
Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 1

© 2003-2009 Impulse Accelerated Technologies

1 Tutorial 2: Complex FIR Filter on the Nios II platform,
Cyclone III FPGA

Overview

This tutorial demonstrates how to to use external FLASH memory and SSRAMs on the platform. The
example presented in this tutorial is a Complex FIR filter.

The purpose of this tutorial is to take you through the entire process of generating hardware and
software interfaces (as was done in Tutorial 1) and importing the relevant files into the Altera
environment. The tutorial will also describe how to create the platform and downloadable FPGA
bitmap, then run the application software on the platform, all using the Altera tools.

The hardware platform used in this tutorial is Altera Cyclone III Evaluation Kit, featuring Altera
Cyclone III EP3C25 FPGA, and a touch-screen LCD display.

This tutorial will require approximately two hours to complete, including software run times.

Steps

Loading the Complex FIR Filter Example
Understanding the Complex FIR Filter Example
Compiling the Complex FIR Filter for Simulation
Building the Complex FIR Filter Example
Exporting Files from CoDeveloper
Creating the Quartus Project
Creating the New Platform
Configuring the New Platform
Generating the System
Generating the FPGA Bitmap
Running the Application on the Platform

Note: This tutorial assumes you have purchased or are evaluating the CoDeveloper Platform
Support Package for Altera Nios II, and that you have installed and have valid licenses for the Altera
Quartus II, SOPC Builder, and Nios II IDE products.

1.1 Loading the Complex FIR Filter Example

ComplexFIR Filter Tutorial for Nios II, Step 1

To begin, start the CoDeveloper Application Manager by selecting Application Manager from the Start -

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit2

© 2003-2009 Impulse Accelerated Technologies

> All Programs -> Impulse Accelerated Technologies -> CoDeveloper program group.

Note: this tutorial assumes that you have already read and understand the basic Hello World tutorial
presented in the CoDeveloper User's Guide, and Tutorial 1: Hello World on the Nios II platform.

Open the Altera Nios II Complex FIR filter sample project by selecting Open Project from the File
menu, or by clicking the Open Project toolbar button. Navigate to the
.\Examples\Embedded\ComplexFIR_NIOS directory within your CoDeveloper installation. (You may
wish to copy this example to an alternate directory before beginning.) Opening the project will display a
window similar to the following:

Files included in the ComplexFIR project include:

Source files ComplexFilter.c, Filter_hw.c and Filter_sw.c - These source files represent the
complete application, including the main() function, consumer and producer software processes and a
single hardware process.

Quartus subdirectory - Files in the Quartus subdirectory are used later in this tutorial to simplify the
creation of the hardware platform.

See Also

Step 2: Understanding the Complex FIR Filter Example

Tutorial 2: Complex FIR Filter on the Nios II platform

1.2 Understanding the Complex FIR Filter Example

Complex FIR Filter Tutorial for MicroBlaze, Step 2

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 3

© 2003-2009 Impulse Accelerated Technologies

Before compiling the Complex FIR application to hardware, let's first take a moment to understand its
basic operation and the contents of the its primary source files, and in particular Filter_hw.c.

The specific process that we will be compiling to hardware is represented by the following function
(located in Filter_hw.c):

void complex_fir(co_stream filter_in, co_stream filter_out)

This function reads two types of data:

· · Filter coefficients used in the Complex FIR convolution algorithm.
· · An incoming data stream

The results of the convolution are written by the process to the stream filter_out.

The complex_fir function begins by reading the coefficients from the filter_in stream and storing the
resulting data into a local array (coef_mem). The function then reads and begins processing the data,
one at a time. Results are written to the output stream filter_out.

The repetitive operations described in the complex_fir function are complex convolution algorithm.

The complete test application includes test routines (including main) that run on the MicroBlaze
processor, generating test data and verifying the results against the legacy C algorithm from which
complex_fir was adapted.

