
Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 1

© 2003-2009 Impulse Accelerated Technologies, Inc.

1 Impulse Tutorial: Generating an Altera FPGA Netlist from
C-Language

Overview

This Getting Started tutorial demonstrates how to compile C code into HDL, and then synthesize the
HDL using Altera Quartus II. This tutorial assumes that you already know the basics of C-to-HDL
compilation. If you have not already done so, you are encouraged to read through one of the basic
tutorials provided on the following site:

www.ImpulseAccelerated.com/Tutorials

This tutorial will require approximately 20 minutes to complete, including software run times.

Steps

Loading the Image Filter Application
Understanding the Image Filter Application
Compiling the C Code to Create HDL
Creating and Using an Quartus II Project

For additional information about Impulse CoDeveloper, including detailed tutorials describing more
advanced design techniques, please visit the Tutorials page at the following location:

www.ImpulseAccelerated.com/Tutorials

1.1 Loading the Image Filter Application

Altera Quartus II Tutorial, Step 1

To begin, start the CoDeveloper Application Manager:

 Start -> Programs -> Impulse Accelerated Technologies -> CoDeveloper -> CoDeveloper
Application Manager

Open the ImageFilterKernel5X5 sample project by selecting Open Project from the File menu, or by
clicking the Open Project toolbar button. Navigate to the .\Examples\Image\ImageFilterKernel5X5\
directory within your CoDeveloper installation. (You may wish to copy this example to an alternate
directory before beginning.)

The project file is also available from the CoDeveloper Start Page, in the Sample Projects tab.

After loading the project, you will see a Readme file with a block diagram, and a Project Explorer
window as shown below:

http://www.ImpulseAccelerated.com/Tutorials

Impulse Tutorial: Generating HDL from C-Language2

© 2003-2009 Impulse Accelerated Technologies, Inc.

You can scroll down in the Readme file as shown to learn more about this application. To summarize,
this is a 5-pixel by 5-pixel, 2-dimensional image convolution filter that operates on 16-bit grayscale
data. This filter could represent one section of a larger video filtering application, for example one of
the first steps in a more complex object recognition algorithm.

The method used for creating this filter involves the creation of two parallel C-language processes
named columns and filter, respectively.

The columns process accepts incoming pixels, for example from a video stream, and stores those
pixels in an internal buffer large enough to store a little more than four scan lines. When its internal
buffers are filled, the process begins to emit five parallel streams of pixels representing five adjacent
scan line rows. This is what is refered to as a marching columns method of buffering.

The filter process executes in parallel with the columns process, accepting the five incoming streams
and performing a 5-pixel by 5-pixel convolution to generate a stream of filtered outputs.

The producer and consumer processes are used during software testing to read and write sample

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 3

© 2003-2009 Impulse Accelerated Technologies, Inc.

image files.

Source files included in this project include:

· img_hw.c - This source file includes the C-language description of the image filter, including its
I/O. This description includes the two hardware processes, columns and filter, as well as a
configuration subroutine.

· img_sw.c - This source file includes a set of software testing routines including a main() function,
and consumer and producer software processes as illustrated in the block diagram.

· img.h - This source file includes common declarations used in both the filter description (in
img_hw.c), and in the test routines (img_sw.c).

· bmp.h - This source file includes declarations used only in the test routines. These declarations
are related to the processing of BMP format files.

You can open any of these three files by simply double-clicking on the file name in the Project Explorer
window. In the next step, we will describe in detail how this example works.

Next Step

Understanding the Image Filter Application

1.2 Understanding the Image Filter Application

Altera Quartus II Tutorial, Step 2

Before compiling the image filter application to perform a simulation, let's first take a moment to
understand its basic operation.

