
Impulse Tutorial: Using C-Language Simulation for Algorithm Verification 1

© 2003-2009 Impulse Accelerated Technologies, Inc.

1 Impulse Tutorial: Using C-Language Simulation for
Algorithm Verification

Overview

This Getting Started tutorial describes the process of C-language simulation, by showing how you can
compile your C-language hardware module along with test producer and consumer processes to
verify correct behavior. This tutorial builds on what you learned in the first tutorial
(Creating VHDL and Verilog from C-Language). This tutorial concludes with additional discussions of
multiple-process parallelism, hardware generation and pipeline optimization.

This tutorial will require approximately 20 minutes to complete, including software run times.

Steps

Loading the 5 x 5 Image Filter Application
Understanding the 5 x 5 Image Filter Application
Compiling and Running the C Code for Simulation
Notes on Hardware Generation

For additional information about Impulse CoDeveloper, including detailed tutorials describing more
advanced design techniques, please visit the Tutorials page at the following location:

www.ImpulseAccelerated.com/Tutorials

1.1 Loading the 5 x 5 Image Filter Application

Image Filter Tutorial, Step 1

To begin, start the CoDeveloper Application Manager:

 Start -> Programs -> Impulse Accelerated Technologies -> CoDeveloper -> CoDeveloper
Application Manager

Open the ImageFilterKernel5X5 sample project by selecting Open Project from the File menu, or by
clicking the Open Project toolbar button. Navigate to the .\Examples\Image\ImageFilterKernel5X5\
directory within your CoDeveloper installation. (You may wish to copy this example to an alternate
directory before beginning.)

The project file is also available from the CoDeveloper Start Page, in the Help and Support tab.

After loading the project, you will see a Readme file with a block diagram, and a Project Explorer
window as shown below:

http://www.ImpulseC.com/Tutorials

Impulse Tutorial: Generating HDL from C-Language2

© 2003-2009 Impulse Accelerated Technologies, Inc.

You can scroll down in the Readme file as shown to learn more about this application. To summarize,
this is a 5-pixel by 5-pixel, 2-dimensional image convolution filter that operates on 16-bit grayscale
data. This filter could represent one section of a larger video filtering application, for example one of
the first steps in a more complex object recognition algorithm.

The method used for creating this filter involves the creation of two parallel C-language processes
named columns and filter, respectively.

The columns process accepts incoming pixels, for example from a video stream, and stores those
pixels in an internal buffer large enough to store a little more than four scan lines. When its internal
buffers are filled, the process begins to emit five parallel streams of pixels representing five adjacent
scan line rows. This is what is refered to as a marching columns method of buffering.

The filter process executes in parallel with the columns process, accepting the five incoming streams
and performing a 5-pixel by 5-pixel convolution to generate a stream of filtered outputs.

The producer and consumer processes are used during software testing to read and write sample

Impulse Tutorial: Using C-Language Simulation for Algorithm Verification 3

© 2003-2009 Impulse Accelerated Technologies, Inc.

image files as described later in this tutorial.

Source files included in this project include:

· img_hw.c - This source file includes the C-language description of the image filter, including its
I/O. This description includes the two hardware processes, columns and filter, as well as a
configuration subroutine.

· img_sw.c - This source file includes a set of software testing routines including a main() function,
and consumer and producer software processes as illustrated in the block diagram.

· img.h - This source file includes common declarations used in both the filter description (in
img_hw.c), and in the test routines (img_sw.c).

· bmp.h - This source file includes declarations used only in the test routines. These declarations
are related to the processing of BMP format files.

You can open any of these three files by simply double-clicking on the file name in the Project Explorer
window. In the next step, we will describe in detail how this example works.

Next Step

Understanding the 5 x 5 Image Filter Application

1.2 Understanding the 5 x 5 Image Filter Application

Image Filter Tutorial, Step 2

Before compiling the image filter application to perform a simulation, let's first take a moment to
understand its basic operation.

The Image Filter C-Language Processes

The specific hardware processes that we will be testing are represented by the following two functions,
which are located in img_hw.c:

void columns (co_stream input_stream, co_stream r0, co_stream r1, co_stream r2,
co_stream r3, co_stream r4)

void filter (co_stream r0, co_stream r1, co_stream r2, co_stream r3, co_stream r4,
co_stream output_stream)

These two C-language subroutines each represent an Impulse C process. As described in the first
tutorial, a process in Impulse C is a module of code, expressed as a void subroutine, that describes a
hardware or software component.

