice versa:

BM_CHANNEL_FROM_ADDR(addr),
BM_CHANNEL_FROM_STATUS(statusAddr),
BM_ADDR_FROM_CHANNEL(channel),
BM_STATUS_FROM_CHANNEL(channel)

The cPicoChannel class does the addressing arithmetic for you; hence, there is no need for an address parameter in
channel.Read() or channel.Write()

The first two pacing registers are the read pacing register and the write pacing register, and are the only registers that Pico uses
in their own user logic devices. Only the read side of these registers is used. The write side of the write pacing register is used to
control the end-of-frame signal for Pico Streams.

3.3 Pacing Registers

Pico highly recommends all user logic devices implemented on Pico Cards implement two pacing registers which will be used by
PicoXX.sys to limit how much data can be transferred to/from the device. If this is not done, software developers are obliged to
use one of the other two entry points into the API.

API Documentation December 2011 6

The pacing registers are assigned in groups of 16 addresses (4 * 32bit registers). The pacing registers are assigned beginning at
address: 0x10000,0010 user address space

Relative Address Name Direction Width Purpose

0
Read pacing
register

R
32
(bits)

Control data flow for channel read operations

0 Not used W
32
(bits)

n/a

4
Write pacing
register

R
32
(bits)

Control data flow for channel write
operations

4 Not used W
32
(bits)

n/a

8 Not used R/W
32
(bits)

n/a

12 Not used R/W
32
(bits)

n/a

Read and write pacing registers have the following structure:

typedef struct

 {UINT32 wordsAvailable:20, //bits 0x000FFFFF

 nu :6, //bits 0x03F00000 == 0

 signature :6; //bits 0xFC000000 == 0x26 for read

 // == 0x22 for write

 } BM_CHANNEL_STATUS;

In other words, the wordsAvailable field is the lower 20 bits, and the upper 6 bits is a signature, with 6 bits in the middle not
used.

Each user logic device should set the wordsAvailable to the number of 32-bit words that may be transferred to/from the device.
A value of zero means 'nothing available'.

3.4 Granularity

Granularity is used to avoid initiating a large number of very small I/O transactions. Granularity is a property of the channel that
prevents an I/O transaction being initiated when the device does not have enough data to fill the minimum specified by
granularity. A developer might want to control granularity to increase bandwidth, possibly at the expense of some increased
data latency.

API Documentation December 2011 7

For example, consider a firmware application that must process data in full records of a given size, 100 bytes. The process of
data in such an application will not commence until 100 bytes of data are advertised in the associated pacing register. In this
case, a useful optimization might be to set the granularity to 100, so that no I/O will be initiated unless at least 100 bytes are
available. This simple optimization can greatly increase performance by reducing the total number of bus transactions.

Note: if the number of bytes requested in the channel.Read / Write is less than granularity, the driver will ignore the granularity
restriction.

3.5 Timeouts

Timeouts are used to limit how long a Read or Write operation will remain blocked. If a timeout other than zero is specified, the
read/write will time-out after the specified time whether the I/O operation has completed or not. In these cases the number of
bytes returned by the Read/Write function may be less than the number requested. A value of zero returned by Read/Write
indicates that no data was transferred. The error condition created by the timeout is reported by the GetErrors() function.

The timeout periods can be specified by setting the appropriate values in the structure PICO_TIMEOUT. Which is passed to
channel.SetGetOptions(). There are two timeout fields:

PICO_TIMEOUT.initialTimeout. This value specifies the timeout for the first block transferred. Any device may take some time
before it can respond to a request. TimeOut1 will be set according to the behaviour of the firmware device.
PICO_TIMEOUT.ongoingTimeout. This value specifies the timeout for the second and subsequent blocks transferred. Once the
first byte is received data will often arrive in a burst. Timeout2 is usually significantly smaller than TimeOut1.

Either initialTimeout or ongoingTimeout may be zero, which will be interpreted as no timeout. In this case, PicoXX.sys will wait
indefinitely for the channel to report ready. Timeout values are specified in units of 1 millisecond. The default values for the
timeouts are initialTimeout=100 (ie 100 milliSeconds), and ongoingTimeout=50 (ie 50 milliSeconds).

When a transfer to/from the device is requested, using channel.Read or channel.Write, the pacing registers are read to
determine whether the device is able to accept / provide the requested number of words. The number of bytesAvailable (from
the pacing registers * 4) limits the size of data transfer according to the following set of rules:

bytes transferred = minimum of
bytesAvailable (from pacing register * 4),
bytes requested by user (from Read or Write request),
bytes to end of channel address space (derived from picoAddr and channel size),
other limitations based upon the hardware.

If the minimum value from the above rules is larger than the granularity specified for the channel, then the I/O is initiated.
Otherwise the channel will wait and possibly timeout.

The function channel.BytesAvailable() may be called to report the pacing register value to the software.

API Documentation December 2011 8

Multiple read or multiple writes should not be outstanding against a channel. This will transfer data in an unpredictable fashion.
However, reads and writes can be overlapped. The flow of data to/from the device is then completely dictated by the status
returned by the device status registers.

3.6 Pico Streams

Pico Streams are identical to Pico Channels except streams have a FIFO buffer between the PCIe/USB endpoint (and the entire
host system) and the user logic. This FIFO isolates the stream from fluctuations in the rate of delivery of data to/from the host
PC. On the other hand, the Pico Stream eliminates any concept of the PicoAddress, instead creating a single port to which data
is written, or from which it is read.