The Image Filter C-Language Processes

The specific hardware processes that we will be testing are represented by the following two functions,
which are located in img_hw.c:

void columns (co_stream input_stream, co_stream r0, co_stream r1, co_stream r2,
co_stream r3, co_stream r4)

void filter (co_stream r0, co_stream r1, co_stream r2, co_stream r3, co_stream r4,
co_stream output_stream)

These two C-language subroutines each represent an Impulse C process. As described in the first
tutorial, a process in Impulse C is a module of code, expressed as a void subroutine, that describes a
hardware or software component.

If you are an experienced hardware designer, you can simply think of a process as being analogous
to a VHDL entity, or to a Verilog module.

If you are a software programmer, you can think of a process as being a subroutine that will loop
forever, in a seperate thread of execution from other processes.

When implemented as hardware in the FPGA, these two processes will run concurrently, processing
data on their respective inputs and outputs. Because the two processes will be arranged such that
process filter accepts inputs generated as outputs by process columns, we can think of these two
processes as a system-level pipeline.

Impulse Tutorial: Generating HDL from C-Language4

© 2003-2009 Impulse Accelerated Technologies, Inc.

System-level pipelining is an important concept to understand. When combined with statement-level
parallelism and loop-level pipelining, system-level pipelining can create remarkable levels of software
acceleration when compared to traditional, instruction-based processors. In fact, for video
processing the combination of loop-level and system-level pipelining allows video signals to
processed and filtered in real-time, with no degradation of the signal or reduction in data throughput.

The Columns Process

Scroll down to find the definition of the columns process. The process has no return value, and has a
total of six streaming interfaces that have been defined using Impulse C co_stream data types. These
streams are used to:

· Read in raw, unfiltered pixels, for example from a video source. If this process is to operate on a
live video stream, then the process will need to accept a new pixel value every clock cycle.

· Write out five pixel values on the r0, r1, r2, r3 and r4 streams. These pixel values will then be
read into the filter process that follows.

Scroll down in the source code to view the inner loops for process columns:

 do {
 for (i = 2; i < HEIGHT; i++) {
 // Note: the following loop will pipeline with a rate of
 // one cycle if the target platform supports dual-port RAM.
 for (j=0; j < WIDTH; j++) {
 #pragma CO PIPELINE
 p04 = B[j];
 p14 = C[j];
 p24 = D[j];
 p34 = E[j];
 co_stream_read(input_stream, &p44, sizeof(co_uint16));
 co_stream_write(r0, &p04, sizeof(co_uint16));
 co_stream_write(r1, &p14, sizeof(co_uint16));
 co_stream_write(r2, &p24, sizeof(co_uint16));
 co_stream_write(r3, &p34, sizeof(co_uint16));
 co_stream_write(r4, &p44, sizeof(co_uint16));
 B[j] = p14;
 C[j] = p24;
 D[j] = p34;
 E[j] = p44;
 }
 }
 IF_SIM(break;) // For simulation we break after one frame
 } while (1);

When compiled as hardware, the outer do-while loop runs forever, accepting single-pixel input values
using co_stream_read, and writing out five parallel pixel values using co_stream_write. When
examining this code, note that:

· A PIPELINE pragma has been placed at the top of the loop, indicating to the compiler that this is
a critical loop that requires high throughput. As a result of this pragma, the compiler will
generate hardware with pipeline control logic and parallel pipeline stages. As the code comment
indicates, the pipeline rate that will be achieved by the compiler will depend in part on the type of
FPGA memory available for the B, C, D and E arrays. This pragma only has meaning during
hardware generation; it is ignored during software simulation.

· An IF_SIM macro has been used along with a break statement to exit the outer do-while loop
during simulation. This is a useful technique to allow the simulation to end cleanly, with output
files properly closed. (If the loop was not exited in this way, the application would not stop
running during simulation and would need to be forcibly halted.)

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 5

© 2003-2009 Impulse Accelerated Technologies, Inc.

The Filter Process

Scroll down more to find the definition of the filter process. The process also has a total of six
streaming interfaces. These streams are used to:

· Read in the five streams of pixels that were generated by the columns process, representing
five adjacent scan lines.

· Write out a single filtered pixel value on the output_stream streams.

