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Overview 

C code that has not been written with hardware compilation in mind can result in less than 
optimal results when those results are measure in terms of process latencies, data throughput 
and size of the generated logic. This is because the fundamental target of compilation (an 
FPGA and its constituent hardware resources) is quite different from a traditional processor, 
and the C language is by design optimized for processor-based architectures. By using some 
relatively simple C programming techniques, however, it is possible to dramatically accelerate 
the performance of many types of algorithms. 

This application note presents some of these techniques, using the 3DES (triple DES 
encryption) example that is supplied with CoDeveloper as a basis for discussion. 

 

Note: this application note is adapted from Practical FPGA Programming in C 
by David Pellerin and Scott Thibault, to be published in 2005 by Pearson 
(Prentice Hall) Publishers. 

Examining the 3DES example 

In Tutorial #4 of the CoDeveloper User’s Guide, an example of data encryption using the triple-
DES encryption algorithm is presented, using a legacy C implementation of the algorithm as a 
basis for the application. As indicated in the tutorial, the purpose of this example is to 
demonstrate how to prototype a hardware implementation in an FPGA, using C code that had 
previously been written for and compiled to an embedded processor. When hardware 
simulation of the resulting RTL was performed, it was determined that the rate at which the 
algorithm could generate encrypted blocks of data was approximately one block approximately 
every 150 cycles. This is rate that is faster in terms of clock cycles than what could be achieved 
in a software implementation (using an embedded Xilinx MicroBlaze processor for comparison), 

Application Note 

Optimizing Impulse C Code 
for Performance 
Scott Thibault, President 
Green Mountain Computing Systems, Inc. 

David Pellerin, CTO 
Impulse Accelerated Technologies, Inc. 

 

Copyright© 2004 Impulse Accelerated Technologies, Inc.

  

 



Application Note IATAPP-102  Updated 6/25/2012 

Optimizing C code for performance, 2 

but given the much higher clock rates possible in modern processors this is unlikely to be a 
satisfactory result for FPGA-based hardware acceleration. 

To increase the performance of this application, we begin by taking a closer look at the 
algorithm itself and how it was initially implemented as an Impulse C process. To simplify the 
example for the purpose of discussion we will focus on only one of the three single-DES passes 
of this algorithm. The following are excerpts of the original legacy C code that processes one 
64-bit block of eight characters: 

      left = ((unsigned long)block[0] << 24) 
           | ((unsigned long)block[1] << 16) 
           | ((unsigned long)block[2] << 8) 
           | (unsigned long)block[3]; 
 right = ((unsigned long)block[4] << 24) 
           | ((unsigned long)block[5] << 16) 
           | ((unsigned long)block[6] << 8) 
           | (unsigned long)block[7]; 
 
 work = ((left >> 4) ^ right) & 0x0f0f0f0f; 
 right ^= work; 
 left ^= work << 4; 
 work = ((left >> 16) ^ right) & 0xffff; 
 right ^= work; 
 left ^= work << 16; 
 work = ((right >> 2) ^ left) & 0x33333333; 
 left ^= work; 
 right ^= (work << 2); 
 work = ((right >> 8) ^ left) & 0xff00ff; 
 left ^= work; 
 right ^= (work << 8); 
 right = (right << 1) | (right >> 31); 
 work = (left ^ right) & 0xaaaaaaaa; 
 left ^= work; 
 right ^= work; 
 left = (left << 1) | (left >> 31); 

The preceding block prepares the data by arranging the 64-bit block into two 32-bit values and 
performing some initial permutations on the data. Simple bit-level manipulation such as this will 
be easily converted by the CoDeveloper compiler into hardware logic requiring only a single 
cycle. Reading the data from the block array, however, will require at least eight cycles 
because only one value per cycle can be read from memory. Reducing the number of accesses 
required to memory is one key optimization that we will consider for this algorithm. 

