
Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 1

Overview
The CoDeveloper environment for Impulse C supports a wide range of FPGA-based
hardware/software platforms for embedded systems and high-performance computing.
Each of these platforms is described by a Platform Support Package (PSP), which
serves two purposes:

1. To specify platform capabilities so the Impulse tools can generate appropriate
hardware descriptions and hardware/software interfaces

2. To extend the CoDeveloper environment to interact with third-party development
tools

This document describes how to add support for a new platform to Impulse C using the
PSP infrastructure.

Revision History
Date Revision
August, 2011 Added co_memory level 2 update
July 6, 2007 Fixed broken document reference
May 1, 2007 Initial version

FPGA Platforms
Through Platform Support Packages, Impulse C allows the programmer to target a wide
range of FPGA-based platforms. These platforms may include an embedded processor,
an operating system, hardware and software libraries, and many different input/output
interfaces, as well as the FPGA device itself. A platform may be associated with one
particular hardware system, such as the XtremeData XD1000 high-performance
computing platform, or may cover a broad family of development boards and devices, as
with the “Xilinx Virtex-4 APU (VHDL)” Platform Support Package. System-level design
tools, such as Nallatech’s DIMEtalk software, can also be supported from Impulse C
using Platform Support Packages, allowing Impulse C-generated hardware modules to
be plugged in to a multi-component system.

The Impulse C compiler uses a PSP to generate files that map Impulse C code to the
chosen platform. A PSP specifies how co_stream, co_memory, and other I/O channels
are connected to the platform’s hardware I/O devices. A co_memory, for example, might
be connected to an SDRAM controller core, or a co_stream connected to a system bus.

Application Note

Creating Platform Support
Packages
Ralph Bodenner, Director of Product
Development
Impulse Accelerated Technologies, Inc.

Copyright © 2007 Impulse Accelerated Technologies, Inc.

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 2

Similarly, a PSP can specify how software drivers for those same interfaces are created
by the Impulse C compiler. Other platform implementation details can be specified using
a PSP, as well—from how C arrays are turned into HDL to what logic is used to
implement floating-point operations.

Platform Support Package Files
A Platform Support Package is a heterogeneous, hierarchical collection of files that
describe a hardware/software platform to the Impulse C compiler tools. The structure of
a PSP is defined using Extensible Markup Language (XML) files, according to formats
and conventions specified by Impulse. Many other types of files can be contained in a
PSP, including (but not limited to):

• Tcl scripts that generate HDL or C code
• HDL libraries
• Encrypted netlists describing IP cores
• C source files implementing software drivers
• Makefiles

XML File Structure
The components of a platform and their relationships to one another are defined in XML
files. The platform definition (“top-level”) file refers to component definition files. For
example, this XML element in a Xilinx MicroBlaze platform’s definition file refers to an
OPB bus component and names the location of the XML file defining that bus:

<bus name="opb0" file="VHDL/Xilinx/OPB/bus.xml"/>

Each major component of a platform has its own XML definition file, which details the
features of that component.

Filename Component Description
bus.xml Bus (or other

I/O link)
Connects FPGA logic to external peripherals, off-
chip I/O, shared memories, and embedded or host
CPUs

cpu.xml CPU External or embedded (hard- or soft-core) CPU
target.xml HDL Hardware Description Language (Verilog or VHDL)

targeted by Impulse C-to-HDL compiler
technology.xml FPGA FPGA device family or vendor
system.xml System Characteristics of the entire system; a catch-all

category
Figure 1: PSP component files

Directory Structure
Files that describe the PSPs in the CoDeveloper environment are arranged in a
hierarchical directory structure. The root of this directory tree is the “Architectures”
subdirectory of the CoDeveloper installation (for example, “C:\Impulse\CoDeveloper2”).
All platform definition files must be located directly under this root directory so
CoDeveloper will find them.

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 3

The branches of the tree are organized by convention, as follows:

• Hardware-related files, such as “bus.xml”, “target.xml”, or HDL libraries, are
found under either the “VHDL” or “Verilog” subdirectories, according to the HDL
they are written for.

• Software- or third-party-tool-related files, such as “cpu.xml” or “export.tcl”, are
organized directly under “Architectures”.

• Files are stored in subdirectories by vendor name, then by more specific
component names. For example, software driver files for the Altera Nios II
embedded CPU are located in “Architectures/Altera/NiosII”.