Scroll down in the source code to view the inner loop for process filter:

 do {
 #pragma CO PIPELINE
 #pragma CO set stageDelay 100
 err = co_stream_read(r0, &data0, sizeof(co_uint16));
 err &= co_stream_read(r1, &data1, sizeof(co_uint16));
 err &= co_stream_read(r2, &data2, sizeof(co_uint16));
 err &= co_stream_read(r3, &data3, sizeof(co_uint16));
 err &= co_stream_read(r4, &data4, sizeof(co_uint16));
 if (err != co_err_none) break;

 p00 = p01; p01 = p02; p02 = p03; p03 = p04;
 p10 = p11; p11 = p12; p12 = p13; p13 = p14;
 p20 = p21; p21 = p22; p22 = p23; p23 = p24;
 p30 = p31; p31 = p32; p32 = p33; p33 = p34;
 p40 = p41; p41 = p42; p42 = p43; p43 = p44;

 p04 = data0;
 p14 = data1;
 p24 = data2;
 p34 = data3;
 p44 = data4;

 sop = p00*F00 + p01*F01 + p02*F02 + p03*F03 + p04*F04
 + p10*F10 + p11*F11 + p12*F12 + p13*F13 + p14*F14
 + p20*F20 + p21*F21 + p22*F22 + p23*F23 + p24*F24
 + p30*F30 + p31*F31 + p32*F32 + p33*F33 + p34*F34
 + p40*F40 + p41*F41 + p42*F42 + p43*F43 + p44*F44;
 if (sop > 255*FDIV)
 result = 255;
 else
 result = (co_uint16) (sop >> 7); // Divide by 128
 co_stream_write(output_stream, &result, sizeof(co_uint16));
 } while (1);

As in the columns process, the outer do-while loop runs forever, accepting input values using
co_stream_read, and writing out five parallel pixel values using co_stream_write. When examining
this code, note that:

· A PIPELINE pragma has been placed at the top of the loop, indicating to the compiler that this is
a critical loop that requires high throughput. An additional pragma, SET StageDelay, provides
additional information about the maximum pipeline stage delay for this loop, for the purpose of
making size/speed tradeoffs. (The SET StateDelay pragma is described in more detail in the
Impulse C User's Guide.) These pragmas only have meaning during hardware generation; they
are ignored during software simulation.

· A large, sum-of-products statement is used to perform the convolution on a sliding sub-window
of pixels being read from the r0 through r4 inputs. This statement represents the most
computationally intensive portion of this algorithm, and the part of the code therefore needing
the greatest level of parallel optimization.

Impulse Tutorial: Generating HDL from C-Language6

© 2003-2009 Impulse Accelerated Technologies, Inc.

The Configuration Subroutine

The columns and filter subroutines together represent the algorithm to be implemented as hardware
in the FPGA. To complete the application, however, we need to include one additional routine that
describes the I/O connections and other compile-time characteristics for this application. This
configuration routine serves three important purposes, allowing us to:

1. define I/O characteristics such as FIFO depths and the sizes of shared memories.
2. instantiate and interconnect one or more copies of our Impulse C processes.
3. optionally assign physical, chip-level names and/or locations to specific I/O ports.

This example includes two hardware processes (columns and filter) and also includes the two testing
routines, producer and consumer. Our configuration routine therefore includes statements that
describe how the producer, columns, filter and consumer processes are connected together. The
complete configuration routine is shown below:

void config_img(void *arg)
{
 int error;
 co_stream stream1, r0, r1, r2, r3, r4, stream2;
 co_process columns_process, filter_process;
 co_process producer_process, consumer_process;
 co_signal header_ready;

 stream1 = co_stream_create("stream1", UINT_TYPE(16), 2);
 r0 = co_stream_create("r0", UINT_TYPE(16), 5);
 r1 = co_stream_create("r1", UINT_TYPE(16), 5);
 r2 = co_stream_create("r2", UINT_TYPE(16), 5);
 r3 = co_stream_create("r3", UINT_TYPE(16), 5);
 r4 = co_stream_create("r4", UINT_TYPE(16), 5);
 stream2 = co_stream_create("stream2", UINT_TYPE(16), 2);
 header_ready = co_signal_create("header_ready");

