Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 1

1 Impulse Tutorial: Generating an Altera FPGA Netlist from
C-Language

T
impulse

accelerated te:hnulug ies

Overview

This Getting Started tutorial demonstrates how to compile C code into HDL, and then synthesize the
HDL using Altera Quartus Il. This tutorial assumes that you already know the basics of C-to-HDL
compilation. If you have not already done so, you are encouraged to read through one of the basic
tutorials provided on the following site:

www.ImpulseAccelerated.com/Tutorials

This tutorial will require approximately 20 minutes to complete, including software run times.

Steps

Loading the Image Filter Application
Understanding the Image Filter Application
Compiling the C Code to Create HDL
Creating and Using an Quartus |l Project

For additional information about Impulse CoDeveloper, including detailed tutorials describing more
advanced design techniques, please visit the Tutorials page at the following location:

www.ImpulseAccelerated.com/Tutorials

1.1 Loading the Image Filter Application

Altera Quartus Il Tutorial, Step 1
To begin, start the CoDeveloper Application Manager:

Start -> Programs -> Impulse Accelerated Technologies -> CoDeveloper -> CoDeveloper
Application Manager

Open the ImageFilterKernel5X5 sample project by selecting Open Project from the File menu, or by
clicking the Open Project toolbar button. Navigate to the .\Examples\Image\iImageFilterKernel5X5\
directory within your CoDeveloper installation. (You may wish to copy this example to an alternate
directory before beginning.)

The project file is also available from the CoDeveloper Start Page, in the Sample Projects tab.

After loading the project, you will see a Readme file with a block diagram, and a Project Explorer
window as shown below:

© 2003-2009 Impulse Accelerated Technologies, Inc.

http://www.ImpulseAccelerated.com/Tutorials

Impulse Tutorial: Generating HDL from C-Language

: File Edit Wiew Project Tools Help

Project Explorer o= @Start Page @Readme htm] 4 b ¥ X
P
Summary i
EI@ Application ImageFilterf<t
=23 Seurce Files Image filter example demonstrating the use of multiple pipelined processes to create and
~hy[€] img_hwc process 5X5 image kemnels. -
; b@ img_sw.c
I'_'I 453 Header Files Description
: --h"v@ img.h
~ [0 bmph This example demonstrates how to create a high-performance image filter using multiple, =
""" D Pioject Files parallel processes arranged in a pipeline. i
. a Document Files
- =] Peadme.htm
------ E] Other Files
consumer
rowd
Build i v
H?-l i] m ¥¥ Build 1@ Find in Files lﬂ SystemJ
[Ready Oewe]l LT 1.

You can scroll down in the Readme file as shown to learn more about this application. To summarize,
this is a 5-pixel by 5-pixel, 2-dimensional image convolution filter that operates on 16-bit grayscale
data. This filter could represent one section of a larger video filtering application, for example one of
the first steps in a more complex object recognition algorithm.

The method used for creating this filter involves the creation of two parallel C-language processes
named columns and filter, respectively.

The columns process accepts incoming pixels, for example from a video stream, and stores those
pixels in an internal buffer large enough to store a little more than four scan lines. When its internal
buffers are filled, the process begins to emit five parallel streams of pixels representing five adjacent
scan line rows. This is what is refered to as a marching columns method of buffering.

The filter process executes in parallel with the columns process, accepting the five incoming streams
and performing a 5-pixel by 5-pixel convolution to generate a stream of filtered outputs.

The producer and consumer processes are used during software testing to read and write sample

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 3

image files.
Source files included in this project include:

e img_hw.c - This source file includes the C-language description of the image filter, including its
I/O. This description includes the two hardware processes, columns and filter, as well as a
configuration subroutine.

e img_sw.c - This source file includes a set of software testing routines including a main() function,
and consumer and producer software processes as illustrated in the block diagram.

e img.h - This source file includes common declarations used in both the filter description (in
img_hw.c), and in the test routines (img_sw.c).

e bmp.h - This source file includes declarations used only in the test routines. These declarations
are related to the processing of BMP format files.

You can open any of these three files by simply double-clicking on the file name in the Project Explorer
window. In the next step, we will describe in detail how this example works.

Next Step

Understanding the Image Filter Application

1.2 Understanding the Image Filter Application

Altera Quartus Il Tutorial, Step 2

Before compiling the image filter application to perform a simulation, let's first take a moment to
understand its basic operation.