Next, consider the following excerpts of this example, in which a relatively complex macro has 
been defined as part of the calculation: 

#define F(l,r,key){\ 
 work = ((r >> 4) | (r << 28)) ^ key[0];\ 
 l ^= Spbox[6][work & 0x3f];\ 
 l ^= Spbox[4][(work >> 8) & 0x3f];\ 
 l ^= Spbox[2][(work >> 16) & 0x3f];\ 
 l ^= Spbox[0][(work >> 24) & 0x3f];\ 
 work = r ^ key[1];\ 
 l ^= Spbox[7][work & 0x3f];\ 
 l ^= Spbox[5][(work >> 8) & 0x3f];\ 
 l ^= Spbox[3][(work >> 16) & 0x3f];\ 
 l ^= Spbox[1][(work >> 24) & 0x3f];\ 
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} 

This macro is subsequently used in the following section of the algorithm: 
 
F(left,right,Ks[0]); 

 F(right,left,Ks[1]); 
 F(left,right,Ks[2]); 
 F(right,left,Ks[3]); 
 F(left,right,Ks[4]); 
 F(right,left,Ks[5]); 
 F(left,right,Ks[6]); 
 F(right,left,Ks[7]); 
 F(left,right,Ks[8]); 
 F(right,left,Ks[9]); 
 F(left,right,Ks[10]); 
 F(right,left,Ks[11]); 
 F(left,right,Ks[12]); 
 F(right,left,Ks[13]); 
 F(left,right,Ks[14]); 
 F(right,left,Ks[15]); 

This code performs the main operation of the encryption/decryption. There are some simple bit 
manipulations being performed, but there are also many references to both one and two-
dimensional array elements. Each instantiation of the macro F performs eight loads from the 
Spbox array, and F itself is instantiated 16 times for a total of 128 loads.  From that we can 
easily see that this block of code is going to require at least 128 cycles. 

The final block of code performs some final permutations on the two 32-bit values and arranges 
the result in the output array: 

 right = (right << 31) | (right >> 1); 
 work = (left ^ right) & 0xaaaaaaaa; 
 left ^= work; 
 right ^= work; 
 left = (left >> 1) | (left  << 31); 
 work = ((left >> 8) ^ right) & 0xff00ff; 
 right ^= work; 
 left ^= work << 8; 
 work = ((left >> 2) ^ right) & 0x33333333; 
 right ^= work; 
 left ^= work << 2; 
 work = ((right >> 16) ^ left) & 0xffff; 
 left ^= work; 
 right ^= work << 16; 
 work = ((right >> 4) ^ left) & 0x0f0f0f0f; 
 left ^= work; 
 right ^= work << 4; 
 
 block[0] = (unsigned char) (right >> 24); 
 block[1] = (unsigned char) (right >> 16); 
 block[2] = (unsigned char) (right >> 8); 
 block[3] = (unsigned char) right; 
 block[4] = (unsigned char) (left >> 24); 
 block[5] = (unsigned char) (left >> 16); 
 block[6] = (unsigned char) (left >> 8); 
 block[7] = (unsigned char) left; 
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Again, the simple bit-manipulations being shown here will be easily compiled into a single-cycle 
operation. Storing the data into the block array will require at least eight cycles, however, 
because only one data value can be written to memory per cycle. 

Using this original, unmodified code the CoDeveloper tools generate a hardware 
implementation that uses close to 3000 slices in a Xilinx Virtex II FPGA and perform just 10.6 
times faster than an equivalent algorithm running in software on an embedded MicroBlaze 
processor. In the following sections we will demonstrate a number of refinements that can be 
applied in this example to obtain better results, both in terms of clock cycles and in the size of 
the resulting logic. 

Refinement 1: reducing size by introducing a loop 

As described above, a macro (F) was used to repeat the 16 steps of the core processing. In 
software, this might run a little faster than using a loop. In hardware, though, using the macro in 
such a way means that we are duplicating that code 16 times creating a potentially much larger 
implementation. The obvious solution here is to reduce code repetition by introducing a loop. 

Without making major modifications we can introduce a loop as follows: 

    for (i=0; i<16; i++) { 
        F(left,right,Ks[i]); 
        i++; 
        F(right,left,Ks[i]); 
    } 

Regenerating hardware using the Impulse C tools, we obtain an implementation using about 
1500 slices in the Xilinx device. The looping instructions introduce some extra delay, but the 
performance is still 9.4 times faster than the unmodified software implementation. In short, for a 
small hit in performance the design size has been cut roughly in half. Refinement four will shed 
a somewhat different light on this performance difference. 

