
© 2012 Impulse Accelerated Technologies

Complex FIR Filter
Acceleration for the Nios II
on the DE0 Nano Platform
(Quartus II 12)

Complex FIR Filter Acceleration for the Nios II on the DE0 Nano Platform (Quartus II 12)2

© 2012 Impulse Accelerated Technologies

Table of Contents

Part I Tutorial: Complex FIR Filter Acceleration for
the Nios II on the DE0 Nano Platform (Quartus
II 12) 3

... 51 Loading the Complex FIR Filter Example

... 82 Understanding the Complex FIR Filter Example

... 103 Compiling and Simulating the ComplexFIR Application

... 134 Building the Complex FIR Filter Example

... 195 Exporting Files from CoDeveloper

... 226 Configuring the New Platform

... 277 Generating the System

... 288 Generating the FPGA Binary

... 319 Running the Application on the Platform

 3

© 2012 Impulse Accelerated Technologies

1 Tutorial: Complex FIR Filter Acceleration for the Nios II
on the DE0 Nano Platform (Quartus II 12)

Overview

This tutorial will demonstrate how to create, simulate, build, and run the example Complex FIR
application targeting the Terasic DE0 Nano Cyclone IV Development and Education Platform,
including the use of data streams connected to the Nios II soft-CPU via Avalon-MM interface and
using the Quartus II v12.0 tools.

This tutorial will require approximately one hour to complete, including software run times. To complete
the application, you will need access to a Terasic DE0 Nano development board shown above. This
tutorial shows how to use both the CoDeveloper IDE and plugin for Microsoft Visual Studio C++
2010 Express to do desktop software simulation through generating and exporting hardware for
integration using Quartus II. The use of the plugin is optional, however comes with the advantage of
the integrated Visual Studio C++ debugger.

General Steps

This tutorial will take you through the entire process of creating a hardware-accelerated system in the
Cyclone IV FPGA using the Impulse and Altera tools following these general steps:

1. Describe and simulate the application using C language and either the Impulse CoDeveloper
IDE or Microsoft Visual Studio C++.

2. Automatically generate hardware, in the form of VHDL source files, for the hardware accelerator
portion of the application.

3. Export the generated files to a Quartus project directory which contains a pre-configured set of
Quartus II and Qsys projects based on the "DE0_Nano_SOPC_DEMO" supplied with the DE0

 4

© 2012 Impulse Accelerated Technologies

Nano board.
4. Attach the hardware accelerator generated in step 2 to the Nios II CPU via Avalon-MM

interfaces.
5. Start a new Nios II EDS project adding all necessary software files representing the application

to be run on the Nios II.
6. Run synthesis and place-and-route to generate a binary for download to the FPGA.
7. Download the FPGA binary to the DE0 Nano board using its USB programming cable.
8. Download and run the application on the Nios II using EDS.

Steps

Loading the Complex FIR Filter Example
Understanding the Complex FIR Filter Example
Compiling the Complex FIR Filter for Simulation
Building the Complex FIR Filter Example
Exporting Files from CoDeveloper
Configuring the New Platform
Generating the System
Generating the FPGA Bitmap
Running the Application on the Platform

Note: This tutorial assumes you have purchased or are evaluating the CoDeveloper Platform
Support Package for Altera Qsys, and that you have installed and have valid licenses for the Altera
Quartus II v12.0, Qsys and Nios II EDS products. The Quartus II Web or Subscription Editions
will include all necessary tools in the single download.

Note: Though not required, this tutorial also shows how to make use of the CoDeveloper plugin for
Microsoft Visual Studio C++ 2010 IDE. The plugin may be used with any of the purchased or free
"Express" editions. Microsoft Visual Studio C++ 2010 Express may be downloaded free (requires
registration for an activation code) from Microsoft's web site from:
http://www.microsoft.com/visualstudio/eng/downloads

http://www.microsoft.com/visualstudio/eng/downloads

Loading the Complex FIR Filter Example 5

© 2012 Impulse Accelerated Technologies

1.1 Loading the Complex FIR Filter Example

ComplexFIR Filter Tutorial, Step 1

The base project files for this tutorial are contained within the Zip file
"DE0_Nano_ComplexFIR_Tutorial_v12.zip". Unzip the supplied Zip file into the desired working
directory ensuring the path does not include the space (' ') character. Once unzipped the following
directory structure will be present:

DE0_Nano_ComplexFIR_Tutorial_v12\ - Contains source code and
CoDeveloper project files

DE0_Nano_ComplexFIR_Tutorial_v12\MSVC - Contains Microsoft Visual
Studio C++ project files

DE0_Nano_ComplexFIR_Tutorial_v12\DE0_Nano_QsysBase - contains a pre-configured
set of Quartus II and Qsys projects

 based on the
"DE0_Nano_SOPC_DEMO" supplied with the

 DE0 Nano board

Files included in the ComplexFIR project include the source files ComplexFilter.c, Filter_hw.c and
Filter_sw.c - These source files represent the complete application, including the main() function,
consumer and producer software processes and the single hardware process.

How to Do This Step:
Using the CoDeveloper IDE
Using the Visual Studio C++ Plugin

Loading the Complex FIR Filter Example 6

© 2012 Impulse Accelerated Technologies

Using the CoDeveloper IDE:

To begin, start the CoDeveloper Application Manager by selecting Application Manager from the Start -
> All Programs -> Impulse Accelerated Technologies -> CoDeveloper program group.

Open the Altera Nios II Complex FIR filter sample project by selecting Open Project from the File
menu, or by clicking the Open Project toolbar button. Navigate to the location of the
DE0_Nano_ComplexFIR_Tutorial_v12 directory which was just unzipped and select the CoDeveloper
project named "ComplexFIR.icProj". Opening the project will display a window similar to the following:

Loading the Complex FIR Filter Example 7

© 2012 Impulse Accelerated Technologies

Using the Visual Studio C++ Plugin:

To begin, start the Microsoft Visual C++ 2010 by selecting Application Manager from the Start -> All
Programs -> Microsoft Visual Studio 2010 program group.

Open the Altera Nios II Complex FIR filter sample project by selecting File -> Open -> Project/
Solution. or by clicking the Open Project link on the Start Page. Navigate to the location of the
DE0_Nano_ComplexFIR_Tutorial_v12\MSVC directory which was just unzipped and select the project
named "ComplexFIR.vcxproj". Opening the project will display a window similar to the following:

See Also

Step 2: Understanding the Complex FIR Filter Example

Complex FIR Filter on the Nios II platform

Understanding the Complex FIR Filter Example 8

© 2012 Impulse Accelerated Technologies

1.2 Understanding the Complex FIR Filter Example

Complex FIR Filter Tutorial, Step 2

Before compiling the Complex FIR application to hardware, let's first take a moment to understand its
basic operation and the contents of the its primary source files, in particular Filter_hw.c.

The specific process that we will be compiling to hardware is represented by the following function
(located in Filter_hw.c):

void complex_fir(co_stream filter_in, co_stream filter_out)

This function reads two types of data:

Filter coefficients used in the Complex FIR convolution algorithm.
An incoming data stream

The results of the convolution are written by the process to the stream filter_out.

The complex_fir function begins by reading the coefficients from the filter_in stream and storing the
resulting data into a local array (coef_mem). The function then reads and begins processing the data,
one at a time with one result per input which is written to the output stream filter_out.

The repetitive operations described in the complex_fir function are complex convolution algorithm.

The complete test application includes test routines (including main) that run both in desktop software
simulation and on the target NIOS II processor, generating test data and verifying the results against the
legacy C algorithm from which complex_fir was adapted.