The Image Filter C-Language Processes

The specific hardware processes that we will be testing are represented by the following two functions,
which are located in img_hw.c:

voi d colums (co_streaminput_stream co_streamrO, co_streamrl, co_streamr?2,
co_streamr3, co_streamr4)

void filter (co_streamrO, co_streamrl, co_streamr2, co_streamr3, co_streamr4,
co_stream out put _strean)

These two C-language subroutines each represent an Impulse C process. As described in the first
tutorial, a process in Impulse C is a module of code, expressed as a void subroutine, that describes a
hardware or software component.

If you are an experienced hardware designer, you can simply think of a process as being analogous
to a VHDL entity, or to a Verilog module.

If you are a software programmer, you can think of a process as being a subroutine that will loop
forever, in a seperate thread of execution from other processes.

When implemented as hardware in the FPGA, these two processes will run concurrently, processing
data on their respective inputs and outputs. Because the two processes will be arranged such that
process filter accepts inputs generated as outputs by process columns, we can think of these two
processes as a system-level pipeline.

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating HDL from C-Language

System-level pipelining is an important concept to understand. When combined with statement-level
parallelism and loop-level pipelining, system-level pipelining can create remarkable levels of software
acceleration when compared to traditional, instruction-based processors. In fact, for video
processing the combination of loop-level and system-level pipelining allows video signals to
processed and filtered in real-time, with no degradation of the signal or reduction in data throughput.

The Columns Process

Scroll down to find the definition of the columns process. The process has no return value, and has a
total of six streaming interfaces that have been defined using Impulse C co_stream data types. These
streams are used to:

e Read in raw, unfiltered pixels, for example from a video source. If this process is to operate on a
live video stream, then the process will need to accept a new pixel value every clock cycle.

o Write out five pixel values on the r0, r1, r2, r3 and r4 streams. These pixel values will then be
read into the filter process that follows.

Scroll down in the source code to view the inner loops for process columns:

do {
for (i =2; i < HEIGHT;, i++) {
/1 Note: the following loop will pipeline with a rate of
/1 one cycle if the target platform supports dual -port RAM
for (j=0; j < WDTH, j++) {
#pragma CO Pl PELI NE

p04 = B[j];
plda = (j];
p24 = DOj];
p34 = E[j];

co_stream read(i nput_stream &p44, sizeof(co_uint16));
co_streamwite(r0, &p04, sizeof(co_uintl6));
co_streamwite(rl, &pl4, sizeof(co_uintl6));
co_streamwite(r2, &p24, sizeof(co_uintl6));
co_streamwite(r3, &p34, sizeof(co_uintl6));
co_streamwite(r4, &p44, sizeof(co_uintl6));

B[j] = pl4;
dj] = p24;
Dj] = p34;
E[i] = p44;
}
IF_SIMbreak;) // For sinulation we break after one frame
} while (1);

When compiled as hardware, the outer do-while loop runs forever, accepting single-pixel input values
using co_stream_read, and writing out five parallel pixel values using co_stream_write. When
examining this code, note that:

e A PIPELINE pragma has been placed at the top of the loop, indicating to the compiler that this is
a critical loop that requires high throughput. As a result of this pragma, the compiler will
generate hardware with pipeline control logic and parallel pipeline stages. As the code comment
indicates, the pipeline rate that will be achieved by the compiler will depend in part on the type of
FPGA memory available for the B, C, D and E arrays. This pragma only has meaning during
hardware generation; it is ignored during software simulation.

e An IF_SIM macro has been used along with a break statement to exit the outer do-while loop
during simulation. This is a useful technique to allow the simulation to end cleanly, with output
files properly closed. (If the loop was not exited in this way, the application would not stop
running during simulation and would need to be forcibly halted.)

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 5

The Filter Process

Scroll down more to find the definition of the filter process. The process also has a total of six
streaming interfaces. These streams are used to:

¢ Read in the five streams of pixels that were generated by the columns process, representing
five adjacent scan lines.

o Write out a single filtered pixel value on the output_stream streams.
Scroll down in the source code to view the inner loop for process filter:
do {