Conceptually a Pico Stream is built as follows:

4. Software

Pico_channel.h contains the abstract class cPicoChannel and multiple derived classes. Each derived class is specific to a
particular Pico cards. In general there is a particular class for each Pico card (except for the legacy E-12, E14, and E-15 cards
which are handled by the cPicoChannel_Exx class). The class structure is as follows:

Class Purpose Implementation File

cPicoChannel fundamental user access class source\pico_channel.cpp

cPicoAbstractChannel abstract class for the following sub-classes none

cPicoChannel_E16 derived class supporting E-16 card source\pico_channel_E16.cpp

cPico_Channel_E17 derived class supporting E-17 card source\pico_channel_E17.cpp

cPicoChannel_E101 derived class supporting E-101 card source\pico_channel_E101.cpp

cPicoChannel_M501 derived class supporting M501 and M503 cards source\pico_channel_E501.cpp

cPico_channel_IP derived class supporting IP access source\pico_channel_IP.cpp

API Documentation December 2011 9

4.1 The Class cPicoChannel

#include <pico_channel.h>

class cPicoChannel

{public:

 int AvailablePicoCards (uint8_t *availableP, int availableSize);

 cPicoChannel (int channelNo=10, const char *paramsP, cPicoChannel *parentP);

 virtual ~cPicoChannel ();

 int GetBytesAvailable (int regNum=-1);

 int GetError (char *bufP=NULL, int bufSize=0);

 int GetPicoConfig (PICO_CONFIG *configP);

 int GetStatistics (PICO_STATISTICS *statsP);

 HANDLE GetHandle (void);

 int Read (void *bufP, int byteCount, int picoRelAddr=-1);

 int Write (void *bufP, int byteCount, int picoRelAddr=-1);

 int SetPicoAddr (uint32_t picoAddr);

 int ReadDevice (int relAdr, void *bufP, int byteCount=4);

 int WriteDevice (int relAdr, void *bufP, int byteCount=4);

 int ReadDeviceAbsolute (int absAdr, void *bufP, int byteCount=4);

 int WriteDeviceAbsolute (int absAdr, void *bufP, int byteCount=4);

 int ReadMemory (int addr, void *bufP, int byteCount=4, uint32_t typeOfMemory);

 int WriteMemory (int addr, void *bufP, int byteCount=4, uint32_t typeOfMemory);

 int ReadStatus (int offset, void *bufP);

 int LoadFPGA (const char *bitFileNameP, uint8_t *dataP=NULL, int dataSize=0);

 int SetGetOptions (uint32_t optionCode, void *vP, int byteCount=4);

 int WriteControl (int offset, uint32_t ctrl);

};

NOTE: for clarity we are not describing cPicoAbstractChannel which is as an abstract class supporting individual classes for each
Pico card.

4.1.1 Constructor and Destructor
The class cPicoChannel can be used to create a channel on the Pico Card. The member functions Read and Write can then be
used to transfer data to and from the card. Refer to the include\pico_channel.h and source\pico_channel.cpp. Functions
returns a non negative number if the operation is successful, otherwise they return a negative error code. The negative error
code refers to codes in the file Pico_error.cpp and can be accessed by calling the functions InterpretError(), or FullError().

cPicoChannel(int channelNo, const char *parametersP=NULL, cPicoChannel *parentP=NULL)

API Documentation December 2011 10

This function creates a channel to the Pico card:

 Channel number is the channel used for communication between the host and the card. The value must be a number
between 1 and 1791. Note that channels 1 through 10 are devices included by Pico Computing. The default value of
10 is the first channel that is not already used by Pico Computing.

 parametersP points to a string containing a series of keyword, or keyword=value, pairs providing additional
requirements for the channel. Each possible field in this string is documented in the following sections. The
parametersP string may contain $ variables:

Keyword Meaning Example
$(model) Model name of pico Card E101
$(picobase) Value of environmental variable c:\pico

NOTE: The $model variable always resolves to the model of Pico card #1. If a bit file is specified it must be consistent
with the model.

 parentP refers to an existing cPicoChannel. The new channel will have the same underlying Pico Card.

~cPicoChannel();
The function closes the channel and releases the underlying file object used to service the channel.

channelSize=
channelSize=value

This field of parametersP specifies the size of the pico channels. The default is 0x100000 bytes and is rarely
changed.

File=
file=bitFileName
or
file=flash:bitfileName (E17 only)

This field of parametersP specifies the bit file to load into the FPGA as the channel is opened. The bitFileName refers to a file on
the host system, or a file on the flashROM file system on an E17. The M501 it is possible to loaded from either source, but all
other cards will load from either flashROM or the host system (see table below).

In absence of some other field in parametersP the bit file will be used to locate an appropriate model. For example if the bit file
contains a header indicating that it is an LX240 FPGA image, then the first card with an LX240 FPGA will be used.

NOTE: The bit file will not be written to the flash automatically. If the Pico Card requires flashROM loading then the flash must
be written before the channel is created, using the PicoFlash class, or PicoCommand (see the Getting Started document.