The configuration that describes the how the processes are connected together appears toward the end
of the Filter_hw.c file, and reads as follows:

void config_filt (void *arg)
{
int i;

co_stream to_filt, from_filt;
co_process cpu_proc, filter_proc;

to_filt = co_stream_create ("to_filt", INT_TYPE(32), 4);
from_filt = co_stream_create ("from_filt", INT_TYPE(32), 4);

cpu_proc = co_process_create ("cpu_proc", (co_function) call_accelerator, 2,
to_filt, from_filt);
filter_proc = co_process_create ("filter_proc", (co_function) complex_fir, 2,
to_filt, from_filt);

co_process_config (filter_proc, co_loc, "PE0");
}

This configuration function describes the connectivity between instances of each previously defined
process along with partitioning those that are to be implemented in hardware vs. software. Only one
process in this example (filter_proc) will be mapped into hardware and compiled by the Impulse C
compiler. This process (filter_proc) is flagged as a hardware process through the use of the
co_process_config function, which appears here at the last statement in the configuration function.
co_process_config instructs the compiler to generate hardware for complex_fir (or more accurately,

Understanding the Complex FIR Filter Example 9

© 2012 Impulse Accelerated Technologies

the instance of complex_fir that has been declared here as the single instance filter_proc). This also
instructs the Platform Support Package to provide all the necessary hardware interfaces and drivers
to make the connections between hardware and software.

The ComplexFilter.c contains routines that generates a set of complex FIR coefficients and a group of
input data being processed.

The Filter_sw.c will run in desktop software simulation as a software test bench as well as be exported
for running as the application on the NIOS II embedded processor to again control the stream flow and
print results.

See Also

Step 3: Compiling the Complex FIR Filter for Simulation

Complex FIR Filter on the Nios II platform

Compiling and Simulating the ComplexFIR Application 10

© 2012 Impulse Accelerated Technologies

1.3 Compiling and Simulating the ComplexFIR Application

CompleFIR Filter Tutorial, Step 3

Verify that the simulation produces the output shown. Note that although the messages indicate that the
ComplexFIR algorithm is running on the FPGA, the application (represented by hardware and software
processes) is actually running entirely in software as a compiled, native Windows executable. The
messages you will see have been generated as a result of instrumenting the application with simple
printf statements such as the following:

#if defined(IMPULSE_C_TARGET)

// Print Acceleration Numbers

printf ("\r\n--> Acceleration factor: %.2fX\r\n\n", elapsedtime_sw/
elapsedtime_hw);

printf ("------> Visit www.ImpulseC.com to learn more!\r\n\n\n");
#else

printf ("COMPLETE APPLICATION\r\n");

printf ("Press Enter to continue...\r\n");

c = getc(stdin);
#endif

Notice in the above C source code that #ifdef statements have been used to allow the software side of
the application to be compiled either for the embedded Nios II processor, or to the host development
system for desktop simulation purposes. There are also additional printf's commented out in the source
code which will display the actual data being transferred.

How to Do This Step:
Using the CoDeveloper IDE
Using the Visual Studio C++ Plugin

Compiling and Simulating the ComplexFIR Application 11

© 2012 Impulse Accelerated Technologies

Using the CoDeveloper IDE:

To compile and simulate the application for the purpose of functional verification:

1. Select Project -> Build Software Simulation Executable (or click the Build Software
Simulation Executable button) to build the ComplexFIR.exe executable. The Build tab will display
compile and link messages.

2. You now have a Windows executable representing the ComplexFIR application implemented as a
desktop (console) software application. Run this executable by selecting Project -> Launch
Simulation Executable. A command window will open and the simulation executable will run as
shown below:

Compiling and Simulating the ComplexFIR Application 12

© 2012 Impulse Accelerated Technologies

Using the Visual Studio C++ Plugin:

To compile and simulate the application for the purpose of functional verification:

1. Select Debug -> Build Solution to build the ComplexFIR.exe executable. The Output area will
display compile and link messages.

2. You now have a Windows executable representing the ComplexFIR application implemented as a
desktop (console) software application. Run this executable by selecting Debug -> Start
Debugging. A command window will open and the simulation executable will run as shown below:

Using the integrated Visual Studio C++ debugger, breakpoints may be set in each of the processes,
including the hardware process complex_fir, for further inspection and debug. Each process will
appear as a separate thread during debug.

See Also

Step 4: Building the Complex FIR Filter Example

Complex FIR Filter on the Nios II platform

Building the Complex FIR Filter Example 13

© 2012 Impulse Accelerated Technologies

1.4 Building the Complex FIR Filter Example

CompleFIR Filter Tutorial, Step 4

The next step, prior to compiling and generating the HDL and related output files, is to select a platform
target and generate the HDL and associated interfaces. When processing is complete you will have a
number of resulting files created in the hw and sw subdirectories of your project directory. Take a
moment to review these generated files. They include:

Hardware directory ("hw")

Generated VHDL source files (ComplexFIR_comp.vhd, ComplexFIR_top.vhd) representing the
hardware process and the generated hardware interfaces for streams.