#pragma CO Pl PELI NE
#pragma CO set stageDel ay 100

err = co_streamread(r0, &datal, sizeof(co_uintl6));

err & co_streamread(rl, &datal, sizeof(co_uintl6));

err & co_streamread(r2, &data2, sizeof(co_uintl6));

err & co_streamread(r3, &data3, sizeof(co_uintl6));

err & co_streamread(r4, &data4, sizeof(co_uintl6));

if (err !'= co_err_none) break;

p00 = p01; pO01 = p02; p02 = p03; p03 = p04,;

pl0 = pl1; pll = pl2; pl2 = pi3; pl3 = pl4,;

p20 = p21; p21 = p22; p22 = p23; p23 = p24,

p30 = p31; p31l = p32; p32 = p33; p33 = p34,;

p40 = p4l; p4dl = pd2; p42 = p43; p43 = p44,

p04 = dat a0;

pl4 = datal;

p24 = dat a2;

p34 = dat a3;

p44 = dat a4;

sop = p00*FO0 + pO1*F01 + p02*F02 + p03*F03 + p04*F04
+ pl0*F10 + pl1*F11 + pl2*F12 + p13*F13 + pl4*F14
+ p20*F20 + p21*F21 + p22*F22 + p23*F23 + p24*F24
+ p30*F30 + p31*F31 + p32*F32 + p33*F33 + p34*F34
+ p40*F40 + p4l*F41 + pd2*F42 + p4d3*F43 + p4dd*F44;

if (sop > 255*FDIV)
result = 255;
el se
result = (co_uint16) (sop >> 7); // Divide by 128
co_streamwite(output_stream &result, sizeof(co_uintl6));
} while (1);

As in the columns process, the outer do-while loop runs forever, accepting input values using
co_stream_read, and writing out five parallel pixel values using co_stream_write. When examining
this code, note that:

o A PIPELINE pragma has been placed at the top of the loop, indicating to the compiler that this is
a critical loop that requires high throughput. An additional pragma, SET StageDelay, provides
additional information about the maximum pipeline stage delay for this loop, for the purpose of
making size/speed tradeoffs. (The SET StateDelay pragma is described in more detail in the
Impulse C User's Guide.) These pragmas only have meaning during hardware generation; they
are ignored during software simulation.

o A large, sum-of-products statement is used to perform the convolution on a sliding sub-window
of pixels being read from the r0 through r4 inputs. This statement represents the most
computationally intensive portion of this algorithm, and the part of the code therefore needing
the greatest level of parallel optimization.

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating HDL from C-Language

The Configuration Subroutine

The columns and filter subroutines together represent the algorithm to be implemented as hardware
in the FPGA. To complete the application, however, we need to include one additional routine that
describes the 1/0 connections and other compile-time characteristics for this application. This
configuration routine serves three important purposes, allowing us to:

1. define I/O characteristics such as FIFO depths and the sizes of shared memories.
2. instantiate and interconnect one or more copies of our Impulse C processes.
3. optionally assign physical, chip-level names and/or locations to specific I/O ports.

This example includes two hardware processes (columns and filter) and also includes the two testing
routines, producer and consumer. Our configuration routine therefore includes statements that
describe how the producer, columns, filter and consumer processes are connected together. The
complete configuration routine is shown below:

voi d config_ing(void *arg)

{

int error;

co_streamstreantl, r0, rl1, r2, r3, r4, streang,
co_process colums_process, filter_process;
co_process producer_process, CONSUNEr _process;

co_signal header _

ready;

streanl = co_streamcreate("streaml", U NT_TYPE(16), 2);

ro
rl
r2
r3
r4

co_streamcreate("r0", U NT_TYPE(16), 5);
co_streamcreate("r1", U NT_TYPE(16), 5);
co_streamcreate("r2", U NT_TYPE(16), 5);
co_streamcreate("r3", U NT_TYPE(16), 5);
co_streamcreate("r4", U NT_TYPE(16), ;

(8]
~

strean? = co_streamcreate("stream", Ul NT_TYiDE(16), 2);
header _ready = co_signal _create("header_ready");

col ums_process

filter_process =

pr oducer _process

consuner _process

co_process_create("colums”,

(co_function)col ums,

6, streaml, rO0, rl1, r2, r3, r4);
co_process_create("filter",

(co_function)filter,

6, r0, rl, r2, r3, r4, streanR);
= co_process_create("producer",

(co_function) producer,

2, streaml, header_ready);
= co_process_create("consumer",

(co_function)consuner,

2, strean?, header_ready);

co_process_config(col ums_process, co_loc, "PE0");
co_process_config(filter_process, co_loc, "PEQ");

IF_SIMerror = cosimlogw ndow init();)