In general, we recommend that you follow the example of the existing PSPs in
organizing files.

Copy an Existing Platform
The best way to start creating a new Platform Support Package is to copy an existing
one. Choose a PSP that is similar to yours and copy its platform definition file. Give the
new file a unique name that includes the vendor and platform name, lowercase and
separated by underscores by convention. For example, Cyberdyne Corporation’s new
SkyNet platform would be defined in the file “cyberdyne_skynet.xml”.

Once the new file is created, a new entry should appear in the drop-down list of PSPs in
an Impulse C project’s options dialog in CoDeveloper

C:\Impulse\CoDeveloper2\Architectures
|
vendor_platform.xml
|
\Vendor
| |
| \Processor
| |
| \Bus
| |
| cpu.xml
| |
| system.xml
\VHDL
 |
 target.xml
 |
 \Vendor
 |
 technology.xml
 |
 \Bus
 |
 bus.xml

Platform definition file

Software and design tool files

Hardware files

Figure 2: PSP XML file organization

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 4

Figure 3: Creating a new platform definition file

Edit the new top-level file and change the XML elements for components that are
different in your platform. Depending on the platform, many elements will remain as-is,
pointing to existing files. New components require specifying and creating new files.

When creating new component definition files, it may help to copy and rename a similar
existing file. Once new component files are created, edit those files to define the
characteristics of each component. Creating a new PSP is, in this way, a recursive
process.

Where a platform does not include a component, such as a CPU, change the top-level
file to refer to a “Generic” component definition file. For example, the “Lattice Generic
(Verilog)” PSP does not have a CPU and is designed simply to generate standalone
HDL modules appropriate to the Lattice FPGA technology, so the “system”, “exporter”,
“bus”, and “proc” XML elements and attributes all point to files in the “Generic”
directories. These files, which ship with CoDeveloper, act as placeholders or provide
minimal functionality.

<?xml version='1.0'?>
<!DOCTYPE architecture PUBLIC "" "">
<architecture version="1.0" name=" Xilinx Generic ">
 <pe name="pe0" target="VHDL/target.xml" …/>
…
</architecture>

C: \ Impulse \ CoDeveloper2 \ Architectures \ xilinx_generic.xml

<?xml version='1.0'?>
<!DOCTYPE architecture PUBLIC "" "">
<architecture version="1.0" name=" Cyberdyne SkyNet ">
 <pe name="pe0" target="VHDL/target.xml" …/>
…
</architecture>

C:\Impulse\CoDeveloper2\Architectures\cyberdyne_sky net.xml

<?xml version='1.0'?>
<!DOCTYPE architecture PUBLIC "" "">
<architecture version="1.0" name="Lattice Generic" hdl="Verilog">
 <bus name="generic0" file=" Verilog/Generic/Generic/bus.xml "/>
 <proc name="cpu0" file=" Generic/cpu.xml " bus="generic0"/>
 <pe name="pe0" target="Verilog/target.xml"
technology="Verilog/Lattice/technology.xml"
system=" Verilog/Generic/Generic/system.xml " cpu="cpu0" bus="generic0"/>
 <mem name="mem0" bus="generic0" alloc="malloc"/>
 <exporter file=" Generic/export.tcl "/>
</architecture>

lattice_generic_vlog.xml

Figure 4: Using "Generic" files as placeholders

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 5

The following sections of this document describe the platform definition file and the
component definition files in more detail.

Edit the Platform Definition File
The platform definition file (e.g., “xilinx_v4_apu.xml”) defines a single “architecture”
element containing several child elements that define components of the platform.

The XML elements that define the components are described below. Each element
requires a “name” attribute (with the exception of “exporter”). Elements refer to one
another by name to conceptually connect to one another. Each name must be unique to
the PSP.

FPGA Elements
The “pe” (“processing element”) XML element describes a platform’s FPGA.

Three attributes of the FPGA must be defined: “target”, “technology”, and “system”. Two
optional elements, “cpu” and “bus”, may be defined to connect the FPGA to other
components of the platform.

Attribute Example File Path Description
target VHDL/target.xml HDL targeted by the Impulse C

compiler
technology VHDL/Xilinx/technology.xml FPGA device family or vendor

system VHDL/Xtreme/xd1000_system.xml Other system components

Figure 6: "pe" element required attributes

The “target” attribute should always point to “VHDL/target.xml” or “Verilog/target.xml”,
depending on which HDL the Impulse C compiler should target when generating
hardware for a user’s application.