Model FLASH Considerations

E16 N bitFileName always refers to a file on the host system. The card will be reported as
not loaded until a bit file has been loaded

M503 Y The flashROM is platform flash and is not accessible to the user. bitFileName always
refers to a file on the host system. However, the card will be reported as loaded at
power-on because the FPGA must have been loaded from platform flash and
implement the PCIe interface in order to be visible to the operating system.

E17 Y The flashROM is normal flash and is accessible to the user. A valid PrimaryBoot.bit
file must be present at power-on in order for the operating system to recognize the
PCIe end point. The syntax flash:bitFileName is equivalent to bitFileName and refers
to a flashROM file.

M501 Y The flashROM is normal flash and is accessible to the user. A valid PrimaryBoot.bit
file must be present at power-on in order for the operating system to recognize a PCIe
 end point. The syntax flash:bitFileName is will boot from a flashROM file or the
syntax bitFileName will refer to a host file.

API Documentation December 2011 11

ignorePacing
ignorePacing

This field of parametersP allows the driver to ignore the signature on the pacing registers. This option might
be used when the FPGA image does not support the Pico Channel architecture, or when the FPGA is possibly
not loaded and you are first establishing a connection to the card.

ipAdr=
ipAdr=hostname

This field of parametersP specifies the hostname or ip address of another machine which physically contains
the Pico Card. The raget machine must be runnig PicoChannelServer and may be running PicoDaemon. See
Access a Pico Channel Server.

!loaded
!loaded

This field of parametersP causes the FPGA to be loaded only if the same image is not already loaded.

Model=
model=<picomodel>

This field of parametersP specifies a basic or specific model of the Pico Card. Possible values for model are
Basic mode Specific model

E16 E16LX50

E17 E17FX70T, E17SX50T

E101 E101LX45

M501 M501LX240

M503 M503LX240

For example:

model=E17 specifies either E17FX or E17LX as acceptable

model=E17SX50T specifies E17SX50T only as acceptable

picoCardNum=
picoCardNum=#

This field of parametersP specifies a particular FPGA within a cluster. The card number is assigned by the
operating system according to an algorithm of its own. The absolute value cannot therefore be predicted.
However, the number is consistent and stable during each boot. The number is reported in
cPicoChannel::AvailableCards() and is displayed by picocommand -y, ie,

\\.\pico1
\\.\pico2
\\.\pico3
etc

The number refers the PCIe end points and not the physical Pico Card. For example, a Pico M501, E16, or
E17, has a single end point for each card. The M503 occupies two physical slots on the EX-500 backplane
and may implement either one or two end points. The M503 may appear as one or two picoCardnums's
(with one being the most common).

If lieu of other fields specified in the parametersP string the cPicoChannel constructor will select the first
unused picoCardNum.

API Documentation December 2011 12

readOnly or WriteOnly
readOnly

This field of the parametersP variable limits the channel to read only mode. In this mode the write pacing
register is not required or verified

writeOnly

This field of the parametersP variable limits the channel to write only mode. The write pacing register is not
required or verified.

Absent either of these fields, the channel is opened in read / write capable. As such the both pacing
registers are required and will be verified (unless ignorePacing is specified).

serialNum=
serialNum=value

This field of parametersP specifies and exact serial number of the Pico Card. This should be unique.

A demonstrative example
cPicoChannel(10, “readOnly, picoCardNum=2, file=E16LX50-

PrimaryBoot.bit);

4.1.2 Blocking Functions
The blocking functions are controlled by the pacing registers. They are blocking in the sense that the
firmware may hold off the completion of the read / write functions as needed.

int Read(void *bufP, ULONG byteCount, int picoRelAddr=-1);

The Read function will transfer data from the device on the Pico card to the host PC. byteCount must be a
multiple of four, however, it may be as large as the channel size. Read will return the number of bytes
transferred which may be less than byteCount if the device timed out. Read will return a negative error
code if an error (other than a timeout) occurs.

int Write(void *bufP, ULONG byteCount, int picoRelAddr=-1);

The Write function will transfer data from the host PC to the device fabricated on the Pico card. byteCount
must be a multiple of four, however, it may be as large as the channel size. Write will return the number of
bytes transferred which may be less than byteCount if the device timed out. Write will return a negative
error code if an error (other than a timeout) occurs.

4.1.3 Non-Blocking Functions
The non blocking functions will access the hardware and return immediately.

int GetBytesAvailable(int regNum);

This function returns the value of the read pacing register (regnum =PICO_READ_PACING), the
write pacing register (regnum=PICO_WRITE_PACING=4) or either of the other
two pacing block registers, regnum=PICO_INTR_STATUS or PICO_INTR_CONTROL).
Reads to the pacing read/write report the status of the pacing regisger minus any read / write requests that
are outstanding on this user logic device. For example, if the firmware advertises that it can accept 100
bytes, but there is a Read pending that will consume 80 bytes, BytesAvailable() will return 20. If more bytes
are committed than are advertised BytesAvailable will return zero. To obtain the current value of the
firmware pacing registers use ReadStatus(). However, be aware that this value may not be the number of
bytes that can be transferred without waiting. Note that the metric of the pacing registers is words but this
function returns bytes.

int ReadDevice(int relAdr, void *bufP, int byteCount);

The ReadDevice function will transfer data from the device to the host PC. byteCount must be a multiple of
four, however, it may be as large as memory available on the PC host. ReadDevice differs from Read in two

API Documentation December 2011 13

important respects: first it does not wait for the pacing register, and it does not use picoAddr (but rather the
relative address passed as the first parameter).