 columns_process = co_process_create("columns",
 (co_function)columns,
 6, stream1, r0, r1, r2, r3, r4);
 filter_process = co_process_create("filter",
 (co_function)filter,
 6, r0, r1, r2, r3, r4, stream2);
 producer_process = co_process_create("producer",
 (co_function)producer,
 2, stream1, header_ready);
 consumer_process = co_process_create("consumer",
 (co_function)consumer,
 2, stream2, header_ready);

 co_process_config(columns_process, co_loc, "PE0");
 co_process_config(filter_process, co_loc, "PE0");

 IF_SIM(error = cosim_logwindow_init();)
}

To summarize, the columns and filter subroutines describe the algorithm to be generated as FPGA
hardware, while the producer and consumer subroutines (described elsewhere, in img_sw.c) are
used for testing purposes. The configuration routine is used to describe how these three processes
communicate, and to describe other characteristics of the process I/O. In this configuration subroutine,
note the following:

· There are a total of seven streams being declared and created. They include the system-level inputs
and outputs (here labeled stream1 and stream2), and the five intermediate streams (r0, r1, r2, r3
and r4). Notice that each stream is created with a width (in this case 16 bits) and a depth. The
stream depth is an important decision when creating pipelined systems. (Pipeline and stream

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 7

© 2003-2009 Impulse Accelerated Technologies, Inc.

optimization techniques, and other methods of improving FPGA resource efficiency, are available as
application notes from Impulse.)

· Four processes are declared and created, represent unique instances of the producer, consumer,
columns and filter subroutines. Two of these processes are hardware, as indicated by the
co_process_config function calls, while the other two are software processes used only for testing.

Next Step

Compiling the C Code to Create HDL

1.3 Compiling the C Code to Create HDL

Altera Quartus II Tutorial, Step 3

Now that you have examined the sample C code, the next step is to create FPGA hardware and
related files from the C code found in the img_hw.c source file. This requires that you select a platform
target, specify any needed options, and initiate the hardware compilation process.

Specifying the Altera Generic VHDL Platform Support Package

To specify a platform target, select Project -> Options, the select the Generate tab to open the
Generate Options dialog as shown below:

Impulse Tutorial: Generating HDL from C-Language8

© 2003-2009 Impulse Accelerated Technologies, Inc.

This dialog allows you to set various options for hardware generation, and to select a target platform.
Notice that the Platform Support Package setting indicates Altera Generic (VHDL) for the output.
You can click on the drop-down Platform Support Package selection list to see what kind of platform
support packages are installed on your system. Please select Altera Generic (VHDL) as shown..

Note: if you would prefer to generate Verilog, you can change the setting to Altera Generic (Verilog)
before continuing.

Other options on this dialog allow you to set the target directory for generating and exporting your HDL,
and set options related to the clock and reset hardware, and include optional hardware libraries.

Click OK to save the options and exit the dialog.

Generating HDL for the Hardware Process

To generate hardware in the form of HDL files, select Project -> Generate HDL. A series of
processing steps will run in the Build console window as shown below (you can use your mouse to

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 9

© 2003-2009 Impulse Accelerated Technologies, Inc.

expand the Build window as shown):

The messages generated by the hardware compiler include estimates of loop latencies and pipeline
rates as well as estimates of the number of required hardware operations, as shown above. These
messages can help you to quickly evaluate the effectiveness of your C-language coding methods,
allowing you to iteratively refactor and improve your algorithms before going through a potentially long
process of FPGA synthesis.

When the optimization and C-to-HDL processing has completed you will have two resulting HDL files
(either VHDL or Verilog) created in the hw subdirectory of your project directory, including a lib
subdirectory, as shown below:

Impulse Tutorial: Generating HDL from C-Language10

© 2003-2009 Impulse Accelerated Technologies, Inc.