If you are an experienced hardware designer, you can simply think of a process as being analogous
to a VHDL entity, or to a Verilog module.

If you are a software programmer, you can think of a process as being a subroutine that will loop
forever, in a seperate thread of execution from other processes.

When implemented as hardware in the FPGA, these two processes will run concurrently, processing
data on their respective inputs and outputs. Because the two processes will be arranged such that
process filter accepts inputs generated as outputs by process columns, we can think of these two
processes as a system-level pipeline.

Impulse Tutorial: Generating HDL from C-Language4

© 2003-2009 Impulse Accelerated Technologies, Inc.

System-level pipelining is an important concept to understand. When combined with statement-level
parallelism and loop-level pipelining, system-level pipelining can create remarkable levels of software
acceleration when compared to traditional, instruction-based processors. In fact, for video
processing the combination of loop-level and system-level pipelining allows video signals to
processed and filtered in real-time, with no degradation of the signal or reduction in data throughput.

The Columns Process

Scroll down to find the definition of the columns process. The process has no return value, and has a
total of six streaming interfaces that have been defined using Impulse C co_stream data types. These
streams are used to:

· Read in raw, unfiltered pixels, for example from a video source. If this process is to operate on a
live video stream, then the process will need to accept a new pixel value every clock cycle.

· Write out five pixel values on the r0, r1, r2, r3 and r4 streams. These pixel values will then be
read into the filter process that follows.

Scroll down in the source code to view the inner loops for process columns:

 do {
 for (i = 2; i < HEIGHT; i++) {
 // Note: the following loop will pipeline with a rate of
 // one cycle if the target platform supports dual-port RAM.
 for (j=0; j < WIDTH; j++) {
 #pragma CO PIPELINE
 p04 = B[j];
 p14 = C[j];
 p24 = D[j];
 p34 = E[j];
 co_stream_read(input_stream, &p44, sizeof(co_uint16));
 co_stream_write(r0, &p04, sizeof(co_uint16));
 co_stream_write(r1, &p14, sizeof(co_uint16));
 co_stream_write(r2, &p24, sizeof(co_uint16));
 co_stream_write(r3, &p34, sizeof(co_uint16));
 co_stream_write(r4, &p44, sizeof(co_uint16));
 B[j] = p14;
 C[j] = p24;
 D[j] = p34;
 E[j] = p44;
 }
 }
 IF_SIM(break;) // For simulation we break after one frame
 } while (1);

When compiled as hardware, the outer do-while loop runs forever, accepting single-pixel input values
using co_stream_read, and writing out five parallel pixel values using co_stream_write. When
examining this code, note that:

· A PIPELINE pragma has been placed at the top of the loop, indicating to the compiler that this is
a critical loop that requires high throughput. As a result of this pragma, the compiler will
generate hardware with pipeline control logic and parallel pipeline stages. As the code comment
indicates, the pipeline rate that will be achieved by the compiler will depend in part on the type of
FPGA memory available for the B, C, D and E arrays. This pragma only has meaning during
hardware generation; it is ignored during software simulation.

· An IF_SIM macro has been used along with a break statement to exit the outer do-while loop
during simulation. This is a useful technique to allow the simulation to end cleanly, with output
files properly closed. (If the loop was not exited in this way, the application would not stop
running during simulation and would need to be forcibly halted.)

Impulse Tutorial: Using C-Language Simulation for Algorithm Verification 5

© 2003-2009 Impulse Accelerated Technologies, Inc.

The Filter Process

Scroll down more to find the definition of the filter process. The process also has a total of six
streaming interfaces. These streams are used to:

· Read in the five streams of pixels that were generated by the columns process, representing
five adjacent scan lines.

· Write out a single filtered pixel value on the output_stream streams.