The configuration that ties these modules together appears toward the end of the Filter_hw.c file, and
reads as follows:

void config_filt (void *arg) {
int i;

co_stream to_filt, from_filt;
co_process cpu_proc, filter_proc;

to_filt = co_stream_create ("to_filt", INT_TYPE(32), 4);
from_filt = co_stream_create ("from_filt", INT_TYPE(32), 4);

cpu_proc = co_process_create ("cpu_proc", (co_function) call_accelerator, 2,
to_filt, from_filt);
filter_proc = co_process_create ("filter_proc", (co_function) complex_fir, 2,
to_filt, from_filt);

co_process_config (filter_proc, co_loc, "PE0");
}

As in the Hello World example (described in the main CoDeveloper help file), this configuration
function describes the connectivity between instances of each previously defined process.

Only one process in this example (filter_proc) will be mapped onto hardware and compiled by the
Impulse C compiler. This process (filter_proc) is flagged as a hardware process through the use of
the co_process_config function, which appears here at the last statement in the configuration
function. Co_process_config instructs the compiler to generate hardware for complex_fir (or more
accurately, the instance of complex_fir that has been declared here as filter_proc).

The ComplexFilter.c generates a set of complex FIR coeffients and also a group of input data being
processed.

The Filter_sw.c will run in the MicroBlaze embedded processor, controlling the stream flow and
printing results.

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit4

© 2003-2009 Impulse Accelerated Technologies

See Also

Step 3: Compiling the Complex FIR Filter for Simulation

Tutorial 2: Complex FIR Filter on the Nios II platform

1.3 Compiling the Complex FIR Filter for Simulation

CompleFIR Filter Tutorial for Nios II, Step 3

Simulating the CompleFIR Application

To compile and simulate the application for the purpose of functional verification:

1. Select Project -> Build Software Simulation Executable (or click the Build Software
Simulation Executable button) to build the FIR_Accelerator.exe executable. A command
window will open, displaying the compile and link messages.

2. You now have a Windows executable representing the ComplexFIR application implemented as a
desktop (console) software application. Run this executable by selecting Project -> Launch
Simulation Executable. A command window will open and the simulation executable will run as
shown below:

Verify that the simulation produces the output shown. Note that although the messages indicate that
the ComplexFIR algorithm is running on the FPGA, the application (represented by hardware and
software processes) is actually running entirely in software as a compiled, native Windows executable.
The messages you will see have been generated as a result of instrumenting the application with
simple printf statements such as the following:

#if defined(IMPULSE_C_TARGET)
// Print Acceleration Numbers
printf ("\r\n--> Acceleration factor: %.2fX\r\n\n",

elapsedtime_sw/elapsedtime_hw);
printf ("------> Visit www.ImpulseC.com to learn more!\r\n\n\n");

#else
printf ("COMPLETE APPLICATION\r\n");
printf ("Press Enter to continue...\r\n");

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 5

© 2003-2009 Impulse Accelerated Technologies

c = getc(stdin);
#endif

Notice in the above C source code that #ifdef statements have been used to allow the software side of
the application to be compiled either for the embedded Nios II processor, or to the host development
system for simulation purposes.

See Also

Step 4: Building the Complex FIR Filter Example

Tutorial 2: Complex FIR Filter on the Nios II platform

1.4 Building the Complex FIR Filter Example

CompleFIR Filter Tutorial for Nios II, Step 4

Specifying the Platform Support Package

The next step, prior to compiling and generating the HDL and related output files, is to select a platform
target. To specify a platform target, open the Generate Options dialog as shown below (Project ->
Options, Generate tab):

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit6

© 2003-2009 Impulse Accelerated Technologies

Specify Altera Nios II (VHDL) as shown. Also specify hw and sw for the hardware and software
directories as shown, and specify Quartus for the hardware and software export directories. Click OK
to save the options and exit the dialog.