Refinement 2: array splitting 

One of the most significant performance advantages of hardware implementations is the ability 
to access multiple memories in the same cycle. In the typical software implementation, each 
CPU is connected to one or more memories by a single bus. In that scenario, the software can 
only access data from at most one memory per bus transaction (i.e., one or more cycles). 

When generating hardware, we have the opportunity to generate any topology necessary 
including separate connections to multiple memories. The Impulse C tools generate a separate, 
individually connected memory for each array used in the process. For example, consider the 
following code sample: 

    void run() 
    { 
        co_int32 i,A[4],B[4],C[4]; 
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        for (i=0; i<4; i++) { 
            A[i]=B[i]+C[i]; 
        } 

This process will generate three separate memories for the arrays A, B, and C, each with a 
dedicated connection to the computation hardware. The assignment statement that would 
require at least three bus transactions to execute in software can now be performed in a single 
cycle by performing reads from B and C and writing to A simultaneously. 

Returning to our DES example, notice that there are two relatively large arrays involved in the 
core computation, Spbox and Ks. These are each implemented in their own memory, however 
they still involve multiple accesses to the same array and thus require multiple cycles when 
used in this algorithm. Let’s look at the memory access involved in the core computation as 
specified in macro F and in the main code loop: 

    #define F(l,r,key){\ 
        work = ((r >> 4) | (r << 28)) ^ key[0];\ 
        l ^= Spbox[6][work & 0x3f];\ 
        l ^= Spbox[4][(work >> 8) & 0x3f];\ 
        l ^= Spbox[2][(work >> 16) & 0x3f];\ 
        l ^= Spbox[0][(work >> 24) & 0x3f];\ 
        work = r ^ key[1];\ 
        l ^= Spbox[7][work & 0x3f];\ 
        l ^= Spbox[5][(work >> 8) & 0x3f];\ 
        l ^= Spbox[3][(work >> 16) & 0x3f];\ 
        l ^= Spbox[1][(work >> 24) & 0x3f];\ 
    } 
 
    . . . 
 
        for (i=0; i<16; i++) { 
        F(left,right,Ks[i]); 
             i++; 
             F(right,left,Ks[i]); 
        } 

Each iteration of the above loop requires four loads from Ks, and eight loads from Spbox. The 
need for eight loads from Spbox implies that at least eight cycles will be required because (at 
most) one value can be read from Spbox per cycle. We notice, however, that Spbox is a multi-
dimensional array and that the row indices are all constants. Because the indices are constant it 
is possible to actually split this array into individual arrays for each row. 

Likewise, we see that Ks is a multi-dimensional array and the column indices are all constant. 
Ks can therefore be split into individual arrays for each column. The resulting code looks like 
this: 

    #define F(l,r,key0,key1){\ 
        work = ((r >> 4) | (r << 28)) ^ key0;\ 
        l ^= Spbox6[work & 0x3f];\ 
        l ^= Spbox4[(work >> 8) & 0x3f];\ 
        l ^= Spbox2[(work >> 16) & 0x3f];\ 
        l ^= Spbox0[(work >> 24) & 0x3f];\ 
        work = r ^ key1;\ 
        l ^= Spbox7[work & 0x3f];\ 
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        l ^= Spbox5[(work >> 8) & 0x3f];\ 
        l ^= Spbox3[(work >> 16) & 0x3f];\ 
        l ^= Spbox1[(work >> 24) & 0x3f];\ 
    } 
 
    . . . 
 
        i=0; 
        do { 
            F(left,right,Ks0[i],Ks1[i]); 
            i++; 
            F(right,left,Ks0[i],Ks1[i]); 
            i++; 
        } while (i<16); 

This is only a minor change to the code, but the result is that each of the new Spbox and Ks 
arrays are only accessed twice per iteration, reducing the total cycle count required to execute 
the process. After regenerating the hardware with CoDeveloper, we obtain an implementation 
that is slightly smaller in size and 19.5 times faster then the unmodified software 
implementation running on MicroBlaze. In this case, array splitting has doubled the 
performance over our first refinement. The result is also smaller in size due to the fact that 
some address calculation have been eliminated by reducing the dimension of Spbox and Ks. 
Array splitting is therefore a useful technique for reducing both size and cycle counts. 