Scroll down in the source code to view the inner loop for process filter:

 do {
 #pragma CO PIPELINE
 #pragma CO set stageDelay 100
 err = co_stream_read(r0, &data0, sizeof(co_uint16));
 err &= co_stream_read(r1, &data1, sizeof(co_uint16));
 err &= co_stream_read(r2, &data2, sizeof(co_uint16));
 err &= co_stream_read(r3, &data3, sizeof(co_uint16));
 err &= co_stream_read(r4, &data4, sizeof(co_uint16));
 if (err != co_err_none) break;

 p00 = p01; p01 = p02; p02 = p03; p03 = p04;
 p10 = p11; p11 = p12; p12 = p13; p13 = p14;
 p20 = p21; p21 = p22; p22 = p23; p23 = p24;
 p30 = p31; p31 = p32; p32 = p33; p33 = p34;
 p40 = p41; p41 = p42; p42 = p43; p43 = p44;

 p04 = data0;
 p14 = data1;
 p24 = data2;
 p34 = data3;
 p44 = data4;

 sop = p00*F00 + p01*F01 + p02*F02 + p03*F03 + p04*F04
 + p10*F10 + p11*F11 + p12*F12 + p13*F13 + p14*F14
 + p20*F20 + p21*F21 + p22*F22 + p23*F23 + p24*F24
 + p30*F30 + p31*F31 + p32*F32 + p33*F33 + p34*F34
 + p40*F40 + p41*F41 + p42*F42 + p43*F43 + p44*F44;
 if (sop > 255*FDIV)
 result = 255;
 else
 result = (co_uint16) (sop >> 7); // Divide by 128
 co_stream_write(output_stream, &result, sizeof(co_uint16));
 } while (1);

As in the columns process, the outer do-while loop runs forever, accepting input values using
co_stream_read, and writing out five parallel pixel values using co_stream_write. When examining
this code, note that:

· A PIPELINE pragma has been placed at the top of the loop, indicating to the compiler that this is
a critical loop that requires high throughput. An additional pragma, SET StageDelay, provides
additional information about the maximum pipeline stage delay for this loop, for the purpose of
making size/speed tradeoffs. (The SET StateDelay pragma is described in more detail in the
Impulse C User's Guide.) These pragmas only have meaning during hardware generation; they
are ignored during software simulation.

· A large, sum-of-products statement is used to perform the convolution on a sliding sub-window
of pixels being read from the r0 through r4 inputs. This statement represents the most
computationally intensive portion of this algorithm, and the part of the code therefore needing
the greatest level of parallel optimization.

Impulse Tutorial: Generating HDL from C-Language6

© 2003-2009 Impulse Accelerated Technologies, Inc.

· The IF_SIM macro is not being used in this loop, but a break statement is being used to exit the
outer do-while loop if there is any error found when reading data on the inputs streams. The
effect of this is that if the producing process (in this case columns) closes its output stream,
then this loop will exit, causing the simulation to stop as needed after a single test frame.
(Checking for stream read errors in this manner may or may not have any benefit in the
generated hardware, depending on the nature of the application and the capabilities of the target
platform.)

The Configuration Subroutine

The columns and filter subroutines together represent the algorithm to be implemented as hardware
in the FPGA. To complete the application, however, we need to include one additional routine that
describes the I/O connections and other compile-time characteristics for this application. This
configuration routine serves three important purposes, allowing us to:

1. define I/O characteristics such as FIFO depths and the sizes of shared memories.
2. instantiate and interconnect one or more copies of our Impulse C processes.
3. optionally assign physical, chip-level names and/or locations to specific I/O ports.

This example includes two hardware processes (columns and filter) and also includes the two testing
routines, producer and consumer. Our configuration routine therefore includes statements that
describe how the producer, columns, filter and consumer processes are connected together. The
complete configuration routine is shown below:

void config_img(void *arg)
{
 int error;
 co_stream stream1, r0, r1, r2, r3, r4, stream2;
 co_process columns_process, filter_process;
 co_process producer_process, consumer_process;
 co_signal header_ready;

 stream1 = co_stream_create("stream1", UINT_TYPE(16), 2);
 r0 = co_stream_create("r0", UINT_TYPE(16), 5);
 r1 = co_stream_create("r1", UINT_TYPE(16), 5);
 r2 = co_stream_create("r2", UINT_TYPE(16), 5);
 r3 = co_stream_create("r3", UINT_TYPE(16), 5);
 r4 = co_stream_create("r4", UINT_TYPE(16), 5);
 stream2 = co_stream_create("stream2", UINT_TYPE(16), 2);
 header_ready = co_signal_create("header_ready");

 columns_process = co_process_create("columns",
 (co_function)columns,
 6, stream1, r0, r1, r2, r3, r4);
 filter_process = co_process_create("filter",
 (co_function)filter,
 6, r0, r1, r2, r3, r4, stream2);
 producer_process = co_process_create("producer",
 (co_function)producer,
 2, stream1, header_ready);
 consumer_process = co_process_create("consumer",
 (co_function)consumer,
 2, stream2, header_ready);

 co_process_config(columns_process, co_loc, "PE0");
 co_process_config(filter_process, co_loc, "PE0");