Generate HDL for the Hardware Process

To generate hardware in the form of HDL files, and to generate the associated software interfaces and
library files, select Generate HDL from the Project menu, or click on the Generate HDL button:

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 7

© 2003-2009 Impulse Accelerated Technologies

A series of processing steps will run in a command window. When processing is complete you will
have a number of resulting files created in the hw and sw subdirectories of your project directory. Take
a moment to review these generated files. They include:

Hardware directory ("hw")

· Generated VHDL source files (FIR_Accelerator_comp.vhd, FIR_Accelerator_top.vhd and
subsystem.vhd) representing the hardware process and the generated hardware stream and
memory interfaces.

· A lib subdirectory containing required VHDL library elements.

· A class subdirectory containing generated files required by the Altera SOPC Builder tools.

Software directory ("sw")

· C source and header files extracted from the project that are required for compilation to the
embedded processor (in this case Filter_sw.c, Filter.h, ComplexFilter.c and ComplexFilter.h).

· A generated C file (co_init.c) representing the hardware initialization function. This file will also be
compiled to the embedded processor.

· A class subdirectory containing additional software libraries to be compiled as part of the
embedded software application. These libraries implement the software side of the
hardware/software interface.

If you are an experienced Altera tools user you may copy these files manually to your Altera project
area and, if needed, modify them to suit your needs. In the next step, however, we will show how to
use the hardware and software export features of CoDeveloper to move these files into your Altera
project automatically.

See Also

Step 5: Exporting Files from CoDeveloper

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit8

© 2003-2009 Impulse Accelerated Technologies

Tutorial 2: Complex FIR Filter on the Nios II platform

1.5 Exporting Files from CoDeveloper

ComplexFIR Filter Tutorial for Nios II, Step 5

As you saw in the previous step, CoDeveloper creates a number of hardware and software-related
output files that must all be used to create a complete hardware/software application on the target
platform. You can, if you wish, copy these files manually and integrate them into your existing Altera
projects. Alternatively, you can use the export features of CoDeveloper to integrate the files into the
Altera tools semi-automatically. This section will walk you through the process, using a new Quartus
project as an example.

Note: you must have the Altera Quartus II (version 7.1 or later) and SOPC Builder software installed in
order to proceed with this and subsequent steps.

Recall that in Step 4 you specified the directory Quartus as the export target for hardware and
software:

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 9

© 2003-2009 Impulse Accelerated Technologies

These export directories specify where the generated hardware and software processes are to be
copied when the Export Software and Export Hardware features of CoDeveloper are invoked. Within
these target directories (in this case we have specified both directories as "Quartus"), the specific
destination (which may be a subdirectory under Quartus) for each file is determined from the Platform
Support Package architecture library files. It is therefore important that the correct Platform Support
Package (in this case Altera Nios II) is selected prior to starting the export process.

To export the files from the build directories (in this case hw and sw) to the export directories (in this
case the Quartus directory), select Project -> Export Generated Hardware (HDL) and Project ->
Export Generated Software, or select the Export Generated Hardware and Export Generated
Software buttons from the toolbar.

Note: you must select BOTH Export Software and Export Hardware before going onto the next step.

You have now exported all necessary files from CoDeveloper to the Quartus project directory.

See Also

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit10

© 2003-2009 Impulse Accelerated Technologies

Step 6: Creating the Quartus Project

Tutorial 2: Complex FIR Filter on the Nios II platform

1.6 Creating the Quartus Project

ComplexFIR Filter Tutorial for Nios II, Step 6

Now we'll move into the Altera tool environment. Begin by launching Altera Quartus II (from the
Windows Start -> Altera menu). Open a new project by selecting File -> New Project Wizard. In the
field prompting you for the new project's working directory, use the browse button and find the directory
(Quartus) to which you exported the hardware and software files in the previous step.

Select the Quartus directory and click Open. On page one of the New Project Wizard dialog, enter
ComplexFIR in both the project name and top-level design entity fields as shown:

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 11

© 2003-2009 Impulse Accelerated Technologies

Click Next to move to the next page.