}

To summarize, the columns and filter subroutines describe the algorithm to be generated as FPGA
hardware, while the producer and consumer subroutines (described elsewhere, in img_sw.c) are
used for testing purposes. The configuration routine is used to describe how these three processes
communicate, and to describe other characteristics of the process I/O. In this configuration subroutine,

note the following:

e There are a total of seven streams being declared and created. They include the system-level inputs
and outputs (here labeled stream1 and stream?2), and the five intermediate streams (r0, r1, r2, r3
and r4). Notice that each stream is created with a width (in this case 16 bits) and a depth. The
stream depth is an important decision when creating pipelined systems. (Pipeline and stream

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 7

optimization techniques, and other methods of improving FPGA resource efficiency, are available as
application notes from Impulse.)

o Four processes are declared and created, represent unique instances of the producer, consumer,
columns and filter subroutines. Two of these processes are hardware, as indicated by the
co_process_config function calls, while the other two are software processes used only for testing.

Next Step

Compiling the C Code to Create HDL

1.3 Compiling the C Code to Create HDL

Altera Quartus Il Tutorial, Step 3
Now that you have examined the sample C code, the next step is to create FPGA hardware and

related files from the C code found in the img_hw.c source file. This requires that you select a platform
target, specify any needed options, and initiate the hardware compilation process.

Specifying the Altera Generic VHDL Platform Support Package

To specify a platform target, select Project -> Options, the select the Generate tab to open the
Generate Options dialog as shown below:

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating HDL from C-Language

i " 1]
[plaons gj]

Build] Simulate Generate l System] Hegistratiun]

Platfarm Suppart Package:

CoBuilder Optimization Optionz

[v Enable constant propagation

v Scalarize armay variables

v Felocate loop invanant espressions

Directories

& dditional optimizer options; Hardware build diractory:
| |hw

Software build directorny:

CoBuilder Generation Dptions |sw

v Generate dual clocks

W Hardware expart directon;

|EHpnn

<l

Ize std_logic tupes for WHDL interfaces
Software export direchany:

<l

Do not include co_ports in bug interface

|EHpDﬂ

Libram options:

[Inchude foating point brarg
=

[Allow double-precision types and operators

k. | Canicel Apply Help

This dialog allows you to set various options for hardware generation, and to select a target platform.
Notice that the Platform Support Package setting indicates Altera Generic (VHDL) for the output.
You can click on the drop-down Platform Support Package selection list to see what kind of platform
support packages are installed on your system. Please select Altera Generic (VHDL) as shown..

Note: if you would prefer to generate Verilog, you can change the setting to Altera Generic (Verilog)
before continuing.

Other options on this dialog allow you to set the target directory for generating and exporting your HDL,
and set options related to the clock and reset hardware, and include optional hardware libraries.

Click OK to save the options and exit the dialog.
Generating HDL for the Hardware Process

To generate hardware in the form of HDL files, select Project -> Generate HDL. A series of
processing steps will run in the Build console window as shown below (you can use your mouse to

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 9

expand the Build window as shown):

|

[fi

|

|

| Stages'l

| baw. Unit Delay: 0
| Block #1 pipeline:

| Latency: 9

| Rate: 1

| Max Unit Delay: 96
| Effective Rate: 96| Block #2:
| Stages: 1

| Max Unit Delay: 0

|

[

|

|

[

[

|

Dperataors:;

23 Adder(z]/Subtractarz] [32 hit]
3 Mulkiplier(z] [17 bit]

1 Comparator(z] [3 bit)

1 Comparatorz] [32 bit]

| Total Stages: 11

| bdaw. Unit Delay: 96
| Eztimated D5Ps: 12
|

I
friting autput . done

The messages generated by the hardware compiler include estimates of loop latencies and pipeline
rates as well as estimates of the number of required hardware operations, as shown above. These
messages can help you to quickly evaluate the effectiveness of your C-language coding methods,
allowing you to iteratively refactor and improve your algorithms before going through a potentially long
process of FPGA synthesis.

When the optimization and C-to-HDL processing has completed you will have two resulting HDL files
(either VHDL or Verilog) created in the hw subdirectory of your project directory, including a lib
subdirectory, as shown below:

© 2003-2009 Impulse Accelerated Technologies, Inc.