<?xml version='1.0'?>
<!DOCTYPE architecture PUBLIC "" "">
<architecture version="1.0" name="Xilinx Virtex-4 A PU">
 <bus name="apu0" file="VHDL/Xilinx/APU/bus.xml"/>
 <proc name="cpu0" file="Xilinx/PPC/APU/cpu.xml" bu s="apu0"/>
 <pe name="PE0" target="VHDL/target.xml"

technology="VHDL/Xilinx/v4tech.xml"
system="VHDL/Generic/Generic/system.xml" bus="apu0"
cpu="cpu0"/>

 <bus name="opb0" file="VHDL/Xilinx/OPB/bus.xml"/>
 <mem name="ext0" bus="opb0" alloc="ext0_alloc"/>
 <exporter file="Xilinx/EDK/export.tcl"/>
 <library name="float" file="VHDL/Xilinx/float.xml" />
 <library name="float_fast" file="VHDL/Xilinx/float _fast.xml"/>
</architecture>

xilinx_v4_apu.xml

Figure 5: Example platform definition file

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 6

The “technology” attribute refers to the FPGA device family or vendor, and how certain
aspects of Impulse C code are mapped to that specific FPGA technology. Few
platforms—those based on an FPGA family that Impulse C does not already support—
will require a new “technology”. Point to a new “technology.xml” file if your platform will
change:

• How C arrays are mapped to FPGA-local memories
• HDL library files that help implement Impulse C I/O channels (streams, registers,

etc.) and some basic C operations (multipliers, etc.)

The details of the “target.xml” and “technology.xml” files are advanced topics beyond the
scope of this document.

The “system” attribute refers to an XML file listing source or library files that should be
included in every application targeting the platform. The “system.xml” file is a catch-all
for files that aren’t associated with another part of the system, such as a bus or CPU.

Associate the FPGA with a CPU or communication layer by setting the “cpu” and “bus”
attributes to the names of “proc” and “bus” elements, respectively, in the PSP’s top-level
XML file.

Bus Elements
The “bus” XML element refers to a bus or other communication logic used to move data
between the FPGA and the rest of the system. The file (“bus.xml”) this element refers to
will define hardware libraries and a Tcl script that form the interface between Impulse C-
generated I/O ports and the platform’s communication logic.

Only the “name” and “file” attributes need be defined here. Change the “file” attribute to
point to a new “bus.xml” file if the platform uses a new communication mechanism to or
from the FPGA.

Example file path: “Verilog/Altera/Avalon/bus.xml”

CPU Elements
Define a “proc” element if the platform supports an embedded or off-chip CPU, such as a
PowerPC, Nios II, or Opteron, that will communicate with the FPGA. The “proc”
element’s file will describe the C source code and scripts that constitute the software
driver for the Impulse C hardware.

The “file” attribute must point to the “cpu.xml” file that describes the CPU in detail. The
“bus” attribute must refer to a “bus” element by name, and conceptually connects the
CPU to that communication layer.

Since a software driver often depends on the choice of communication path to the FPGA
(“bus”), the “cpu.xml” file is often organized under subdirectories first by the name of the
CPU and then by the name of the bus.

Example file path: “Cray/Opteron/RT/cpu.xml”

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 7

Memory Elements
Define a “mem” element if the platform will support a memory device that is shared
between the FPGA and the rest of the system, such as an SRAM or SDRAM.

The “mem” element differs from most of the other elements in the platform definition file
in that it does not refer to an XML file. The “name” attribute is required, as is the “bus”
attribute, which should be set to the name of a “bus” element defined elsewhere in the
file.

The “alloc” attribute names the software memory allocation function for this memory.
Software driver code generated by the Impulse C compiler will expect this function to be
defined in source code provided by the PSP. See the section “Shared Memory
Allocation” for details.

Export Elements
After generating HDL and driver code for an Impulse C application, CoDeveloper can
export its output files for the next stages of development, which involve using hardware
synthesis and software cross-compiler tools. This export process is controlled by a Tcl
script that can be extended to do a variety of tasks, from simply copying the output files
to another directory, to integrating with third-party tools such as Altera’s SOPC Builder
and Quartus II to assemble a complete system-on-a-chip and generate a bitfile for
programming the FPGA.

If the new platform will change the export process, edit the “exporter” element to point to
a new Tcl script.