Now you will import the VHDL files generated by CoDeveloper, as well as a block diagram file included
with this tutorial example, to your Quartus project. In the Add Files page (page 2), add the files in the
following order:

1. Block diagram file (not generated by CoBuilder): ComplexFIR.bdf

1. Core logic files in the user_logic_filt_module subdirectory: subsystem.vhd,
FIR_Accelerator_top.vhd and FIR_Accelerator_comp.vhd

2. All .vhd files in the impulse_lib project subdirectory

The files should be listed in the opposite order from which they were added (i.e., the impulse_lib files
should be at the top of the list):

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit12

© 2003-2009 Impulse Accelerated Technologies

Click Next to proceed.

In the Family and Device Settings page (page 3) select the device you will be targeting. For this
example we will choose Cyclone III, EP3C25F324C6 device, with 324 pins and speed grade 6. This is
the FPGA used in the Cyclone III FPGA Starter Board.

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 13

© 2003-2009 Impulse Accelerated Technologies

Click Next again. Skip the EDA Tool Settings page (page 4) by again clicking Next.

You will see a Summary page listing the options you have chosen as shown below:

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit14

© 2003-2009 Impulse Accelerated Technologies

Click Finish to exit the Wizard and return to Quartus.

The next steps will demonstrate how to create and configure a hardware system with a Nios II
processor and the necessary I/O interfaces for our sample application.

See Also

Step 7: Creating the New Platform

Tutorial 2: Complex FIR Filter on the Nios II platform

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 15

© 2003-2009 Impulse Accelerated Technologies

1.7 Creating the New Platform

ComplexFIR Filter Tutorial for Nios II, Step 7

Now that you have created a Quartus project using the wizard, you will need to specify additional
information about your platform in order to support the requirements of your software/hardware
application. These steps include the creation of a hardware system with a Nios II processor and the
necessary I/O elements.

You will use SOPC Builder to create a hardware system containing an Altera Nios II embedded
processor, the FPGA module created for the ComplexFIR hardware process by CoBuilder, and several
necessary peripherals. To do this, select Tools -> SOPC Builder to start SOPC Builder.

In the Create New System dialog that appears, enter ComplexFIRSystem as the System Name, and
specify VHDL for the Target HDL language:

Click OK to continue.

Note: the System Name that you specify in this step must be a valid VHDL identifier. Specifically, it
must not begin with a numeric character or include spaces or other non-alphanumeric characters other
than the underscore character (_).

See Also

Step 8: Configuring the New Platform

Tutorial 2: Complex FIR Filter on the Nios II platform

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit16

© 2003-2009 Impulse Accelerated Technologies

1.8 Configuring the New Platform

ComplexFIR Filter Tutorial for Nios II, Step 8

The following instructions will lead you through the process of creating your Nios II-based platform
using SOPC Builder. This process requires many steps, but will only need to be done once for each
new project that you create.

We'll begin by adding the largest component of the ComplexFIR system, the Nios II processor. From
the System Contents tab (on the left side of the SOPC Builder window), double-click Nios II
Processor under Altera SOPC Builder. The Nios II Processor - cpu configuration Wizard will
appear. Select the Nios II/s core as shown below:

Click Finish to add the Nios II CPU to the system and return to SOPC Builder. A module called cpu
appears in the SOPC window.

Next, you must add the necessary peripherals to the new Nios II system. If you are not familiar with
how to do this in SOPC Builder, you may wish to review the information provided in your Nios II
Development Kit documents, and in particular the tutorials provided by Altera. Refer to the

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 17

© 2003-2009 Impulse Accelerated Technologies

instructions provided by Altera in the following file:

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

The relevant information begins with the section titled Timer (page 2-9) and ends with the section titled
External RAM Bus (Avalon Tri-State Bridge) (page 2-13).