A lib subdirectory containing required VHDL library elements.

A HAL subdirectory containing software driver files required by the Altera Nios II software tool.
A export subdirectory containing hardware component files required by the Altera Qsys tool.

Software directory ("sw")

C source and header files extracted from the project that are required for compilation to the
embedded processor (in this case Filter_sw.c, Filter.h, ComplexFilter.c and ComplexFilter.h).
 A generated C file (filt_module_co_init.c) representing the hardware initialization function. This
file will also be compiled to the embedded processor.

How to Do This Step:
Using the CoDeveloper IDE
Using the Visual Studio C++ Plugin

Building the Complex FIR Filter Example 14

© 2012 Impulse Accelerated Technologies

Using the CoDeveloper IDE:

Specifying the Platform Support Package

 To specify a platform target, open the Generate Options dialog as shown below (Project -> Options,
Generate tab):

Ensure the following settings are set correctly:
Platform Support Package = Altera Qsys (VHDL)
Hardware build directory = hw
Software build directory = sw
Hardware export directory = DE0_Nano_QsysBase
Software export directory = DE0_Nano_QsysBase/SDK/ComplexFIR

Click OK to save the options and exit the dialog.

Building the Complex FIR Filter Example 15

© 2012 Impulse Accelerated Technologies

Generate HDL for the Hardware Process

To generate hardware in the form of HDL files, and to generate the associated software interfaces and
library files, select Generate HDL from the Project menu, or click on the Generate HDL button:

A series of processing steps will run with output shown in the Build window. No errors must be present
before continuing.

Building the Complex FIR Filter Example 16

© 2012 Impulse Accelerated Technologies

Using the Visual Studio C++ Plugin:

Specifying the Platform Support Package

 To specify a platform target, open the Property Pages dialog as shown below
(Project -> ComplesFIR Properties..., Impulse C -> HDL Generation, select Configuration =
Hardware):

Ensure the following settings are set correctly:
Platform Support Package = Altera Qsys (VHDL)

Building the Complex FIR Filter Example 17

© 2012 Impulse Accelerated Technologies

To specify directories, now select Impulse C -> Directories as shown below:

Ensure the following settings are set correctly:
Hardware build directory = hw
Software build directory = sw
Hardware export directory = ../DE0_Nano_QsysBase
Software export directory = ../DE0_Nano_QsysBase/SDK/ComplexFIR

Click OK to save the options and exit the dialog.

Building the Complex FIR Filter Example 18

© 2012 Impulse Accelerated Technologies

Generate HDL for the Hardware Process

To generate hardware in the form of HDL files, and to generate the associated software interfaces and
library files, select the Hardware Solution Configuration as shown:

Now generate hardware by building the Hardware configuration via Project -> Build Solution. A
series of processing steps will run with output shown in the Output window. No errors must be present
before continuing.

See Also

Step 5: Exporting Files from CoDeveloper

Complex FIR Filter on the Nios II platform

Exporting Files from CoDeveloper 19

© 2012 Impulse Accelerated Technologies

1.5 Exporting Files from CoDeveloper

ComplexFIR Filter Tutorial, Step 5

As you saw in the previous step, CoDeveloper creates a number of hardware and software-related
output files that must all be used to create a complete hardware/software application on the target
platform. You can use the export features of CoDeveloper to integrate the files into the Altera tools semi-
automatically. This section exports the necessary files into the supplied Quartus II project directory
DE0_Nano_QsysBase as an example.

Note: you must have the Altera Quartus II (version 12.0 or later), Qsys, and Nios Software
Development software installed in order to proceed with this and subsequent steps.

Recall that in Step 4 you specified the Platform Support Package and directories in
DE0_Nano_QsysBase as the export target for hardware and software. These export directories specify
where the generated hardware and software files are to be copied when the Export Software and
Export Hardware features of CoDeveloper are invoked. Within these target directories, the specific
destination for each file is determined from the Platform Support Package architecture library files. It
is therefore important that the correct Platform Support Package (in this case Altera Qsys) is
selected prior to starting the export process.