 IF_SIM(error = cosim_logwindow_init();)
}

To summarize, the columns and filter subroutines describe the algorithm to be generated as FPGA

Impulse Tutorial: Using C-Language Simulation for Algorithm Verification 7

© 2003-2009 Impulse Accelerated Technologies, Inc.

hardware, while the producer and consumer subroutines (described elsewhere, in img_sw.c) are
used for testing purposes. The configuration routine is used to describe how these three processes
communicate, and to describe other characteristics of the process I/O. In this configuration subroutine,
note the following:

· There are a total of seven streams being declared and created. They include the system-level inputs
and outputs (here labeled stream1 and stream2), and the five intermediate streams (r0, r1, r2, r3
and r4). Notice that each stream is created with a width (in this case 16 bits) and a depth. The
stream depth is an important decision when creating pipelined systems. (Pipeline and stream
optimization techniques, and other methods of improving FPGA resource efficiency, are available as
application notes from Impulse.)

· Four processes are declared and created, represent unique instances of the producer, consumer,
columns and filter subroutines. Two of these processes are hardware, as indicated by the
co_process_config function calls, while the other two are software processes used only for testing.
During simulation, each of these four processes will be run in a seperate thread, allowing us to
model their transaction-level parallel behaviors.

· A call to cosim_logwindow_init appears at the end of the configuration subroutine. This function
call is used to enable the Application Monitor that we will be using in the next tutorial step.

The Producer and Consumer Processes

The producer and consumer processes, along with a main function, together represent a software
test bench. The term test bench comes from the world of hardware design, and it refers to a device or
fixture that allows a hardware module - or in this case a software description of hardware - to be tested
by applying sample inputs to it, and by observing the resulting outputs.

The declarations for producer and consumer appear in img_sw.c as follows:

void producer(co_stream pixels_raw, co_signal header_ready)

void consumer(co_stream pixels_filtered, co_signal header_ready)

To test this image filter application, we have decided to use a BMP format file as the input,
representing one frame of a video signal. The producer process (found in the file img_sw.c) describes
how the test input file is read and how its pixel values are streamed into the columns process. The
section of C code that actually performs this streaming of data into the columns process looks like
this:

 // Now send in all the pixels for the image
 printf("Sending BMP pixels...\n");
 for (i=0; i < ByteCount;) {
 pixelValue = (pBitMap[i++]);
 co_stream_write(pixels_raw, &pixelValue, sizeof(pixelValue));
 }

As you can see, the co_stream_write function is being used in the producer process to move data
pixel-by-pixel into the filter.

On the other end of the filter, the consumer process reads the data coming out of the filter process,
and writes it out to a new BMP format file representing the filtered output:

 printf("Consumer reading data...\n");
 while (co_stream_read(pixels_filtered, &pixelValue, sizeof(co_uint16)) ==
co_err_none) {
 putc(pixelValue, outfile);
 pixelCount++;
 }

Impulse Tutorial: Generating HDL from C-Language8

© 2003-2009 Impulse Accelerated Technologies, Inc.

When examining the producer and consumer processes, note that:

· A signal called header_ready is used to coordinate the reading and writing of the BMP files. This is
done because the producer process must read the BMP file header first, before the consumer
process can write out an equivalent header. Without this signaling mechanism, the producer and
consumer processes would run concurrently (in seperate threads) possibly resulting in incomplete
or wrong data being written to the output BMP file header.

· cosim_logwindow_create and cosim_logwindow_fwrite functions are used to instrument the
code for debugging purposes, using the Application Monitor.