10

Impulse Tutorial: Generating HDL from C-Language

1.4

':? C:Almpulse\CoDeveloper \Examplesiimage\lmageFilterkernel5X 5\ hw

File Edit View Favorites Tools Help

@Back - ﬁ‘ f": Search ‘ll_ Falders

v

Q@“

Address |-ﬁ C: i Impulsel CoDeveloper 31 Examples| Imagel ImageFilkerkernelS x-S hw

Folders
=) CoDeveloper3
® [Architectures
® 53 bin
._"'j Docurments
) eclipse
= [Examples
¥ [DsP
* [23) Embedded

x

|

M8

lib

img_comp.vhd
YHD File
92 kB

img_top,vhd
WHD File
14 KB

S T

[#) Financial
= 53 Image
|5 EdgeDetectsxs
® |23 ImageFilterkernel
= 5 ImageFilterkernelsys
= b
b
[C3) ReadmeFiles
||'." S
| () LabvIEw
+ () Math
F) Misc
®) Opalkelly [l

+ =+

Next Step

Creating and Using an Quartus |l Project

Creating and Using a Quartus Il Project

Altera Quartus Il Tutorial, Step 4
You have successfully generated HDL from a C-language description. The next step will be to create a

Altera Quartus Il project file, and import the generated HDL files into the new project. We will also
select a specific FPGA target device at this point, and start the synthesis process..

Creating the Altera Quartus Il Project
Run the Altera Quartus Il software from the Windows Start menu:
Start -> Programs -> altera -> Quartus Il 8.0-> Quartus 1l 8.0 (32-Bit)

The Quartus Il GUI will appear as below:

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 11

File Edit Wiew Project Assignments Processing Tools ‘Window Help

DEEHF &m0 o k2
M s 0> 0ok ®|ale

Praoject Mavigator =
E ntity
Compilation Hierarchy

"Hierarch_l,l Filesl & Design Unitsl

Tasks -

X

Flow: |Fu|| Design LI
Task & |
[l ¢y Start Project =

------ E Open Mew Project Wizard
------ @ Open Existing Project &=l
O B

QUARTUS II

® Documentation

X

Type |Hessage

% System ,.{ Praceszing ,1\ Extra Infa)\ Infa)\ Warhing)\ Critical ‘W arning ,1\ Ermor ,}\ Suppreszed ,]'\ Flag }
E Meszage: ﬁl il |Location ;I Locate |
| oo | Idle [w2

Create a new Quartus Il project by selecting File -> New Project Wizard. When prompted for the
working directory for a project, use the browse button (...) to select your Impulse C project directory,

and then create a new directory Quartus , as shown below:

© 2003-2009 Impulse Accelerated Technologies, Inc.

12 Impulse Tutorial: Generating HDL from C-Language

SEECIAVITECT oy

5

Loak in: | =0 ImageFilterkerel5=5

e

My Fecent
Documents

©;

Desktop

%

by Documentsz

X
L

ty Computer

«“

by NeTw-:urk

Places

b
[_1ReadmeFiles
Chsw
@_Make_img.bat
= _Makefile

_Makefile. defs
ﬂ bmp.h

ﬂ img.h

% img.i

|_‘:] img.icPraj

= img.pko

@ imag.pkl

iﬁl img. pley
imag.sic

@ img.srmid

ol | e e i
__@ img.snk

irmg. b

imig, xic

ﬂ img_hw.c

E] img_sw.c

@ Readre. bt
Samplelmageis.bmp

@ SampleImageisShloisy . bmp
= Quartus,

File name:

erd_ IMExamplesh mage'&lmageFiIterKernel%Eﬂ

Open |
Cancel

When prompted for a project name, provide a name for the new project as shown below:

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 13

[TN B Sy B G e e] S T R N e Y ol el B By et S] B] @

“WWhat i the warking directory for thiz project?
|E:'\Impulse'\.EDDeveluperS_EEl'\E:-:amples'\lmage'\lmageFiIterKernelEXE'\.IJuartus |

What iz the name of thiz project?

|ImageFiIter

Ywhat iz the name of the top-level design entity for thiz project? Thiz name iz case sensitive and must
exactly match the entity name in the design file.

|ImageFiIter

Uze Existing Project Settings ..

< Back Hest » Finizh Cancel

In this case, we have chosen to create a new project called ImageFilter within our
ImpulseFilterKernel5X5 project directory.

Click Next to advance to the device selection dialog.