After this step is complete:
A complete Qsys component, including HAL software driver, will appear in the directory:
DE0_Nano_QsysBase\ip\filt_module
Supporting HDL libraries will appear in the directory: DE0_Nano_QsysBase\ip\impulse_lib
All exported software application files ready for adding to a Nios II project will appear in in the
directory: DE0_Nano_QsysBase\SDK\ComplexFIR\export_sw\filt

How to Do This Step:
Using the CoDeveloper IDE
Using the Visual Studio C++ Plugin

Exporting Files from CoDeveloper 20

© 2012 Impulse Accelerated Technologies

Using the CoDeveloper IDE:

To export the files from the build directories (in this case hw and sw) to the export directories, select
Project -> Export Generated Hardware (HDL) and Project -> Export Generated Software, or
select the Export Generated Hardware and Export Generated Software buttons from the toolbar.

Note: you must select BOTH Export Software and Export Hardware before going onto the next step.

You have now exported all necessary files from CoDeveloper to the Quartus II project directory.

Exporting Files from CoDeveloper 21

© 2012 Impulse Accelerated Technologies

Using the Visual Studio C++ Plugin:

Exporting hardware and software is done as an option when building the Hardware solution
configuration. To export the files from the build directories (in this case hw and sw) to the export
directories, first ensure that the Export Files option under HDL Generation is set to "Yes /export" as
shown below:

Now generate hardware by building the Hardware configuration via Project -> Build Solution. A
series of processing steps will run with output shown in the Output window. No errors must be present
before continuing.

See Also

Step 6: Configuring the Quartus Project

Complex FIR Filter on the Nios II platform

Configuring the New Platform 22

© 2012 Impulse Accelerated Technologies

1.6 Configuring the New Platform

ComplexFIR Filter Tutorial, Step 6

The following instructions will lead you through the process of adding the ComplexFIR hardware to the
pre-configured set of Quartus II and Qsys projects based on the "DE0_Nano_SOPC_DEMO" supplied
with the DE0 Nano board located in the DE0_Nano_ComplexFIR_Tutorial_v12\DE0_Nano_QsysBase
directory.

Open the Quartus II Project

Start first by selecting Quartus II 12.0 (32-bit or 64-bit) from the Start -> All Programs -> Altera 12.0
-> Quartus II 12.0 programs group. Open the project by clicking on the "Open Existing Project"
button, navigating to your
DE0_Nano_ComplexFIR_Tutorial_v12\DE0_Nano_QsysBase directory to select "DE0_Nano.qpf", and
then clicking the Open button. The project is now open and will appear similar to below:

Configuring the New Platform 23

© 2012 Impulse Accelerated Technologies

Adding the Hardware Process Module "filt_module" to the Qsys project

Open the Qsys project from within Quartus II by selecting Tools -> Qsys. When the Open dialogue
appears, select the DE0_Nano_Qsys.qsys project and click the Open button. Qsys will now be open
and appear as below:

Configuring the New Platform 24

© 2012 Impulse Accelerated Technologies

Now to add the module that implements the ComplexFIR hardware process. Expand the Impulse C
Modules on the left under Project and double click the filt module. The filt module configuration
window will appear as shown below:

Click the Finish button to continue.

Configuring the New Platform 25

© 2012 Impulse Accelerated Technologies

Scrolling to the bottom of the Qsys project window will show the newly added filt_module_0 with ports
unconnected as shown below:

Configuring the New Platform 26

© 2012 Impulse Accelerated Technologies

Connecting the Hardware Process Module "filt_module"

Connect each of the ports of filt_module_0 by right-clicking the port name, selecting
filte_module_0.<port name>, then selecting the connection from those listed following the mapping
below:

For filt_module_0.clk, select altpll_sys.c0
For filt_module_0.clk_reset, select clk_50.clk_reset
For filt_module_0.p_cpu_proc_output_stream, select cpu.data_master
For filt_module_0.p_cpu_proc_input_stream, select cpu.data_master

The filt_module_0 is now connected to a 100MHz clock and reset with both stream Avalon-MM Slave
ports connected to the Nios II CPU.