Using the methods described in the Altera documentation (and summarized below), you will need to
add the following components:

Timer

To add the timer peripheral, perform the following steps:

Select Interval Timer under Peripherals -> Microcontroller Peripherals, and click Add. The Interval
Timer - timer wizard appears.

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit18

© 2003-2009 Impulse Accelerated Technologies

Leave the options at their default settings, and click Finish to add the timer to your system. You are
returned to the Altera SOPC Builder window.

External Flash Memory Interface

To add the external flash peripheral, perform the following steps:

Select Flash Memory (CFI) under Memories and Memory Controllers -> Flash, and click Add. The
Flash Memory (CFI) - cfi_flash wizard appears.

Make sure Intel 128P30 is selected in the Presets drop-down box. In the Size box, change the
Address Width to 23 bits, and Data Width to 16 bits.

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 19

© 2003-2009 Impulse Accelerated Technologies

Design Entry 2

Click Finish. You are returned to the Altera SOPC Builder window.

External SRAM Interface

To add the external SRAM peripheral, perform the following steps:

Select Cypress CY7C1380C SSRAM under Memory -> SRAM, and click Add. The Cypress
CY7C1380C SSRAM - ssram wizard displays.

Make sure the memory size is set to 1 MBytes:

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit20

© 2003-2009 Impulse Accelerated Technologies

Click Finish. You are returned to the Altera SOPC Builder window.

External RAM Bus (Avalon Tristate Bridge)

For the Nios II system to communicate with memory external to the FPGA on the development board,
you must add a bridge between the Avalon bus and the bus or buses to which the external memory is
connected.

To add the Avalon tristate bridge, perform the following steps:

Select Avalon-MM Tristate Bridge under Bridges and Adapters -> Memory Mapped, and click
Add. The Avalon-MM Tristate Bridge - tristate_bridge wizard displays. See that the Registered
option is turned on by default.

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 21

© 2003-2009 Impulse Accelerated Technologies

Design Entry 2

Click Finish. You are returned to the Altera SOPC Builder window.

Connect the External Memories to the Tristate Bridge

The external memories cfi_flash and ssram modules must be connected to the tristate_bridge.
Click both the open circles inside the red oval to make the connections.
The open circles will turn black to indicate a bus connection.

Double-click the tristate_bridge module to edit the its Parameter Settings. In the Shared Signals
tab, Check address under both ssram.s1 and cfi_flash.s1. This will allow the external ssram and
flash module to share the address bus in the generated system.

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit22

© 2003-2009 Impulse Accelerated Technologies

Click Finish to accept the changes.

JTAG UART Interface

The JTAG UART is used for communication between the board and the host machine and for
debugging software running on the Nios II processor. To add the JTAG UART peripheral, jtag_uart,
perform the following steps:

Locate Interface Protocols -> Serial -> JTAG UART, and double-click to add. The JTAG UART -
jtag_uart wizard displays.

Leave all options at their default settings.

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 23

© 2003-2009 Impulse Accelerated Technologies

Click Finish. You are returned to the Altera SOPC Builder window.

Adding the Hardware Process Module "filt_module"

Now add the filt_module, which implements the ComplexFIR hardware process. Double-click User
Logic under Avalon Modules in the System Contents pane. Select img_arch module and click Add:

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit24

© 2003-2009 Impulse Accelerated Technologies

The ComplexFIR hardware process, user_logic_filt_module_classic_0 module, will be connected to
the shared Avalon data bus automatically. The system module listing will appear as shown below:

PLL

We need to generate different clocks for various modules. The CPU can run at a fast clock of 100
MHz, while peripherals need slower clock sources. The hardware process filt_module needs to run at a
slow clock of 40 MHz. Adding a PLL module will serve this purpose.