Example file path: “Xilinx/EDK/export.tcl”

Library Elements
Platforms may specify any number of optional hardware libraries. These libraries define
how C functions and operators are implemented in hardware by the Impulse C compiler.
Floating-point operations or complex math functions, for example, can be specified in
Impulse C hardware libraries.

For more information, see Impulse Application Note IATAPP108, “Using Hardware
Libraries with Impulse C”, available here:

http://impulsec.com/support_appnotes.htm

Hardware/Software Interface
The most important purpose of a Platform Support Package is to define how the
hardware/software interface is created. The hardware/software interface is the link
between Impulse C-generated hardware in the FPGA and the rest of the system. PSPs
define that link using Tcl scripts to create HDL (on the hardware side) and C source
code (on the software side).

On the hardware side, compiler-generated HDL must be connected to physical hardware.
Each co_stream, co_signal, co_register, etc., that is connected between an Impulse C
hardware process and a software process (or left open, using co_port) will cause a set of
ports to be generated by the compiler on the top-level HDL module. These ports must

http://impulsec.com/support_appnotes.htm

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 8

be connected to the actual hardware that will carry data between the FPGA and the rest
of the system, whether that hardware is a system bus, a serial port, or any other I/O
device.

On the software side, there are many ways to talk to the FPGA. Most commonly, the
Impulse C hardware module’s I/O interface registers are mapped into the memory
address space of the platform’s CPU. A software driver library is created that
implements the Impulse C API functions (co_stream_read, co_signal_wait, etc.), reading
and writing registers to exchange data and status information with the FPGA. Other
implementations are possible; a co_signal could be implemented using a CPU interrupt,
for example.

The next sections describe how XML, Tcl, C, and HDL files used to implement both
sides of the hardware/software interface

Hardware Bus Wrappers: bus.xml and genbus.tcl
The “bus.xml” file controls how hardware is generated to connect Impulse C I/O
channels (streams, etc.) to a particular hardware communication layer, such as a system
bus. This file influences hardware generation in three ways:

• Defining bus characteristics used by the Impulse C compiler
• Listing HDL library files, netlists, or other files required to build bus-related

hardware
• Naming a Tcl script called by the compiler to generate an HDL “bus wrapper”

module

The “bus.xml” file defines a single “bus” XML parent element with two attributes, “name”
and “version”. The “name” attribute will be used by the compiler to refer to buses of this
type. (The “version” attribute is currently unused, but should be supplied.)

Bus Parameters
The “param” XML child element is used to define characteristics of the bus that influence
how the Impulse C compiler generates HDL for an application’s I/O interfaces. Define
each parameter by creating a “param” element with “name” and “value” attributes. Three
parameters can be defined:

Name Valid Values Default Description
steering true, false None

<?xml version='1.0'?>
<!DOCTYPE bus PUBLIC "" "">
<bus name="avalon" version="1.0">
 <param name="steering" value="true"/>
 <param name="endianess" value="little"/>
 <busgen file="VHDL/Altera/Avalon/genbus.tcl"/>
 <require file="VHDL/Altera/Avalon/avalon_if.vhd" dst="lib"
type="hdl"/>
</bus>

VHDL/Altera/Avalon/bus.xml

Figure 7: Example "bus" component definition file (“bus.xml”)

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 9

endianess [sic] little, big None Endianness expected of the data
size Any integer >0 32 Number of data bits
Figure 8: Bus parameters

The Impulse C compiler generates HDL for I/O interfaces according to these parameters.
For example, if a bus with a “size” of 32 is used by an application with 64-bit streams,
the compiler will instantiate a resizing adapter component that will send each 64-bit
stream packets using two 32-bit bus operations. A “size” parameter with the value “*”
will cause all Impulse C I/O interfaces to be generated with their requested data widths,
as if the data bus were infinitely wide.

Library Files
Files containing HDL or netlist components needed to build the bus interface hardware
are listed using the “require” XML child element. Each “require” element must define the
following attributes:

Name Valid Values Description
file UNIX-style path File path, relative to CoDeveloper’s “Architectures”

subdirectory
dst UNIX-style path Directory path, relative to the “Hardware build directory”,

where the file should be copied during hardware generation
type “hdl" Type of file; must take value “hdl” (even for netlist files, etc.)
Figure 9: "require" element attributes (“bus.xml”)

When CoDeveloper generates hardware, each “required” file is copied from the
“Architectures” tree to the Impulse C project’s “Hardware build directory”. Each listed file
must therefore be distributed to end users with the PSP.