int WriteDevice(int relAdr, void *bufP, int byteCount);

The WriteDevice function will transfer data from the device to the host PC. byteCount must be a multiple of
four, however, it may be as large as memory available on the PC host. WriteDevice differs from Write in
two important respects: it does not wait for the pacing register, and it does not use picoAddr (but rather the
relative address passed as the first parameter). ReadDevice’s address parameter is interpreted as an
address relative to the beginning of the channel (anywhere from 0x10A00000 through 0x101FFFFF for
channel 10), and will be a 20-bit number.

int ReadDeviceAbsolute(int absAdr, void *bufP, int byteCount=4);

The ReadDeviceAbsolute function will transfer data from the device to the host PC. byteCount must be a
multiple of four, however, it may be as large as memory available on the PC host. ReadDeviceAbsolute
differs from Read in two important respects: it does not wait for the pacing register and it does not use
picoAddr (but rather the offset passed as the first parameter). ReadDeviceAbsolute’s address parameter is
interpreted as an absolute address (anywhere from 0x10100000 through 0x7FFFFFFF), and will be a 31-bit
number.

int WriteDeviceAbsolute(int absAdr, void *bufP, int byteCount=4);

The ReadDeviceAbsolute function will transfer data from the device to the host PC. byteCount must be a
multiple of four, however, it may be as large as memory available on the PC host. ReadDeviceAbsolute
differs from Read in two important respects: it does not wait for the pacing register and it does not use
picoAddr (but rather the offset passed as the first parameter). ReadDeviceAbsolute’s address parameter is
interpreted as an absolute address (anywhere from 0x10100000 through 0x7FFFFFFF), and will be a 31-bit
number.

4.1.4 Memory Access Functions
Memory on Pico Cards may be of a variety of forms. All FPGAs have RAM elements in logic, and these can be
assembled into a block (called Block RAMS). Most Pico Cards also have some external RAM. Pico Clusters
may have additional neighborhood RAM, shared between all cards. Generally, the speed of access
diminishes with distance from the FPGA and the capacity increases with distance.

int ReadMemory(int addr, void *bufP, int byteCount=4, TYPEOF_MEMORY

typeOfMemory=0);

The ReadMemory function will transfer data memory from the memory accessible to the Pico Card to
memory to the provided memory block (bufP). byteCount must be a multiple of four, and is limitted to
0x10000 bytes.

int WriteMemory(int addr, void *bufP, int byteCount=4, TYPEOF_MEMORY

typeOfMemory=0);

The WriteMemory function will transfer data from host PC to memory on memory accessible to the Pico
Card. byteCount must be a multiple of the firmwareWidth (see GetPicoConfig in Other Service Functions),
and is limitted to 0x100000 bytes. The typeOfMemory parameter (if provided) must be one of the
previously mentioned constants:

The TYPEOF_MEMORY variable noted in the previous two functions distinguishes the various classes of
memory available on each FPGA. Some of these are real and others are memory mapped I/O.
TYPEOF_MEMORY is defined in the following typedef.

Definition Platform Notes

typedef enum

{BLOCKRAM_MEMORY=1, Any Equivalent to Read/WriteAbsoluteDevice

API Documentation December 2011 14

PORT_MEMORY, E16, E17 Alternative address space access through the I/O address space. On the E-16
this
Memory is the address space of the DEVICE_AMEMORY bank beginning at
address
0xFFE00000.

STATIC_MEMORY, E16, M503 This is a small amount of static memory packaged on the Pico Card. Static
memory is often very fast and easy to access.

DDRx_MEMORY, E17,M501,
 M503

DDR2 or DDR3 memories are usually large and require significant firmware to
access.

ATTRIBUTE_MEMORY, All See configuration memory.

FLASH_MEMORY, E17, M501 Read only access to flashROM on the Pico Card.

DEVICE_AMEMORY=16, any Primary device memory. Typically this is 0x100000 bytes long.

DEVICE_BMEMORY=17, any Secondary device memory. Typically this is 0x100000 bytes long and is rarely
implemented in the FPGA.

DEVICE_CMEMORY=18, any Configuration memory. Typically 4096 bytes long and contains PCIe
configuration Information along with other vendor specific or Pico Card specific
registers.

DEVICE_PMEMORY=14, any Parent address space. The E-16 has a PCIe bridge device built onto the Pico
Card. Certain functions (such as loading the E-16) require access to this address
space. When a Pico Card is mounted on an M500 backplane the parent
memory will refer to a bridge device on the M500 board. This is generally a pass
through port and performs no useful function.

DEVICE_GMEMORY=15, any GrandParent address space. When a Pico Card is mounted in a M500
backplane, the PEX-8664 on the M500 is accessible through this memory
address. There are many registers accessible through this memory space that
control the card, for example loading the FPGA, or clearing errors on the PCIe.

} TYPEOF_MEMORY;

Most of the special purpose memory (PMEMORY, GMEMORY, and PORT_MEMORY) is handled internally by the cPicoChannel
class or by the underlying driver. These address spaces are exposed for debugging and special purpose functions.

4.1.5 Channel Options
Options are fixed values that alter the behavior of the channel over its entire life. Some options can be set
when the channel is created (see Constructor & Destructor) and are fixed for the life of the channel. Other
options can be changed dynamically.