Refinement 3: improving communication performance 

Sometimes the most significant bottleneck in a hardware/software implementation is the 
hardware/software communication interface. In the 3DES example, the data is assumed to be 
both produced and consumed by the connected CPU (a Microblaze processor connected via 
FSL links). This results in a significant amount of data crossing over the software/hardware 
interface. When the legacy code was initially ported to Impulse C hardware, no attention was 
given to the communication overhead and the resulting stream implementation is very 
inefficient. Consider the following code, which is located at the start of the main processing 
loop: 

while (co_stream_read(blocks_in,&block[0],sizeof(uint8))==co_err_none) { 
    for ( i = 1; i < BLOCKSIZE; i++ ) { 
      co_stream_read(blocks_in, &block[i], sizeof(uint8)); 
    } 

Here, each 64-bit block is being transferred eight bits at a time (one character) over an 8-bit 
stream even though the hardware is connected to the CPU via a 32-bit bus. As with memories, 
streams require at least one cycle per read/write operation, so this code will require at least 
eight cycles. Furthermore, consider the code immediately following the stream reads: 

    left = ((unsigned long)block[0] << 24)  
          | ((unsigned long)block[1] << 16) 
          | ((unsigned long)block[2] << 8) 
          | (unsigned long)block[3]; 
    right = ((unsigned long)block[4] << 24) 
          | ((unsigned long)block[5] << 16) 
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          | ((unsigned long)block[6] << 8) 
          | (unsigned long)block[7]; 

After reading the data eight bits at a time, this code rearranges the data into two 32-bit values, 
which requires eight loads from the block array and therefore at least eight more cycles. The 
same situation is also present in the output communications at the end of the main processing 
loop. 

Rewriting the streams interface to use 32-bit streams will significantly improve performance. 
The input and output communication can be rewritten as follows: 

  while (co_stream_read(blocks_in, &left, sizeof(left))==co_err_none) { 
    co_stream_read(blocks_in, &right, sizeof(unsigned long)); 
… 
    co_stream_write(blocks_out, &right, sizeof(unsigned long)); 
    co_stream_write(blocks_out, &left, sizeof(unsigned long)); 
  } 

Notice that the block array has been eliminated altogether. Obviously this change to the 
streams specification requires a corresponding change to the producer and consumer 
processes (which in this example are represented by a single “software test bench” process 
running on the embedded MicroBlaze processor) but this is a simple change. 

Regenerating hardware with this new communication scheme we obtain system performance 
48 times faster than the software implementation (which was also modified to access the block 
data in 32 bit chunks). Thus performance is nearly 2.5 times better than the previous result 
(refinement 2). 

Refinement 4: loop unrolling 

Refinement 1 began by reducing the size of the generated hardware by recoding some 
repeated code as a loop. Up to refinement 3, we considered performance improvements that 
kept the size fairly constant and in the end achieved an overall system speedup of 48 over the 
initial software-based prototype. In the remaining sections we will abandon our attempts to 
maintain the size and push instead for the maximum performance, as measured in cycle 
counts. 

Refinement 1 introduced a loop and consequently some overhead to the core DES computation 
in favor of the reduced size. The performance loss was quite modest when considered in 
isolation; however, that was before optimizing the statements that make up the body of the new 
loop. Let’s see what impact loop unrolling will have now, after the substantial optimizations of 
refinements 2 and 3. The following is how the code appears after unrolling the inner loop 
introduced in refinement 1: 

        F(left,right,Ks0[0],Ks1[0]); 
        F(right,left,Ks0[1],Ks1[1]); 
        F(left,right,Ks0[2],Ks1[2]); 
        F(right,left,Ks0[3],Ks1[3]); 
        F(left,right,Ks0[4],Ks1[4]); 
        F(right,left,Ks0[5],Ks1[5]); 
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        F(left,right,Ks0[6],Ks1[6]); 
        F(right,left,Ks0[7],Ks1[7]); 
        F(left,right,Ks0[8],Ks1[8]); 
        F(right,left,Ks0[9],Ks1[9]); 
        F(left,right,Ks0[10],Ks1[10]); 
        F(right,left,Ks0[11],Ks1[11]); 
        F(left,right,Ks0[12],Ks1[12]); 
        F(right,left,Ks0[13],Ks1[13]); 
        F(left,right,Ks0[14],Ks1[14]); 
        F(right,left,Ks0[15],Ks1[15]); 