Bus Wrapper Generator Script: genbus.tcl
The bus wrapper is an HDL file that instantiates the top-level Impulse C module (in
“*_top.vhd” or “*_top.v”) and connects each Impulse C I/O interface to the system
hardware that will carry the data. This wrapper component is generated by a Tcl script.

The Impulse C compiler will look for a “busgen” XML element in the “bus.xml” file. The
“busgen” element must have one attribute, “file”, whose value is the path to a Tcl script,
the bus wrapper generator (named “genbus.tcl” by convention). The impulse_arch
compiler tool will invoke a callback function defined in the script to generate a bus
wrapper for the top-level Impulse C HDL module.

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 10

Figure 10: Bus wrapper HDL hierarchy (example)

The contents of the generated bus wrapper file are entirely up to the platform developer,
who writes the “genbus.tcl” script. This script must define one Tcl callback procedure,
“GenerateBUS”, to which the compiler will pass data structures for all the Impulse C I/O
interfaces between the application’s hardware processes and the system. For complete
details on the callback procedure’s parameters, and Tcl procedures available to the
programmer in the context of the script, see the “Impulse C HDL Interface Generation
API” documentation, available for download on the Impulse Support Forum here:

http://www.impulse-support.com/forums/index.php?showtopic=342

The task of connecting Impulse C I/O interfaces to a system may be as simple as wiring
ports to one another, or it may involve complex logic to arbitrate and multiplex data over
a shared system bus. As before, we recommend copying an existing PSP’s “genbus.tcl”
script and using its code as a guide for developing a new bus interface generator.

Impulse C Hardware I/O Interfaces
Each type of Impulse C I/O interface causes a different set of ports to be generated on
the top-level module. These ports, and the behavior of the interfaces for input and
output, are described here.

Input Streams
Streams (co_stream) serving as inputs to the Impulse C hardware have the following
ports exposed on the top-level module:

Name Direction Width (bits) Description
<stream_name>_rdy OUT 1 Ready to accept data
<stream_name>_en IN 1 Enable write
<stream_name>_eos IN 1 Write operation indicates end-of-

stream (EOS)

System
I/O
interface

Impulse C
component
(*_comp.vhd)

Impulse C top-level
(*_top.vhd)

Bus wrapper

stream (input)
(stream.vhd)

csignal (output)
(csignal.vhd)

http://www.impulse-support.com/forums/index.php?showtopic=342

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 11

<stream_name>_data IN Bus size Data to be pushed onto the input
buffer

Figure 11: Input stream ports

The width of the “_data” signal will be determined by the “size” parameter in the “bus”
element defined in “bus.xml”. If an Impulse C application uses streams that are wider
than the bus size, the Impulse C compiler will automatically instantiate “stream_narrow”
and “stream_widen” components between the top-level ports and the hardware
processes that allow large packets to be sent as a series of bus-size transactions.
Smaller-than-bus-size packets, however, are not automatically packed into fewer, bus-
size transactions.

To write data to a stream, set the “_en” signal high and present the input data on the
“_data” signal. When the “_rdy” signal is high on a rising clock edge, the input buffer will
register the data and the “_en” input should be set low. The “_eos” signal must be low
while writing data.

To close an input stream, follow the same procedure for writing data, but set the “_eos”
signal high. Any data value written when the “_eos” signal is raised will cause the
stream to be closed.

Figure 12: Writing and closing an input stream

Output Streams
Streams (co_stream) serving as outputs from the Impulse C hardware have the following
ports exposed on the top-level module:

Name Direction Width (bits) Description
<stream_name>_rdy OUT 1 Data is ready to be read
<stream_name>_en IN 1 Enable read
<stream_name>_eos OUT 1 Stream is closed; indicates end-of-

stream (EOS)
<stream_name>_data OUT Bus size

(see “Input
Streams”

Data on the output buffer

Figure 13: Output stream ports

To read data from a stream, wait for the “_rdy” signal to go high, indicating data is ready
on the “_data” signal. If the “_eos” signal is high, the stream has been closed and the
data is not valid. Set “_en” high to remove the data from the output buffer, wait for the
next rising clock edge, and set “_en” low again.

To close an output stream, flush the output buffer by performing read operations until the
“_eos” signal goes high. This assumes the writer eventually closes the stream—the
flush operation will otherwise run forever.