Options are set or retrieved using a generic function:

int SetGetOptions(uint32_t paramCode, void *vP);

Unless otherwise noted the parameter vP points to a uint32_t which contains the new parameter. When
the function returns *vP will be updated with the old value of the parameter.

Parameter Code Default Meaning

SET_DEVICESIZE channelSize 0x100000 channelSize is the size of the memory space used by the
device. The value should be between 0x100000 and

API Documentation December 2011 15

0x100000 * 1791. PicoXX.sys will wrap the Pico Address so
that it is always in the range [0, channelSize-1].

SET_BASEADDR baseAddr Changes the address of the memory range and in effect
changes the channel number

SET_GRANULARITY granularity 4 granularity is the number of words that must be present
before aDMA transfer will be initiated. Default = 1.

SET_READ_TIMEOUT 100,50 Specify the timeouts associated with a read. Refer to Using
Timeouts. vP should point to a PICO_TIMEOUT structure

SET_WRITE_TIMEOUT 100,50 Specify the timeouts associated with a write. Refer to
Using Timeouts. vP should point to a PICO_TIMEOUT
structure

SET_PICOADDR picoAddr Same as function SetPicoAddr()

SET_PICOADDR_STRATEGY strategy PS_ZERO_EACH_ACCESS cause picoAddress to be set to
zero at the beginning of each read / write function. As
data is read / written picoAddress will be incremented by
4. PS_IGNORE causes picoAddress to increment as each
read / write function is performed.

SET_DEBUG_FLAGS debugFlags Specify debug flags to PicoXX.sys

4.1.6 Loading the FPGA
The FPGA can be loaded when the cPicoChannel class is created. However, there are occasions for re-loading or
rebooting the FPGA after the class is created. This can be achieved using the LoadFpga function.

int LoadFPGA(const char *bitFileNameP);

This function loads the FPGA from a flash ROM file (E-17) or from a PC-Host file (E-16, M501, M503).

bitFileNameP points to an ascii string. The file name may have the prefix flash: which indicates that the file

resides in the flash memory system of the E-17. Otherwise the file will be presumed to be on the host PC. See file= in
the cPicoChannel constructor.

Examples:
LoadFPGA("c:\\Pico\\bin\E17FX70T-PicobusCounter.bit")
LoadFPGA("flash:$(picobase)\\bin\\M503-PicobusCounter.bit")
LoadFPGA("$(picobase)\\bin\\$(model)-PicobusCounter.bit")

In the second and third cases we have taken advantage of $(variables) to enhance the portability of the code.

4.1.7 Other Service Functions
int GetError();
This function returns the last error generated by cPicoChannel. Extended error information is available through the
InterpretDriverError function.

HANDLE GetHandle();
This function returns the handle of the underlying file class used to implement the cPicoChannel. The most common
use for this call is to obtain a handle which is then passed to DeviceIoControl. DeviceIoControl is used to perform
special functions on the file class.

int SetPicoAddr(uint32_t picoAddr);
This function sets the address made available when the DMA transfers data to the device fabricated on the Pico card.
The picoAddr may only be as large as the channelSize parameter (specified using SetGetOptions(SET_DEVICESIZE,..).
SetPicoAddr() returns a negative value to indicate an error.

int ReadStatus(int offset, uint32_t *u32P);
This function reads a word from the pacing register of the user logic device. Offset == 0 is the read pacing register,
offset == 4 is the write pacing register, offset == 8 and offset == 12 are user defined registers.

API Documentation December 2011 16

typedef struct
 {uint32_t model; uint16_t openCount, cardNum;}
AVAILABLE_CARD;

int AvailablePicoCards (AVAILABLE_CARD *availableP=NULL, int availableSize=0);
Returns number of Pico cards visible to this application and fills availableP with references to available cards. The
AVAILABLE_CARD has the following fields:

typedef struct

 {uint32_t model; //Model = 0x0E174658. Readers of the ascii persuasion will recognize 0x46 and 0x58 and the
//code for 'F' and 'X'. Thus 0xE174658 is an E-17 FX card and 0x0E175358 is an E-17 SX card.

 uint16_t cardNum; //As in \\.\Pico3

 uint8_t openCount; //Number of users

 uint8_t dead :1, //Card is dead. The card has failed some significant internal test (such as PCIe failure)
and cannot be used. This condition can normally be corrected by restarting the computer

 loaded :1, FPGA is loaded. Either the FPGA is loaded from flashROM at power-on or the FPGA has been
explicitly loaded using the cPicoChannel constructor(...file=...) or cPicoChannel::LoadFPGA()
function

 remote :1, Card is on remote machine. The Pico Card is physically located on another machine.

 nu :5;

 uint32_t nu1[2];
 } AVAILABLE_CARD;

4.2 Access to Pico Channel Server
The specification ipAdr=hostname in the constructor of a class will allow the Pico Channel to access Pico Card(s) on a network
attached machine. For example:

 channelP = new cPicoChannel(10, "writeOnly,ipAdr=1.2.3.4");

will open channel 10 on the machine at IP address 1.2.3.4.

Client IP services are managed by the source module pico_channel_IP.cpp. The server must be running either
PicoChannelServer or PicoDaemon. The latter is a service (under Windows) which is a small program designed to start
PicoChannelServer when it receives the appropriate packet from pico_channel_IP.