· A main function (located at the end of img_sw.c) is used to start the test running. This main function
makes use of co_initialize and co_execute functions to initialize and bring up the four processes
(producer, consumer, columns and filter) as separate threads for simulation.

int main(int argc, char *argv[])
{
 co_architecture my_arch;
 void *param = NULL;
 int c;

 printf("Impulse C is Copyright 2003-2009 Impulse Accelerated Technologies,
Inc.\n");

 my_arch = co_initialize(param);
 co_execute(my_arch);
 printf("\n\nApplication complete. Press the Enter key to continue.\n");
 c = getc(stdin);

 return(0);
}

Next Step

Compiling and Running the C Code for Simulation

1.3 Compiling and Running the C Code for Simulation

Image Filter Tutorial, Step 3

Now that you have examined the application source code, the next step is to compile the complete
application using a standard C compiler, for the purpose of simulation.

Before compiling, let's take a moment to examine some of the options available for simulation. Open
the Simulation Options dialog by selecting Project -> Options, then clicking on the Simulate tab as
shown below:

Impulse Tutorial: Using C-Language Simulation for Algorithm Verification 9

© 2003-2009 Impulse Accelerated Technologies, Inc.

Notice in the Simulation Options dialog that you can specify the target executable name (in this case
ImageFilter.exe), as well as its location. In the case the location is left blank, so the executable will be
generated in the project directory. Also notice that there is a field allowing you to enter any commane
line arguments that might be needed in your software test. In this example there are no arguments
passed, but you may use this field to pass in file names or other information for your test, using the
argc, argv method of handling arguments in your main function.

Click OK to exit the dialog.

To compile the application, select Project -> Build Software Simulation Executable resulting the
messages shown below:

======== Building target 'build_exe' in file _Makefile ========
"C:/Impulse/CoDeveloper3/MinGW/bin/gcc" -g "-IC:\Impulse\CoDeveloper3\Include" "-
IC:/Impulse/CoDeveloper3/StageMaster/include" -DWIN32 "-
IC:/Impulse/CoDeveloper3/MinGW/include" -o img_hw.o -c img_hw.c
"C:/Impulse/CoDeveloper3/MinGW/bin/gcc" -g "-IC:\Impulse\CoDeveloper3\Include" "-
IC:/Impulse/CoDeveloper3/StageMaster/include" -DWIN32 "-

Impulse Tutorial: Generating HDL from C-Language10

© 2003-2009 Impulse Accelerated Technologies, Inc.

IC:/Impulse/CoDeveloper3/MinGW/include" -o img_sw.o -c img_sw.c
"C:/Impulse/CoDeveloper3/MinGW/bin/gcc" -g img_hw.o img_sw.o
"C:\Impulse\CoDeveloper3\Libraries/ImpulseC.lib" -o ImageFilter.exe

======== Build of target 'build_exe' complete ========

As you can see, CoDeveloper has invoked the gcc compiler three times to build and link this
application, resulting in an output file called ImageFIlter.exe. This executable is what is called a
software simulation executable. You can execute this file either using a command line, or by executing
from within CoDeveloper.

Running the Application Monitor

When running the executable, you have the choice of also running the CoDeveloper Application
Monitor, which allows you to observe the movement of data through the data streams and verify
correct process-to-process connectivity.

Start the Application Monitor by selecting Tools -> Application Monitor. A new window will appear as
shown below:

To start your simulation executable running, leave the Application Monitor open on your desktop, return
to the CoDeveloper application and select Project -> Launch Software Simulation Executable.

You will see a console window appear as the application begins running:

Impulse Tutorial: Using C-Language Simulation for Algorithm Verification 11

© 2003-2009 Impulse Accelerated Technologies, Inc.

This console window displays any messages that result from printf statements in the C application, as
well as accepting any required keyboard input.

Now make the Application Monitor Window window active, and select the Block Diagram tab. You
should see an automatically generated block diagram similar to the following:

(The order of the blocks displayed in the diagram may be different, depending on the order in which the
threads initialize on your system.)

This block diagram provides you with a quick way to verify correct stream connections.

Now, click on the filter block to push into the filter process. You will see a display similar to the
following:

Impulse Tutorial: Generating HDL from C-Language12

© 2003-2009 Impulse Accelerated Technologies, Inc.

This view allows you to monitor the transaction-by-transaction movement of data between the
processes in your application. If you have used cosim_logwindow_fwrite functions to instrument your
processes, you would also see messages appearing in the transcript section of this window. These
cosim_logwindow related functions can be particularly useful to augment source level debugging for
larger, multiple process applications.