Regenerating hardware using the Impulse C tools on this new revision produces a hardware 
implementation that requires a little over 2000 slices and performs nearly 80 times faster than 
the software implementation. This shows that the overhead introduced by a loop can be 
significant when the loop body is small. 

Note that, rather than duplicating the body eight times and substituting constants for I as we 
have done above, Impulse C also has an UNROLL pragma that essentially does the same thing 
for loops with constant values for their iteration values. The UNROLL pragma performs 
unrolling for you as a preprocessing step before other optimizations are performed. For this 
example, however, it is more convenient to unroll the loop by hand as a prelude to refinement 5. 

Refinement 5: pipelining the main loop 

Along with memory optimization, pipelining is also one of the most significant types of 
optimizations to consider when generating hardware. Pipelining can be applied to loops that 
require two or more cycles per iteration and that do not have dependencies between iterations. 
The DES loop processes independent blocks of data with no dependencies between iterations, 
so it should be possible to apply pipelining. 

The goal of pipelining is to execute multiple iterations of a loop in parallel much like the 
assembly line of a factory. The core DES computation contains 16 instantiations of the F 
macro, and these instantiations can be called F0, F1, …, F16. Iteration F16 is dependent on F15, 
which is in turn dependent on F14, and so on so that F1 through F16 must be executed 
sequentially. Imagine that F1 through F16 are stations in an assembly line processing a 64-bit 
block (“raw material”) and producing a 64-bit block “product” on the other end. At the start of the 
line, F1 receives block1, does some processing and passes the result on to F2.  While F2 is 
processing block1, F1 is idle so it can go ahead and start processing block2.  By the time block1 
makes it to station F16, station F1 is processing block16 and all 16 stations are busy operating in 
parallel. The result of building such an assembly line is we can generate one block of output 
every cycle even though it still takes 16 cycles to process one block. The cost (continuing the 
assembly line metaphor) is that each station needs its own equipment in order for them to 
operation in parallel. 

To generate a pipeline using Impulse C, we simply insert the CO PIPELINE pragma inside the 
main loop as shown below: 

 
    while (co_stream_read(blocks_in, &left, sizeof(unsigned long)) 
                                                   == co_err_none) { 
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       #pragma CO PIPELINE 
       co_stream_read(blocks_in, &right, sizeof(unsigned long)); 

Unfortunately, simply adding the pipeline pragma to the refinement 4 code generates a pipeline 
that only produces one result every 16 cycles. Why did the pipeline fail? The reason is each 
instance of the F macro requires access to the Spbox and Ks arrays, which prevents them 
from being executed in parallel.  

In order to generate an effective pipeline in this application, each instance of F must have its 
own copy of the Spbox arrays. The Ks array could also be duplicated, but since the array is 
small we use another technique, which is to convert the Ks array into a register bank. Registers 
can be read by many sources in the same cycle. To implement Ks as a register bank, all 
indices to Ks must be constants. The resulting code appears as follows: 

    #define F(l,r,key0,key1,sp0,sp1,sp2,sp3,sp4,sp5,sp6,sp7){\ 
        work = ((r >> 4) | (r << 28)) ^ key0;\ 
        l ^= sp6[work & 0x3f];\ 
        l ^= sp4[(work >> 8) & 0x3f];\ 
        l ^= sp2[(work >> 16) & 0x3f];\ 
        l ^= sp0[(work >> 24) & 0x3f];\ 
        work = r ^ key1;\ 
        l ^= sp7[work & 0x3f];\ 
        l ^= sp5[(work >> 8) & 0x3f];\ 
        l ^= sp3[(work >> 16) & 0x3f];\ 
        l ^= sp1[(work >> 24) & 0x3f];\ 
    }  
 
    . . . 
 