The purpose of PicoDaemon is to provide an 'every-present' target to which message can be sent to manage
PicoChannelServer. There are other mechanisms under Windows to achieve this, but the pair of programs PicoDaemon and
PicoChannelServer are compatible and interoperable with a Linux server and client.

All subsequent traffic uses the TCP/IP connection established directly with the channel server.

4.2.1 PicoDaemon
PicoDaemon.exe must be registered as a service under Windows and before it is started.

 PicoDaemon /regserver register PicoDaemon as a service
 PicoDaemon /unregserver remove PicoDaemon as a service

 net start PicoDaemon start PicoDaemon

file://./Pico3

API Documentation December 2011 17

 net stop PicoDaemon stop PicoDaemon

After it has been registered you may also designate PicoDaemon to be started automatically when Windows is rebooted. Goto

 Control panel /Administrative tools / Component Services & select Services (local)
 and specify automatic startup.

PicoDaemon accepts a UDP packet from the class cPicoChannel_IP which signals it to start PicoChannelServer

PicoDaemon accepts the following command line arguments:

 /debug enables debug mode
 /port <adr> specify port address, default=5001.
 /silent do not display message boxes for regserver or unregserver
 /regserver registers PicoDaemon as a service.
 /unregserver unregisters PicoDaemon as a service.

Once the port address is specified it will be used on all subsequent invocations of PicoDaemon.

4.2.2 PicoChannelServer
PicoChannelServer does the heavy lifting. PicoChannelServer listens for a TCP/IP connection from a client. When is receives a
TCP/IP packets it unravels the packets and accesses the local Pico Card. PicoChannelServer then packages up and returned data
and sends it back to the client.

PicoChannelServer accepts the following command line arguments:

 $ enable 'debug mode'. Each message received is logged to the display
 /port specify port address on which to post a listen; default = 5001.

When PicoChannelServer is running the $ key can be used to enable or disable debug mode.

PicoChannelServer can be invoked from a command line or from PicoDaemon. If the daemon is not running but the channel
server is running the UDP packet is ignored.

4.2.3 Pico Remote Server Example
Example:

 cPicoChannel *channelP;

 //Get a summary of Pico Cards at the channel server 1.2.3.4

 ii = AvailablePicoCards(avail, sizeof(available), "1.2.3.4");

 channelP = new cPicoChannel(10, "ipAdr=1.2.3.4, readOnly,

file=$(picobase)\\bin\\mybitfile.bit");

 //Check for errors

 if ((erC=channel.GetError()) < 0) {print("Error %u creating picochannel\r\n", -

erC); return erC;}

 //Perform a write

 channel.Write(buf, sizeof(buf));

 //Perform a write

 ii = channel.Read(buf, sizeof(buf));

The text specifying the channel server ("ipAdr=1.2.3.4" in this case) will be removed when it is passed to the class constructor at
the channel server. At the channel server a channel is created on behalf of the remote user, ie,

API Documentation December 2011 18

 channelP = new cPicoChannel(10, "readOnly,

file=$(picobase)\\bin\\mybitfile.bit");

NOTE: Special care should be exercised with the file=fileName parameter to the class constructor. The file will be resolved at
the channel server.

If you wish to load from your local machine you must specify a file name that will resolve to your local machine - such as

 \\myMachine\c:\%picobase%\bin\mybitfile.bit

NOTE: The same caveat applies to $(picobase) or any other environment variables. They will be resolved in the context of the
channel server.

4.2.4 User Defined Server Functions
The user may supply a library which provides additional function to the program picoChannelServer. Under Windows such a file
usually has the suffix .dll. The library file allows the user to provide functionality at the server rather than use multiple channel
functions which must be passed individually across the TCP/IP line. For example the user supplied library file could perform a
read/modify/write function which cannot be interrupted by a second user accessing the same card.
The class cPicoChannel_IP provide the marshalling of data to and from the server.

Server Side

The library file resides on the PicoChannelServer side of the remote connection. The library file must declare three export
functions:

extern "C" __declspec(dllexport) int Initialize(uint32_t version);

extern "C" __declspec(dllexport) int Shutdown(void);

extern "C" __declspec(dllexport) int Process(uint32_t cmd, cPicoChannel *channelP,

 void *bP, int ilen, void *obP,

int *olenP);

The functions Initialize is called when the library file is loaded. The user should verify that the version is acceptable and return
zero if it is otherwise a negative error code.

The function Shutdown is called before the library file is removed from memory.

The function Process:

 processes an input buffer and stores the results in the output buffer.

 updates the value at *olenP.

 returns a negative error code if there is an error.

 return a positive value to indicate various shades of success.

The parameter cmd must be in the range:

 [PICO_TU_USER_COMMAND_LO, PICO_TU_USER_COMMAND_HI]

Refer to sample\userChannelServer for an example of this function.

User Side

When Pico Channel is instantiated on the client side the parameter to the constructor should include the phrase:

API Documentation December 2011 19

 userlib=filename

for example:
 channelP = new cPicoChannel(10, "ipAdr=1.2.3.4,
userLib=c:\\Pico\\bin\\myUserLibl.dll");

The filename in this case is resolved at the channel server and therefore refers to a file on the server.