Now you will import the VHDL files generated by CoDeveloper to your Quartus project. In the Add
Files page (page 2), add the files in the following order:

1. Core logic files in ../hw subdirectory: img_top.vhd and img_comp.vhd
2. All .vhd files in ../hw/lib subdirectory

The files should be listed in the opposite order from which they were added (e.g. the lib files should be
at the top of the list):

© 2003-2009 Impulse Accelerated Technologies, Inc.

14

Impulse Tutorial: Generating HDL from C-Language

plee Hiajze s s E S = G |

Select the dezign files vou want to include in the project. Click Add &l to add all dezign files in the
project directony to the project. Mote; you can alwavs add design files to the project later.

File name: & | |
File name [Type Add Al |
fhwdlibdcregister. vhd WHOL File
. fhwdlibdczignal vhd WHDL File
- Ahedlibd divernad. whid WHOL File
A libfifo, vhd WHOL File
. hwdlibdfifo_dc.vhd WHOL File
. fhwadlibAgmem. vhd WHDL File
Ahedlibdirpack. whd WHOL File
A libroern_if vhd WHOL File
Ahwdlibdzema.vhd WHOL File
. fhwdlibdztream. vhd WHDL File
- Ahdlibdztrearn_de.vhd WHOL File
hwdimg_comp.vhd WHOL File
. fhwdirmg_top.vhd WHOL File
Specify the path names of any hon-default libraries. Lszer Libraries.
¢ Back Mest » Firish Cancel

Click Next to proceed.

In the Family and Device Settings page (page 3) select the device you will be targeting. For this
example we will choose Cyclone lll, EP3C25F324C6 device, with 324 pins and speed grade 6. This is

the FPGA used in the Cyclone Ill FPGA Evaluation Kit.

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language

15

Select the family and device you want ta target for compilation.

— Drevice Family — Show in Ywailable device' list
Family: I Cyclone Il >l Fackage: Any x
Dievices; |-"-"-|| _"'I Fin court: 324 -
— Target device Speed grade: |E jv
" Auta device selected by the Fitter W Show advanced devices
& Specilic device selected in 'Available devices' list [T HardCopy compatitle onlp

Available devices:

I arme | Core ... | LE= | zerld... I bl emor.... | Eml:ueu:l...l PLL | |

EF3C25FE24C6 e 24624

EF3C40FE24C6 1.2 33600 136 1161 1 6 252 4

PSS T

E

- Companion device

HardCopy: |

¥ - Limit DSF & Fék to HardCopy device resources

=

< Back I Mest » I Finizh

Cancel

Click Next again. Skip the EDA Tool Settings page (page 4) by again clicking Next.

You will see a Summary page listing the options you have chosen as shown below:

© 2003-2009 Impulse Accelerated Technologies, Inc.

16

Impulse Tutorial: Generating HDL from C-Language

Pz Brdjae ssipds S [eis= 4 i |

YWhen yau click Finish, the project will be created with the fallawing settings:

Froject directary:

C:¢/lmpulze/Col eveloperd_30/E #amples/magedmageFilert. emelS<5/ G uartus

Praject name:
Top-level dezign entity:
Mumber of filez added:
Mumber of uzer libranes added:
Device azsignments:
Family name:
Device:
EDA tools:
Design ety zynthesiz:
Sirnulatior:
Timing analysis:
O perating conditions:
WECIMT woltage:

Junction temperature range;

ImageFilker
ImageFilker
13

1]

Cyclone [
EF3C25F 32406

<Mones
<Mones
<Moner

1.2
0-85°C

¢ Back

| Finizh |

Cancel

Click Finish to exit the Wizard and return to Quartus.

Setting the Top Level Module

Open the Settings dialog box from the menu: Assignments -> Settings.

In the General category, you will be prompted to enter the Top-level entity. Browse to select the entry
named img_arch_sl. Click OK to save and exit. This will set the img_arch_sl module as the Top-

level entity.

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language

Category:

General
Files
Libraries
Device
= Operating Settingz and Conditionz
Yalkage
Temperature
=1 Compilation Proces: Settings
E arly Timing Egtimate
Inzremental Compilation
=I- EDA Tool Settings
Dezign EntrdSynthesis
Simulation
Timing dnalyziz
Formal %erification
Phuzical Synthesis
Board-Lewvel
= Analyziz & Synthesiz Settings
WHDL [nput
Werilog HDL Input
Default Farameters
Synthesiz Metlizt Optimizations
=I- Fitter Settings
Phuzical Synthesie Optimizations
= Timing Analysiz Settings
TimeQuest Timing Analyzer
+1- Clazsic Timing Analyzer Seftings
Azzamnbler
Dezign Aesistant
SignalT ap Il Logic Analyzer
Logic Analyzer Interface
+- Simulator Settings
PowerPlay Power dnalyzer S ettings

17

'ou can change the top-level entity for the design; howeser, it iz recommended that you create a

new revizion for each entity in order to maintain settiings information.