To add a PLL module, simple select it under PLL, and click Add:

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 25

© 2003-2009 Impulse Accelerated Technologies

Click Launch Altera's ALTPLL MegaWizard to continue. The MegaWizard Plug-In Manager will
appear as shown below:

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit26

© 2003-2009 Impulse Accelerated Technologies

In the Operation mode box, check With no compensation item. Click Next to continue.

Switch to the Output Clocks tab of the wizard. In page 6 of the wizard, check Use this clock to
activate clock c0. Enter 2 in the Clock multiplication factor box. This will create a clock c0 of 100
MHz.

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 27

© 2003-2009 Impulse Accelerated Technologies

Click Next to continue. In page 7 of the wizard, check Use this clock to activate clock c1. Enter 2 in
the Clock multiplication factor box. In the Clock phase shift box, enter -2000.00 ps. This will create
a clock c1 of 100 MHz.

Click Next to continue. In page 8 of the wizard, check Use this clock to activate clock c2. Enter 6 in
the Clock multiplication factor box, and 5 in the Clock division factor box. This will create a clock

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit28

© 2003-2009 Impulse Accelerated Technologies

c2 of 60 MHz.

Click Next to continue. In page 9 of the wizard, check Use this clock to activate clock c3. Enter 4 in
the Clock multiplication factor box, and 5 in the Clock division factor box. This will create a clock
c2 of 60 MHz.

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 29

© 2003-2009 Impulse Accelerated Technologies

Now we are done with configuring clocks. Click Finish to view the Summary page of the wizard.

Click Finish again to accept the PLL settings, and then click the Finish button on the PLL - pll dialog
box. A pll module will be added to the system.

Rename Clocks

In order to better identify the clocks, rename the clocks as follows:

· External -> osc_clk
· pll.c0 -> cpu_clk
· pll.c1 -> ssram_clk
· pll.c2 -> peripheral_clk
· pll.c3 -> filt_co_clk

The Clock Settings in the SOPC Builder will appears as shown below:

Next, change the Clocks for each module to the following settings:

· osc_clk: pll
· cpu_clk: cpu, cfi_flash, ssram and tristate_bridge
· peripheral_clk: timer and jtag_uart

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit30

© 2003-2009 Impulse Accelerated Technologies

To do so, click on the clock name, and choose the right clock source. The example of changing the
Clock of cpu from osc_clk to cpu_clk is shown below:

After this is done, the modules and their associated names and bus connections in the SOPC Builder
should appear as below:

Setting "More 'cpu' Settings"

Now double-click the cpu module to edit the Nios II Processor - cpu settings. Change the Reset
Vector Memory to cfi_flash, and the Exception Vector Memory to ssram as shown:

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 31

© 2003-2009 Impulse Accelerated Technologies

Click Finish to save the changes.

Assign Addresses

We can see that as we add modules, error messages appear in the console window showing address
conflicts. Here, we let the SOPC to re-assign addresses for all the memory-mapped modules to avoid
address overlaps. From the SOPC Builder menu, select System -> Auto-Assign Base Addresses.
The newly assigned addresses are shown below:

Save the system by selecting File -> Save from the SOPC Builder menu.

Your new Nios II platform is ready for system generation.

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit32

© 2003-2009 Impulse Accelerated Technologies

See Also

Step 9: Generating the System

Tutorial 2: Complex FIR Filter on the Nios II platform

1.9 Generating the System

ComplexFIR Filter Tutorial for Nios II, Step 9

At this point you have set up and configured your new Nios II-based platform, including the hardware
module generated by CoDeveloper, and can now start the system generation process within the
SOPC Builder.

Click Generate on the bottom of the SOPC Builder window to generate the system. The SOPC
Builder will automatically switch to the System Generation tab and display generation
information.Make sure the Simulation option is unchecked to save time. This process may take
several minutes.

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 33

© 2003-2009 Impulse Accelerated Technologies

When generation is complete you may exit SOPC Builder and return to Quartus.