From the client side the user defined function is called as follows:

 inBuf[0] = 0x5a5a5a5a;

 erCode = channel.UserCommand(cmd, &channel, inbuf,sizeof(inbuf),

outbuf,&(size=sizeof(outbuf)));

 if (erCode < 0) {printf("error %u\r\n", -erCode);}

 else {printf("sizeof results=%u: 0x%08X\r\n", size, outBuf[0]);

Bigendian Note: The header used to transport the user buf to the channel server is

automatically aligned to hi-lo byte order. However the use data buffers (inbuf and

outbuf) will be in the format of the originating system - ie lo-hi byte order for

Pentium based systems.

4.3 DeviceIOControl
DeviceIoControl is an out of band file control mechanism that can be used to perform functions not included in cPicoChannel.

The function GetHandle() is used to obtain the operating system handle which is required by DeviceIoControl.

DeviceIoControl(channel.GetHandle(), PICO_SET_FLAGS,

 &inputBuf,sizeof(inpuBuf), //input parameters

 &outputBuf,sizeof(outputBuf), //output results

(optional)

 &oCount, NULL);

For example, the following call to DeviceIoControl will set and return the debugging flags:

u32 = 0x9F66000;

DeviceIoControl(chhannel.GetHandle(), PICO_SET_FLAGS, &u32,sizeof(u32),

&u32,sizeof(u32), &oCount, NULL);

(Of course, this could also be done using SetGetOptions function)

DeviceIoControl is not consistent across operating systems. However, cPicoChannel has a protected cross platform
implementation IoControl. You can use this function by deriving your own class as follows:

class cMyPicoChannel : public cPicoChannel

 {public:

 int IoControl(uint32_t fcn, void *ibP, uint32_t ilen, void *obP, uint32_t

olen, pico_size_t nu)

 {return m_channelP->IoControl(fcn, ibP, ilen, obP, olen, nu);}

 };

4.4 Defines Associated with Channels
The following defines are associated with DMA access and the associated status registers.

#define BM_CHANNEL_BASE 0x10100000U
#define BM_CHANNEL_SIZE 0x100000U
#define BM_MAX_CHANNELS 1791U

API Documentation December 2011 20

#define BM_STATUS_BASE 0x10000010U
#define BM_STATUS_SIZE 0x10U

BM_CHANNEL_BASE: Bus Mastering devices use the address space above 0x10100000. Channel 1 is

0x10100000.
BM_CHANNEL_SIZE: Each Bus Mastering channel is 0x10000 (1,048,576) bytes wide.
BM_CHANNELS_MAX: There are a maximum of 1791 channels == (0x7FFFFFFF - 0x10100000) /

0x100000.
BM_CHANNEL_STATUS_BASE: Status registers use [0x10000000 - 0x100FFFFF]. Channel 1 is 0x10000010.
BM_CHANNEL_STATUS_SIZE: Each bank of status registers is 16 bytes wide (4 * 32bit registers).

#define BM_CHANNEL_FROM_ADDR(addr) (1+(addr - BM_CHANNEL_BASE) / BM_CHANNEL_SIZE)
#define BM_CHANNEL_FROM_STATUS(addr) (1+(addr - BM_STATUS_BASE) / BM_STATUS_SIZE)
#define BM_ADDR_FROM_CHANNEL(channel) (BM_CHANNEL_BASE + (channel-1) * BM_CHANNEL_SIZE)
#define BM_STATUS_FROM_CHANNEL(channel) (BM_STATUS_BASE + (channel-1) * BM_STATUS_SIZE)

These macros map channels to addresses and addresses to channels.

typedef struct

 {UINT32 wordsAvailable:20, //bits 0x000FFFFF

 nu :6, //bits 0x03F00000 == 0

 signature :6; //bits 0xFC000000 == PCMCIA_BM_READ_STATUS_SIGNATURE

(0x26) or

 // == PCMCIA_BM_WRITE_STATUS_SIGNATURE

(0x22)

 } BM_DEVICE_STATUS;

 Status register returned from firmware device to control transfer between host and

Pico Card.

typedef struct

 {uint32_t timeout1; //timeout for first call

 uint32_t timeout2; //timeout for second and subsequent calls

 } PICO_TIMEOUT;

These structures are used to set timeout.

4.5 Creating a Sample Program
The following code snippet illustrates the basic techniques of accessing a Pico Card(s). The snippets are taken from the
Picobus_counter example (%picobase%\samples\picobus_counter\software)

1. #define CHANNEL_NO 1

2. int main(int argc, char* argv[])

3. {int erC, ii;

4. uint32_t buf[1000];

5. const char *paramsP="!loaded, file=$(model)_Picobus_counter_ISE.bit";

6. cPicoChannel channel(CHANNEL_NO, paramsP);

7. //Check that channel was created correctly

8. if ((erC=channel.GetError((char*)buf, sizeof(buf))) < 0)

9. {printf(stderr, "Error %u creating channel\nContext: %s\n", -erC, (char

*)buf);

10. exit(1);

11. }

paramsP contains parameters in the general format keyword=value,....
buf will receive any error message generated by cPicoChannel.

API Documentation December 2011 21

The integer erC will receive the error number: non-negative if successful, negative if an error.