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 12

Figure 14: Reading an output stream until close (EO S)

Input Signals
An input signal interface is generated when co_signal_wait is called on a co_signal
object in an Impulse C hardware process. The following set of ports is generated on the
top-level HDL module:

Name Direction Width (bits) Description
<signal_name>_en IN 1 Signal is valid
<signal_name>_data IN Application-defined Incoming data
Figure 15: Input signal ports

The width of a signal’s “_data” port is determined by the user application, in the call to
co_signal_create or co_signal_create_ex. A signal with a zero-bit datatype will be
generated entirely without a “_data” port.

The input signal protocol is simple: on a rising clock edge when “_en” is high, the
Impulse C hardware will register the data on the “_data” port (and return from the
co_signal_wait function).

Output Signals
An output signal interface is generated when co_signal_post is called on a co_signal
object in an Impulse C hardware process. The following set of ports is generated on the
top-level HDL module:

Name Direction Width (bits) Description
<signal_name>_en IN 1 System is waiting on signal
<signal_name>_rdy OUT 1 Output is valid
<signal_name>_data OUT Application-defined

(see “Input Signals”)
Output data

Figure 16: Output signal ports

The system indicates it is waiting to receive a signal from the Impulse C hardware by
setting the “_en” port high. The hardware will respond by raising the “_rdy” signal and
presenting the data on the “_data” port.

Input Registers
Registers (co_register) serving as inputs to the Impulse C hardware have the following
ports exposed in the top-level HDL module:

Name Direction Width (bits) Description
<register_name>_en IN 1 Input is valid
<register_name>_data IN Application-defined Input data
Figure 17: Input register ports

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 13

These ports make up a simple write-only register interface with an enable (“_en”) signal.
To write the register, raise the “_en” signal and present the data on “_data”; data will be
registered on the rising clock edge.

Output Registers
Registers (co_register) serving as outputs from the Impulse C hardware have the
following ports exposed in the top-level HDL module:

Name Direction Width (bits) Description
<register_name>_value IN Application-defined Output data
Figure 18: Output register ports

To read an output register, sample the “_value” port on a rising clock edge.

Impulse C Shared Memory Hardware Interface

The Impulse C co_memory shared memory interface is designed to allow Direct Memory
Access (DMA) from FPGA hardware to a specific memory device over a platform-
specific system bus. A PSP must implement the bus controller logic necessary to
translate the co_memory requests coming from an Impulse C generated block into bus
transactions for the system bus to be supported. If the platform uses a standard bus
already implemented in for another platform then the bus controller can be reused.
Implementations already exist for OPB, PLB, and Avalon.

As of CoDeveloper version 3, there is a new hardware interface with new features and
new signals. The previous hardware interface is still supported via an adaptor
component that is automatically instantiated when a shared memory based on the
legacy interface is used. The legacy interface support is only available to support
previous older shared memory implementations and new shared memory
implementations should not use the legacy interface . The next section describes
the new (level 2) hardware interface and the subsequent section describes the legacy
(level 1) interface.

Shared Memory Hardware Interface (Level 2)
Shared memory implementations must include the following element in the
corresponding bus.xml file to indicate that it uses the level 2 interface:

<param name="level" value="2"/>

The level 2 shared memory implementations must support three types of requests:
single-transaction load/store, contiguous block read/write, and multiple contiguous block
read/write with stride (slice). Requests are initiated by Impulse C hardware in the top-
level HDL file; the PSP is responsible for servicing these DMA requests with logic that
connects to a system bus. Requests are transmitted to the PSP’s bus wrapper via the
following top-level HDL signals:

Name Direction Width (bits) Description
<mem_loc>_idata IN Bus width Data read from memory
<mem_loc>_addr IN 32 Byte address of current word

(FPGA memory)

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 14

<mem_loc>_nextaddr IN 32 Byte address of next word (FPGA
memory)

<mem_loc>_wri IN 1 Enable write to FPGA memory
<mem_loc>_re IN 1 Enable read from FPGA memory
<mem_loc>_odata OUT Bus width Data to write to memory
<mem_loc>_ack IN 1 Indicates last word of request
<mem_loc>_req OUT 1 Indicates an active request
<mem_loc>_block OUT 1 When high, indicates block

operation; low indicates load/store
<mem_loc>_slice OUT 1 When high, indicates a slice

operation.
<mem_loc>_mode OUT 1 When high, indicates write

operation; low indicates read
<mem_loc>_base OUT 32 Base byte address into memory
<mem_loc>_size OUT ciel(log2(bus width/8)) Number of bytes per element
<mem_loc>_chunk OUT 32 Number of elements per block