Top-evel entity:

Salsar By

img_arch_zl

3

Cancel

Enfities:
altzpncran ak |
altzyncrarn_tdm3
calumig

calumnz_B_Rak
columnz_C_Rak
calumns_D_Rak
columnz_E_Rak
cregister

czignal
csignal_nodata
divmod_=
divrnod_u

fifo_dc

filker

gmem

img_arch

Impc_mern_expander
impc_mem_level?
Iprr_rrualt

malk_mt01

FEMA

stream

ztreann_do
stream_narrow
ztreann_widen
sync_fifa

=

+

||

Synthesizing the Hardware

You are now ready to start the synthesis process. In the Tasks window, double-click on Analysis &

Synthesis under Complie Design to start FPGA synthesis:

© 2003-2009 Impulse Accelerated Technologies, Inc.

18

Impulse Tutorial: Generating HDL from C-Language

Tasks

Flo: | Full Dezign

-----] Edit Settings

----- BE “iew Beport

[#}- e Partition Merge

A7 Metlist Viewers

- Design Agziztant [Post-Mapping)

=1

=1
L:!.I I.:'_l n.:'..'

- e [0 Azsignment Analyziz

W]

- = Early Timing E stimate
Izl Fitter [Place & Route)

T :] Edit Settings

----- BER View Repart

----- @ Chip Planner [Floorplan and Chip Editor)
----- ﬁ Technalogy Map Viewer [Post-Fitting]
[+ P Diegign Azsistant [Fost-Fitting)

Task® [Time & |
----- @ Edit Logic Options [Open dszignment E ditar] '
i 3 Ewpart .-’-'-.ssignmn_ants
= # Compile Design
e [:J [A ralisis & Synthesis) |00:00:17|

After synthesis has completed you will be able to view a report of the results. The Resource Usage

Summary is shown below:

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 19
@ Compilation Beport - Analysis & Synthesziz Hezource U__.
%j Compilation Repart ' Y
Legal Maotice
%E i . Rezource |L|$age |
%& Flow Settings 1 E ztimated Tatal logic elements 2863
%@ Flow Mon-Default Global Settings 2_
B8 Flow Elapsed Time |3 | Total combinational functions 1977
% Flow Log 4_ = Logic element uzage by number of LUT inputs
= & Analysis & Syrthesis 5 | - dinput functions 527
% Jurmmary E_ -- 3 input functions ae7
- %—%gﬂﬁgtlngs 7 -- =2 input functions h33
Settings B
a
S Files Read =1
%& ek e 9 | = Logic elements by mode
%@ Resource Usage Summaty — :
%@ Resource Ltilization by Enkity E - hormal mode 1433
SHER RAM Summary 111 -- anithmetic: mode 538
&R DS5P Block Usage Summary 112
+ %‘:__] State Machines 13| = Total registers 2863
+ g'__} Dptimization Resuls 14 - Dedicated logic regizters 283
+ '__j Source Assignments ﬁ 170 registers i
+ %‘__} Parameter Settings by Entity Inskam E
+ %{_ﬁ] LPM Parameter Settings ? P 11
%.‘lﬁ Messages — - :
: E Total mernony bits 1200
E Embedded Multipler 3-bit elements 2
E b airnum fan-out node clk~input
|21 | b airnium fan-out 2087
E T otal Fan-out 163871
3 Awerage fan-out 313

Next Steps

You have now completed this tutorial. At this point you may want to explore other examples provided
with CoDeveloper, or explore some of the more advanced, platform-specific tutorials to learn more

about how to use the generated FPGA hardware.

For additional information other detailed tutorials, please visit the Tutorials page at the following

location:

www.ImpulseAccelerated.com/Tutorials

© 2003-2009 Impulse Accelerated Technologies, Inc.

	Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language
	Loading the Image Filter Application
	Understanding the Image Filter Application
	Compiling the C Code to Create HDL
	Creating and Using a Quartus II Project