Now you will need to use the block diagram editor to connect the complete SOPC Builder-generated
system (which includes the ComplexFIR hardware process module, the Nios II processor, and
peripherals) to the pins on the FPGA.

To begin, open the block diagram file ComplexFIR.bdf by selecting the Files tab in the Project
Navigator window and double-clicking ComplexFIR.bdf. The block diagram file contains input and
output pins to be connected to the ComplexFIRSystem symbol as shown below:

Now add the block representing the SOPC Builder-generated system. Double-click anywhere in the
open block diagram file to bring up the Symbol dialog. Open the Project folder and select the
ComplexFIRSystem symbol as shown below:

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit34

© 2003-2009 Impulse Accelerated Technologies

Click OK. A symbol outline appears attached to the mouse pointer. Align the outline with the pins on
the block diagram and click once to place the symbol as shown:

Pin Assignment

The next step is to assign pins. Instead of assigning each individual pin (a tedious process), this tutorial
includes a Tcl script that does the pin assignments for you. To run the Tcl script, select Tools -> Tcl
Scripts... The following dialog will appear:

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 35

© 2003-2009 Impulse Accelerated Technologies

Select CycloneIII_pins_ext_ram.tcl in the Project folder and click Run to assign the pins in your
design.

Your project is now ready for bitmap generation and subsequent downloading.

Tip: you may wish to to save your Altera project at this point and save a copy for later use with other
CoBuilder-generated projects.

See Also

Step 10: Generating the FPGA Bitmap

Tutorial 2: Complex FIR Filter on the Nios II platform

1.10 Generating the FPGA Bitmap

ComplexFIR Filter Tutorial for Nios II, Step 10

At this point, if you have followed the tutorial steps carefully you have successfully:

· Generated hardware and software files from the CoDeveloper environment.

· Created a new Altera Quartus II project and used SOPC Builder to create a new Nios II-based

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit36

© 2003-2009 Impulse Accelerated Technologies

platform.

· Imported your CoDeveloper-generated files to the Altera tools environment.

· Completed a block diagram and assigned pins for the selected FPGA device.

You are now ready to generate the bitmap and download the complete application to the target
platform. This process is not complicated (at least in terms of your actions at the keyboard) but can be
time consuming due to the large amount of processing that is required within the Altera tools.

Pin Settings

First, you must apply some compiler settings related to pin assignment. Select Assignments ->
Settings... from the Quartus menu, and select the Device Category.

Click the Device & Pin Options... button to open the Device & Pin Options dialog:

In the General tab, check the Enable device-wide reset (DEV_CLRn) option. This will allow the
system to be reset by an external push button on the board.

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 37

© 2003-2009 Impulse Accelerated Technologies

Next, select the Dual-Purpose Pins tab and specify Use as regular I/O for all dual-purpose pins
listed:

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit38

© 2003-2009 Impulse Accelerated Technologies

Click OK to save the changes.

Compiling the System

Now you're ready to synthesize, download, and run the application. To generate the bitmap, select
Processing -> Start Compilation as shown below:

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 39

© 2003-2009 Impulse Accelerated Technologies

From the Task window, you can see the compilation progress.

Note: this process may require 10 minutes or more to complete, depending on the speed and memory
of your development system.

During compilation, Quartus will analyze the generated VHDL source files, synthesize the necessary
logic and create logic that is subsequently placed and routed into the FPGA along with the Nios II
processor and interface elements that were previously specified. The result will be a bitmap file (in the
appropriate Altera format) ready for downloading to the device.

Downloading Bitmap

When the bitstream has been generated, select Tools -> Programmer to open a new programming
file. Select File -> Save As and save the chain description file as ComplexFIR.cdf (make sure the "Add
file to current project" option is selected).

The programming file ComplexFIR.sof should be visible in the programming window. If it is not, select
Add File... and open ComplexFIR.sof.

Enable Program/Configure for ComplexFIR.sof and make sure your programming hardware (e.g., the
ByteBlasterMV cable) is configured properly. Click Start to begin downloading the ComplexFIR.sof file
to the target device.