(slice operations only)
<mem_loc>_stride OUT 32 Number of bytes from the start of a

block to the start of the next block
in system memory. (slice
operations only)

<mem_loc>_start OUT 32 Base byte address in FPGA
memory

<mem_loc>_count OUT 32 Number of elements to transfer

Single transaction load/store
When <mem_loc>_block is low, a single element of <mem_loc>_size bytes is to be
transferred between the system memory at address <mem_loc>_base and the FPGA.
The FPGA address signals (<mem_loc>_start, <mem_loc>_addr, and
<mem_loc>_nextaddr) are unused. The <mem_loc>_req signal is only active for one
cycle to initiate the request. The <mem_loc>_ack signal should be asserted high when
the transaction is complete and the controller will be ready to accept another request in
the subsequent cycle.

For writes, the write data <mem_loc>_odata is valid in the cycle that <mem_loc>_req is
asserted and remains valid until the <mem_loc>_ack signals is received. For reads, the
<mem_loc>_wri signal should be asserted high during the cycle that <mem_loc>_idata
becomes valid.

Contiguous block read/write
When <mem_loc>_block is high and <mem_loc>_slice is low, a single contiguous block
of <mem_loc>_count elements of <mem_loc>_size bytes are to be transferred between
the system memory starting at address <mem_loc>_base and the FPGA memory
starting at address <mem_loc>_start.

Data must be transferred to/from the FPGA memory in order. The signals
<mem_loc>_wri and <mem_loc>_re must be asserted for exactly one cycle per element.

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 15

Multiple block read/write (slice)
When <mem_loc>_block is high and <mem_loc>_slice is slice,
<mem_loc>_count/<mem_loc>_chunk contiguous blocks of <mem_loc>_chunk
elements of <mem_loc>_size bytes are to be transferred between the system memory
starting at address <mem_loc>_base and the FPGA memory starting at address
<mem_loc>_start. The starting address of block N+1 in system memory is equal to the
starting address of block N + <mem_loc>_stride. The blocks in FPGA memory are
contiguous. Thus, a read request gathers data blocks from system memory into a
contiguous block in the FPGA memory, and a write request scatters data from a
contiguous block of memory into blocks of system memory.

Data must be transferred to/from the FPGA memory in order. The signals
<mem_loc>_wri and <mem_loc>_re must be asserted for exactly one cycle per element.

Upgrading from legacy interface
The level 2 interface introduces the new <mem_loc>_re, <mem_loc>_slice,
<mem_loc>_chunk, <mem_loc>_stride, and <mem_loc>_start signals. Additionally, the
existing signals <mem_loc>_addr and <mem_loc>_nextaddr have been redefined to be
the byte address of the current element being transferred to/from the FPGA memory.

Legacy Shared Memory Hardware Interface
Read and write access is supported using contiguous block transfers or load/store
(single-word) operations. Requests are initiated by Impulse C hardware in the top-level
HDL file; the bus wrapper is responsible for servicing DMA requests with logic that
connects to a system bus master or memory controller.

Name Direction Width (bits) Description
config_en IN 1 Base address input stream, enable

write
config_eos IN 1 Base address input stream, end-of-

stream
config_data IN 32 Base address input stream, base

address value
config_rdy OUT 1 Base address input stream, ready

for write
<mem_loc>_idata IN Bus width Data read from memory
<mem_loc>_addr IN 32 Address of current word in on-chip

buffer
<mem_loc>_nextaddr IN 32 Address of next word in on-chip

buffer
<mem_loc>_wri IN 1 Enable write to local input buffer
<mem_loc>_odata OUT Bus width Data to write to memory
<mem_loc>_ack IN 1 Indicates last word of request
<mem_loc>_req OUT 1 Indicates an active request
<mem_loc>_block OUT 1 When high, indicates block

operation; low indicates load/store
<mem_loc>_mode OUT 1 When high, indicates write

operation; low indicates read
<mem_loc>_base OUT 32 Base byte address into memory
<mem_loc>_size OUT log2(bus width in Number of bytes per request word

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 16

bytes), round up to
nearest integer

<mem_loc>_count OUT 32 Number of words in the request
Figure 19: Shared memory interface ports

One set of interface ports will be generated on the top-level HDL module for each
memory location used by an application’s hardware processes. Memory locations are
specified by the PSP’s platform definition file; the “name” attribute of each “mem”
element is a memory location that may be passed to the co_memory_create function.
Many co_memory objects can use to the same memory location by passing the same
string in co_memory_create‘s “loc” parameter.