    F(left,right,Ks0[0],Ks1[0], 
      Spbox00,Spbox10,Spbox20,Spbox30,Spbox40,Spbox50,Spbox60,Spbox70); 
    F(right,left,Ks0[1],Ks1[1], 
      Spbox01,Spbox11,Spbox21,Spbox31,Spbox41,Spbox51,Spbox61,Spbox71); 
    F(left,right,Ks0[2],Ks1[2], 
      Spbox02,Spbox12,Spbox22,Spbox32,Spbox42,Spbox52,Spbox62,Spbox72); 
    F(right,left,Ks0[3],Ks1[3], 
      Spbox03,Spbox13,Spbox23,Spbox33,Spbox43,Spbox53,Spbox63,Spbox73); 
    F(left,right,Ks0[4],Ks1[4], 
      Spbox04,Spbox14,Spbox24,Spbox34,Spbox44,Spbox54,Spbox64,Spbox74); 
    F(right,left,Ks0[5],Ks1[5], 
      Spbox05,Spbox15,Spbox25,Spbox35,Spbox45,Spbox55,Spbox65,Spbox75); 
    F(left,right,Ks0[6],Ks1[6], 
      Spbox06,Spbox16,Spbox26,Spbox36,Spbox46,Spbox56,Spbox66,Spbox76); 
    F(right,left,Ks0[7],Ks1[7], 
      Spbox07,Spbox17,Spbox27,Spbox37,Spbox47,Spbox57,Spbox67,Spbox77); 
    F(left,right,Ks0[8],Ks1[8], 
      Spbox08,Spbox18,Spbox28,Spbox38,Spbox48,Spbox58,Spbox68,Spbox78); 
    F(right,left,Ks0[9],Ks1[9], 
      Spbox09,Spbox19,Spbox29,Spbox39,Spbox49,Spbox59,Spbox69,Spbox79); 
    F(left,right,Ks0[10],Ks1[10], 
      Spbox0a,Spbox1a,Spbox2a,Spbox3a,Spbox4a,Spbox5a,Spbox6a,Spbox7a); 
    F(right,left,Ks0[11],Ks1[11], 
      Spbox0b,Spbox1b,Spbox2b,Spbox3b,Spbox4b,Spbox5b,Spbox6b,Spbox7b); 
    F(left,right,Ks0[12],Ks1[12], 
      Spbox0c,Spbox1c,Spbox2c,Spbox3c,Spbox4c,Spbox5c,Spbox6c,Spbox7c); 
    F(right,left,Ks0[13],Ks1[13], 
      Spbox0d,Spbox1d,Spbox2d,Spbox3d,Spbox4d,Spbox5d,Spbox6d,Spbox7d); 
    F(left,right,Ks0[14],Ks1[14], 
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      Spbox0e,Spbox1e,Spbox2e,Spbox3e,Spbox4e,Spbox5e,Spbox6e,Spbox7e); 
    F(right,left,Ks0[15],Ks1[15], 
      Spbox0f,Spbox1f,Spbox2f,Spbox3f,Spbox4f,Spbox5f,Spbox6f,Spbox7f); 

As a result of this change, each instance of F has its own copy of the Spbox data, and Ks0 and 
Ks1 will be converted to registers by the compiler. 

Running the compiler now results in a 20 stage pipeline that produces one block every two 
cycles. Two cycles are required because of the 32-bit communication stream requires two 
cycles to transfer the blocks to and from the CPU. If a 64-bit interface were available then the 
pipeline would generate a single block every cycle. The overall system performance is now 425 
times faster than the software implementation. The size of the hardware has also increased to 
over 3000 slices due to the duplicated resources required to implement a pipeline. 

Summary 

This application note has described a number of C coding techniques that may be used to 
increase the performance and reduce the size of C code. Although you can (in many cases) 
obtain satisfactory, prototype-quality results without considering the tradeoffs of memory 
access, array specifications, instruction-level dependencies, loop coding styles and instruction 
pipelines, you should consider these factors carefully when creating applications that require 
the highest practical performance and throughout. The techniques described in the application 
note are a good starting point and are applicable to a wide variety of FPGA-based applications. 

 