Assign Addresses

We can see that as we add modules, error messages appear in the console window showing address
conflicts. Here, we let Qsys re-assign addresses for all the memory-mapped modules to avoid address
overlaps. From the Qsys menu, select System -> Assign Base Addresses.

Save Qsys System

Save the system by selecting File -> Save from the Qsys menu.

Your Nios II platform is ready for system generation. No errors must be present in the Messages
window at this time before continuing.

See Also

Step 7: Generating the System

Complex FIR Filter on the Nios II platform

Generating the System 27

© 2012 Impulse Accelerated Technologies

1.7 Generating the System

ComplexFIR Filter Tutorial, Step 7

At this point you have set up and configured your Nios II-based platform, including the hardware
module generated by CoDeveloper, and can now start the system generation process within Qsys.

From the Generation tab, click Generate button at the bottom of the Qsys window to generate the
system. Make sure the Create simulation model option is set to None to save time. This process may
take several minutes. Upon success, the Generation tab should appear similar to below:

When generation is complete you may exit Qsys and return to Quartus. Note that this step is required
each time that you export your design from CoDeveloper.

Your project is now ready for FPGA binary generation and subsequent downloading.

Tip: you may wish to to save your Altera project at this point and save a copy for later use with other
CoBuilder-generated projects.

See Also

Step 8: Generating the FPGA Binary

Complex FIR Filter on the Nios II platform

Generating the FPGA Binary 28

© 2012 Impulse Accelerated Technologies

1.8 Generating the FPGA Binary

ComplexFIR Filter Tutorial, Step 8

At this point, if you have followed the tutorial steps carefully you have successfully:

Generated hardware and software files from the CoDeveloper environment.
Opened the Altera Quartus II project and used Qsys to add the filt module to a Nios II-based
platform.
Imported your CoDeveloper-generated files to the Altera tools environment.

You are now ready to generate the FPGA binary and download the complete application to the target
platform. This process is not complicated (at least in terms of your actions at the keyboard) but can be
time consuming due to the large amount of processing that is required within the Altera tools.

Compiling the System

Now you're ready to synthesize, download, and run the application. To generate the FPGA binary, in
Quartus II select Processing -> Start Compilation as shown below:

Generating the FPGA Binary 29

© 2012 Impulse Accelerated Technologies

From the Task window, you can see the compilation progress.

Note: this process may require 5 minutes or more to complete, depending on the speed and memory
of your development system.

During compilation, Quartus will analyze the generated HDL source files, synthesize the necessary
logic and create logic that is subsequently placed and routed into the FPGA along with the Nios II
processor and interface elements that were previously specified. The result will be a FPGA binary .sof
file (in the appropriate Altera device format) ready for downloading to the device.

Downloading the FPGA Binary

Note: Before continuing, ensure that the DE0 Nano board is already connected to the PC via the
supplied USB cable.

When the FPGA binary has been generated, select Tools -> Programmer to open a new programming
file. Select File -> Save As and save the chain description file as ComplexFIR.cdf (make sure the "Add
file to current project" option is selected).

The programming file DE0_Nano.sof should be visible in the programming window. If it is not, select
Add File... and open DE0_Nano.sof.

Enable Program/Configure for DE0_Nano.sof and make sure your programming hardware is
configured properly. Click Start to begin downloading the DE0_Nano.sof file to the target device.

Note: If you do not have the full license for OpenCore Plus megafunctions, such as when using the
Quartus II Web Edition, then a message will pop up. Click OK to continue. The FPGA binary file will
also be named DE0_Nano_time_limited.sof instead. After the downloading is done, a OpenCore Plus
Status message box will pop up. Don't click the Cancel button. Otherwise the downloaded FPGA
binary will not function correctly.

Generating the FPGA Binary 30

© 2012 Impulse Accelerated Technologies

The Programmer tool will appear similar to below upon successful download of the FPGA binary:

Now that the hardware is programmed, you are ready to download and run the software application on
the platform.