Next Step

Notes on Hardware Generation

1.4 Notes on Hardware Generation

Image Filter Tutorial, Step 4

At this point you have successfully simulated a multiple-process C-language application. If you also
went through the the tutorial titled Creating VHDL and Verilog from C-Language, then you also have a
basic knowledge of the software-to-hardware generation process.

http://www.impulsec.com/Tutorials

Impulse Tutorial: Using C-Language Simulation for Algorithm Verification 13

© 2003-2009 Impulse Accelerated Technologies, Inc.

Let's take a moment to generate hardware for this example, and examine the generated HDL. We will
view the generated hardware in the form of VHDL; if you generated Verilog, the syntax will be different
but the generated hardware will be similar.

Select Project -> Generate HDL to start the hardware generation. When processing is complete, you
should see messages that include the following:

As in the simpler FIR filter example, these messages provide you with a summary of estimated pipeline
rates and operator usage for each Impulse C process.

Now, invoke the State Master Explorer tool to investigate the generated hardware. Select Tools ->
Stage Master Explorer, then select the img.xic file to start the Explorer tool.

Impulse Tutorial: Generating HDL from C-Language14

© 2003-2009 Impulse Accelerated Technologies, Inc.

Use the navigation tree control and the Source Code and Datapath windows to explore the generated
hardware structures and see how the C code for columns and filter have been parellelized.

If you wish, you can also open the generated VHDL source code and explore the generated hardware
code. The generated hardware is located in the hw subdirectory of the project, in the files
img_top.vhd and img_comp.vhd.

Impulse Tutorial: Using C-Language Simulation for Algorithm Verification 15

© 2003-2009 Impulse Accelerated Technologies, Inc.

Top-Level HDL Entity (Module)

Recall that in our original C code, the I/O interfaces were described using co_stream data, and using
stream-related functions such as co_stream_read and co_stream_write.

In the generated hardware, the HDL file with the _top file name suffix (in this case img_top.vhd)
represents the top-level I/O implementing these streaming interfaces, as shown below:

entity img_arch is
 port (
 reset : in std_ulogic;
 sclk : in std_ulogic;
 clk : in std_ulogic;
 p_producer_pixels_raw_en : in std_ulogic;
 p_producer_pixels_raw_eos : in std_ulogic;
 p_producer_pixels_raw_data : in std_ulogic_vector (15 downto 0);
 p_producer_pixels_raw_rdy : out std_ulogic;
 p_consumer_pixels_filtered_en : in std_ulogic;

Impulse Tutorial: Generating HDL from C-Language16

© 2003-2009 Impulse Accelerated Technologies, Inc.

 p_consumer_pixels_filtered_data : out std_ulogic_vector (15 downto 0);
 p_consumer_pixels_filtered_eos : out std_ulogic;
 p_consumer_pixels_filtered_rdy : out std_ulogic);
end;

For each of the two streams, notice that there are data and flow control signals with the suffix _data,
_en, _rdy and _eos. These flow control hardware signals are documented in the Impulse User's Guide
and can be used to connect other streaming hardware (as as analog-to-digital inputs, video inputs and
other streaming hardware) directly to an Impulse-generated streaming hardware process.

Also notice the names used when generating the I/O signals. Because we did not specify actual port
names for our input and output streams, the compiler has assigned names to the hardware streams
based on their source and destination, in this case the producer and consumer processes. In a real-
world application we might choose to assign specific names to these streams, using a co_port_create
function, or choose a platform support package that automatically generates appropriately named I/O
wrappers for our target platform.

Component-Level HDL Entities for Columns and Filter

To view the lower-level HDL code for the columns and filter subroutines, open the img_comp.vhd.
This HDL file includes the state machines and other logic that implements the parellized and pipelined
operations described in C.

Impulse Tutorial: Using C-Language Simulation for Algorithm Verification 17

© 2003-2009 Impulse Accelerated Technologies, Inc.

Next Steps

You have now completed this tutorial. At this point you may want to explore other examples provided
with CoDeveloper, or explore some of the more advanced, platform-specific tutorials to learn more
about how to use the generated HDL in actual hardware.

For additional information other detailed tutorials, please visit the Tutorials page at the following
location:

www.ImpulseAccelerated.com/Tutorials

	Impulse Tutorial: Using C-Language Simulation for Algorithm Verification
	Loading the 5 x 5 Image Filter Application
	Understanding the 5 x 5 Image Filter Application
	Compiling and Running the C Code for Simulation
	Notes on Hardware Generation