Line 6 creates the cPicoChannel class, with channel # = 1
Lines 8-11 check that the channel was created correctly, and report an error message if it did not

5. Firmware

The Picobus firmware in all Pico bit images provides functionality that handles DMA transfers. The same interface also allows
your application program to make single word accesses (i.e. non DMA accesses) to the Pico card without additional logic. The
PicoBus interfaces to the user logic peripheral with the following signals:

picoAddr[31:0] address of operation bits [19:0] all map to this user logic device and [31:20] select
which device

picoDataIn[31:0] data from the PC

PicoDataOut[31:0] data to the PC

PicoRd asserted when data is going to the PC

PicoWr asserted when data is coming from the PC

PicoClk clock for above signals

The interface is exactly the same whether the device is accessed (from software) using a single word access protocol (Read
Device or Write Device see the class cPicoChannel) or DMA access (Read or Write The class cPicoChannel).

5.1 Implementing a Channel in Firmware
All of the following Verilog code snippets could be found in a typical Verilog file defining a user logic device. The Verilog
declaration of a device should be:

`include "PicoDefines.v"

module BMmodule

 (input PicoRst,

 output [31:0] PicoDataOut, //data returned

 input [31:0] PicoAddr, //address from PCIe/USB bus

 input [31:0] PicoDataIn, //data from PCIe/USB

 input PicoRd, //IO Read from PCIe/USB bus

 input PicoWr, //IO Write to BM/PCMCI bus

 input PicoClk //clock from PCIe/USB

);

For data being transferred from the PC host to the Pico Card:
picoAddr and PicoDataIn will be valid on the rising edge of PicoClk when PicoRd is asserted.

For data beings transferred from the Pico Card to the PC host
picoAddr is valid on the rising edge of PicoClk when PicoWr is asserted.
PicoDataOut should be valid before the next rising edge of PicoClk.

PicoAddr is specified when the application program accesses the Pico card. PicoAddr may be any address in the range
[0x1000,0000 0x7FFF,FFFF]. User logic devices that adhere to the channel model, and have the default size of 0x100000 bytes,
only respond when the top 12 bits of PicoAddr are the same as their channel #, plus 0x10000000. This allows any
channelNumber between 1 and 1791. The bottom 20 bits may be used for devices within the user logic device, or ignored, at
the user’s discretion. The following logic develops the signals myRead and myWrite, which would be used as more specific
versions of PicoRd and PicoWr:

`define MY_DEVICE_ADR 32h'10200000 //This user logic device is on Channel 2

wire meSelected, myRead, myWrite;

API Documentation December 2011 22

assign meSelected = {PicoAddr[31:20], 20'b0} == `MY_DEVICE_ADR;

assign myRead = meSelected & PicoRd; //PCIe/USB read data

assign myWrite = meSelected & PicoWr; //PCIe/USB write data

The logic to read or write data might be something like:

reg [31:0] deviceData;

always @(posedge PicoClk)

 begin

 if (myRead) deviceData <= deviceData + 1; else //perform action required

when data is read

 if (myWrite) deviceData <= deviceData + PicoDataIn; //perform actions required

when data is written

 end

assign PicoDataOut = (myRead ? deviceData : 0); //OR the device data onto the Pico

output Bus

The pacing register requires the following addition logic:

`define BM_READ_STATUS_ADR 32'h01000200 //read pacing register for channel 2

`define BM_WRITE_STATUS_ADR 32'h01000204 //write pacing register for channel 2

wire myStatRead, myStatSelectR, myStatWrite, myStatSelectW;

assign myStatSelectR = ({picoAddr[31:2], 2'b0} == `BM_READ_STATUS_ADR);

assign myStatSelectW = ({picoAddr[31:2], 2'b0} == `BM_WRITE_STATUS_ADR);

assign myStatRead = (myStatSelectR & PicoRd); //device read status

assign myStatWrite = (myStatSelectW & PicoRd); //device write status

reg [11:0]readWordsAvailable; //number of 32bit words available to read from

device

reg [11:0]writeWordsAvailable; //number of 32bit words that may be written to the

device

The output to the Pico bus would then be:

assign PicoDataOut = (myRead ? deviceData

: 0) |

 myStatRead ? {`PCMCIA_BM_STATUS_SIGNATURE, 6'h0,

readWordsAvailable} : 0) |

 myStatWrite ? {`PCMCIA_BM_STATUS_SIGNATURE, 6'h0,

writeWordsAvailable} : 0);

	1. Overview
	2. Architecture
	3. Channel Basic Concepts
	3.1 Address Space of a Pico Channel
	3.2 Channel Number Arithmetic
	3.3 Pacing Registers
	3.4 Granularity
	3.5 Timeouts
	3.6 Pico Streams

	4. Software
	4.1 The Class cPicoChannel
	4.1.1 Constructor and Destructor
	~cPicoChannel();
	channelSize=
	File=
	ignorePacing
	ipAdr=
	!loaded
	Model=
	picoCardNum=
	readOnly or WriteOnly
	serialNum=

	4.1.2 Blocking Functions
	4.1.3 Non-Blocking Functions
	4.1.4 Memory Access Functions
	4.1.5 Channel Options
	4.1.6 Loading the FPGA
	4.1.7 Other Service Functions

	4.2 Access to Pico Channel Server
	4.2.1 PicoDaemon
	4.2.2 PicoChannelServer
	4.2.3 Pico Remote Server Example
	4.2.4 User Defined Server Functions
	Server Side
	User Side

	4.3 DeviceIOControl
	4.4 Defines Associated with Channels
	4.5 Creating a Sample Program

	5. Firmware
	5.1 Implementing a Channel in Firmware