See Also

Step 9: Running the Application on the Platform

Complex FIR Filter on the Nios II platform

Running the Application on the Platform 31

© 2012 Impulse Accelerated Technologies

1.9 Running the Application on the Platform

ComplexFIR Filter Tutorial, Step 9

In the previous step, you programmed the FPGA device with the design you created in Quartus and
Qsys. Now you will use Altera Nios II IDE to compile the software portion of the project and run it on
the development board.

Create Software Projects

Begin by starting the Nios II IDE from Quartus II via Tools -> Nios II Software Build Tools for
Eclipse.

When the Workspace Launcher window appears, set the Workspace to the directory <your
path>\DE0_Nano_ComplexFIR_Tutorial_v12\DE0_Nano_QsysBase\SDK\workspace as shown below:

Create a new project to manage the ComplexFIR software files. Select File -> New -> Nios II
Application and BSP from Template and a dialog box will appear. Set the following:

SOPC Information File name: <your path>\DE0_Nano_ComplexFIR_Tutorial_v12
\DE0_Nano_QsysBase\DE0_Nano_Qsys.sopcinfo
CPU name: cpu
Use default location: checked
Project name: ComplexFIR
Templates: Hello World

Running the Application on the Platform 32

© 2012 Impulse Accelerated Technologies

The dialog box will now look as below:

Click Finish to create the new project along with its associated BSP. Two new projects ComplexFIR
and ComplexFIR_bsp should appear in the Project Explorer window.

Running the Application on the Platform 33

© 2012 Impulse Accelerated Technologies

Add Exported Software to ComplexFIR Project

To add the exported software from CoDeveloper, right-click the ComplesFIR project in the Project
Explorer and then select New -> Folder, a New Folder window will appear. Click the Advanced
button, select Link to alternate location (Linked Folder), then type the path or click Browse to select
the <your path>\DE0_Nano_ComplexFIR_Tutorial_v12
\DE0_Nano_QsysBase\SDK\ComplexFIR\export_sw directory already containing exported software files
from CoDeveloper. The New Folder window should now appear similar to below:

Click the Finish button to continue.

Running the Application on the Platform 34

© 2012 Impulse Accelerated Technologies

To add the exported source code to be built as part of the ComplexFIR project, in the Project Folders
view, first expand the directory ComplexFIR -> export_sw -> filt to view all the exported source files.
For each of the *.c files, right-click and select Add to Nios II Build, a green dot will now appear next to
each of the files. Upon completion, the Project Folders view must look as below:

Running the Application on the Platform 35

© 2012 Impulse Accelerated Technologies

The ComplexFIR project was started using a Hello World template which must now be modified in
order to call the main routine in the exported source files. To make this change, open hello_world.c
by double-clicking the file name in the Project Explorer view. Scroll down to the main() routine and
add the two lines:

extern int impc_main();
impc_main();

to make it look exactly like what appears below:

Save the source file via Ctrl+S.

Running the Application on the Platform 36

© 2012 Impulse Accelerated Technologies

Build and Run ComplexFIR Project

Now build the project by right-clicking the ComplexFIR project and selecting Build Project. The IDE
will build both the ComplexFIR_bsp which includes a driver for the Impulse C hardware module created
by CoDeveloper, along with the application software code in the ComplexFIR project.

Once the software has finished building, you are ready to run the application on the hardware platform.
 Right-click the ComplexFIR project and select Run As -> Nios II Hardware.

You should see printed output in the Nios II Console window similar to below:

The result tells us that with hardware acceleration, the execution of the ComplexFIR filter is 129.42 times
faster than the software-only version running on the Nios II CPU as configured.

Congratulations! You have successfully completed the Complex FIR tutorial.

See Also

Complex FIR Filter on the Nios II platform

	Tutorial: Complex FIR Filter Acceleration for the Nios II on the DE0 Nano Platform (Quartus II 12)
	Loading the Complex FIR Filter Example
	Understanding the Complex FIR Filter Example
	Compiling and Simulating the ComplexFIR Application
	Building the Complex FIR Filter Example
	Exporting Files from CoDeveloper
	Configuring the New Platform
	Generating the System
	Generating the FPGA Binary
	Running the Application on the Platform