Note: If you don't have the full license for OpenCore Plus megafunctions, then a message will pop up.
Click OK to continue. The bitmap file with be named ComplexFIR_time_limited.sof instead. After the
downloading is done, a OpenCore Plus Status message box will pop up. Don't click the Cancel
button. Otherwise the downloaded bitmap will be reset.

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit40

© 2003-2009 Impulse Accelerated Technologies

Now that the hardware is programmed, you are ready to download and run the software application on
the platform.

See Also

Step 11: Running the Application on the Platform

Tutorial 2: Complex FIR Filter on the Nios II platform

1.11 Running the Application on the Platform

ComplexFIR Filter Tutorial for Nios II, Step 11

In the previous step, you programmed the FPGA device with the design you created in Quartus and
SOPC Builder. Now you will use Altera Nios II IDE to compile the software portion of the project and
run it on the development board.

Begin by starting the Nios II IDE (usually available in the Windows Start menu under altera -> Nios II
EDS 8.0 -> Nios II 8.0 IDE).

Create a new project to manage the ComplexFIR software files. Select File -> New -> Nios II C/C++
Application. A New Project dialog box will appear.

Select the project path, target hardware, and project template as follows, using the Browse... buttons
to locate the appropriate Path and SOPC Builder System PTF File options:

Name: ComplexFIR

Specity Location: <selected>

Location: D:\altera\ImpulseExamples\ComplexFIR_NIOS\Quartus\software\ComplexFIR

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 41

© 2003-2009 Impulse Accelerated Technologies

(The project path should point to the software files that were exported by CoDeveloper in Step
5.)

SOPC Builder System PTF File:
D:\altera\ImpulseExamples\ComplexFIR_NIOS\Quartus\ComplexFIRSystem.ptf

(This is the system .ptf file generated by SOPC Builder in Step 9.)

CPU: cpu

Select Project Template: Blank Project

The New Project dialog box will look as follows

Click Finish to create the new project. Two new projects (ComplexFIR and ComplexFIR_syslib)
should appear in the Nios II C/C++ Projects window in the Nios II IDE, as shown below.

Copy the software files that were exported in Step 4 (co_init.c, ComplexFilter.c, Filter_sw.c and
ComplexFilter.h, Filter.h) to the ComplexFIR project as shown below.

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit42

© 2003-2009 Impulse Accelerated Technologies

The software files will appear under the ComplexFIR project as shown below:

Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA 43

© 2003-2009 Impulse Accelerated Technologies

Now build the project by right-clicking the ComplexFIR project and selecting Build Project. The IDE
will build the ComplexFIR_syslib system library, which includes a driver for the Impulse C hardware
module created by CoBuilder, along with the application software code in the ComplexFIR project.

Once the software has finished building, you are ready to run the application on the hardware platform.
Right-click the ComplexFIR project and select Run As -> Nios II Hardware.

You should see printed output in the Console window as shown below:

Impulse ComplexFIR Tutorial for Altera CycloneIII Evaluation Kit44

© 2003-2009 Impulse Accelerated Technologies

The result tells us that with hardware acceleration, the execution of the ComplexFIR filter is 58.86
times faster than the software-only version.

Congratulations! You have successfully completed the Image Filter tutorial.

See Also

Tutorial 2: Complex FIR Filter on the Nios II platform

	Tutorial 2: Complex FIR Filter on the Nios II platform, Cyclone III FPGA
	Loading the Complex FIR Filter Example
	Understanding the Complex FIR Filter Example
	Compiling the Complex FIR Filter for Simulation
	Building the Complex FIR Filter Example
	Exporting Files from CoDeveloper
	Creating the Quartus Project
	Creating the New Platform
	Configuring the New Platform
	Generating the System
	Generating the FPGA Bitmap
	Running the Application on the Platform