Next Step

Creating and Using an Quartus II Project

1.4 Creating and Using a Quartus II Project

Altera Quartus II Tutorial, Step 4

You have successfully generated HDL from a C-language description. The next step will be to create a
Altera Quartus II project file, and import the generated HDL files into the new project. We will also
select a specific FPGA target device at this point, and start the synthesis process..

Creating the Altera Quartus II Project

Run the Altera Quartus II software from the Windows Start menu:

Start -> Programs -> altera -> Quartus II 8.0-> Quartus II 8.0 (32-Bit)

The Quartus II GUI will appear as below:

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 11

© 2003-2009 Impulse Accelerated Technologies, Inc.

Create a new Quartus II project by selecting File -> New Project Wizard. When prompted for the
working directory for a project, use the browse button (...) to select your Impulse C project directory,
and then create a new directory Quartus , as shown below:

Impulse Tutorial: Generating HDL from C-Language12

© 2003-2009 Impulse Accelerated Technologies, Inc.

When prompted for a project name, provide a name for the new project as shown below:

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 13

© 2003-2009 Impulse Accelerated Technologies, Inc.

In this case, we have chosen to create a new project called ImageFilter within our
ImpulseFilterKernel5X5 project directory.

Click Next to advance to the device selection dialog.

Now you will import the VHDL files generated by CoDeveloper to your Quartus project. In the Add
Files page (page 2), add the files in the following order:

1. Core logic files in ../hw subdirectory: img_top.vhd and img_comp.vhd

2. All .vhd files in ../hw/lib subdirectory

The files should be listed in the opposite order from which they were added (e.g. the lib files should be
at the top of the list):

Impulse Tutorial: Generating HDL from C-Language14

© 2003-2009 Impulse Accelerated Technologies, Inc.

Click Next to proceed.

In the Family and Device Settings page (page 3) select the device you will be targeting. For this
example we will choose Cyclone III, EP3C25F324C6 device, with 324 pins and speed grade 6. This is
the FPGA used in the Cyclone III FPGA Evaluation Kit.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 15

© 2003-2009 Impulse Accelerated Technologies, Inc.

Click Next again. Skip the EDA Tool Settings page (page 4) by again clicking Next.

You will see a Summary page listing the options you have chosen as shown below:

Impulse Tutorial: Generating HDL from C-Language16

© 2003-2009 Impulse Accelerated Technologies, Inc.

Click Finish to exit the Wizard and return to Quartus.

Setting the Top Level Module

Open the Settings dialog box from the menu: Assignments -> Settings.

In the General category, you will be prompted to enter the Top-level entity. Browse to select the entry
named img_arch_sl. Click OK to save and exit. This will set the img_arch_sl module as the Top-
level entity.

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 17

© 2003-2009 Impulse Accelerated Technologies, Inc.

Synthesizing the Hardware

You are now ready to start the synthesis process. In the Tasks window, double-click on Analysis &
Synthesis under Complie Design to start FPGA synthesis:

Impulse Tutorial: Generating HDL from C-Language18

© 2003-2009 Impulse Accelerated Technologies, Inc.

After synthesis has completed you will be able to view a report of the results. The Resource Usage
Summary is shown below:

Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language 19

© 2003-2009 Impulse Accelerated Technologies, Inc.

Next Steps

You have now completed this tutorial. At this point you may want to explore other examples provided
with CoDeveloper, or explore some of the more advanced, platform-specific tutorials to learn more
about how to use the generated FPGA hardware.

For additional information other detailed tutorials, please visit the Tutorials page at the following
location:

www.ImpulseAccelerated.com/Tutorials

	Impulse Tutorial: Generating an Altera FPGA Netlist from C-Language
	Loading the Image Filter Application
	Understanding the Image Filter Application
	Compiling the C Code to Create HDL
	Creating and Using a Quartus II Project