Figure 20: Memory locations

To share access to the single interface among multiple hardware processes, the Impulse
C compiler will generate logic in the top-level HDL file that arbitrates between the
processes using a compile-time priority mechanism. The hardware process created first
in the Impulse C configuration function (by calling co_process_create) will receive first
priority, followed by the other hardware processes in the order they were created. The
arbitration logic ensures that DMA operations are atomic, but the user’s application is
responsible for synchronizing read/write access to the shared memory by the various
Impulse C processes. (This synchronization can be accomplished using co_signal, for
example.)

Base Address Configuration
The base address of each memory location must be configured when the Impulse C
hardware is initialized, before any of the application logic will begin executing. An input
stream interface will be automatically generated in the top-level HDL file for any
application that uses co_memory in its hardware processes. This stream, named

<?xml version='1.0'?>
<!DOCTYPE architecture PUBLIC "" "">
<architecture version="1.0" name="Altera Nios II">
 <bus name="avalon0" file="VHDL/Altera/Avalon/bus.x ml"/>
 <mem name=" heap0 " bus="avalon0" alloc="malloc"/>
 <mem name="ext0" bus="avalon0" alloc="co_memory_ex t0_alloc"/>
 <!-- ... -->
</architecture>

Architect ures/altera_nios2.xml

void config(void * arg) {
 co_memory memA, memB, memCoeff;
 co_process sw0, hw0, hw1;

memA = co_memory_create(“A”, “ heap0 ”, 4096);
 memB = co_memory_create(“B”, “ heap0 ”, 4096);
 memCoeff = co_memory_create(“coeff”, “ext0”, 256);

sw0 = co_process_create(“sw”, sw_function, 3, memA, memB, memCoeff);
 hw0 = co_process_create(“hw0”, hw_function, 2, mem A, memCoeff);
 hw0 = co_process_create(“hw1”, hw_function, 2, mem B, memCoeff);
 //...
}

UserApp_hw.c

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 17

“config”, is used to write the base address for each memory location to an internal
register.

To configure the base addresses, perform stream write operations as described in the
section “Input Streams”. One data packet must be written for each memory location, in
the order in which co_memory objects using the locations were created in the Impulse C
application’s configuration function. The “config” stream should be closed after the last
base address is written.

Figure 21: Shared memory base address configuration

In a platform with a CPU, generated C code will be responsible for stimulating the
“config” stream to write the base addresses. For more details on configuring shared
memory base addresses from software, see the section “Shared Memory Initialization”.

If a platform does not have a CPU, logic must be generated in the bus wrapper file that
stimulates the “config” stream to write base addresses.

On-chip Buffers
All Impulse C shared memory operations use on-chip memory resources to buffer
input/output data. Each on-chip memory corresponds to a C array in application code
and is implemented in hardware according to the PSP. Tcl scripts referred to by
“ramgen” elements in the “technology.xml” file are responsible for generating HDL code
to instantiate on-chip memory resources.

Block Read Requests
A block read will be requested by the Impulse C hardware for each
co_memory_readblock function call in a hardware process. The block read operation
transfers a number of words from the shared memory to an on-chip buffer. After a
request is initiated, one word can be transferred from the bus interface per clock cycle.

At the start of a block read request, the Impulse C hardware will raise the “_req” and
“_block” signals. The “_mode” signal will be low, to indicate a read operation. The
“_size” signal will contain the word size of the request (in bytes) and the “_count” signal
will indicate the number of these words in the request. The “_base” signal will contain
the byte offset from the shared memory’s base address; the data sent in response
should be read starting from this address.

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 18

Once the system is ready to respond to the request, it should place the input data on the
“_idata” port and raise the “_wri” signal to indicate that the data should be written to the
on-chip buffer on the rising clock edge. The word address in the buffer where the data
will be written must be placed on the “_addr” signal; for block read requests, this address
always starts at zero and increments by one per clock cycle.

When “_count” number of words have been read, raise the “_ack” signal until the next
rising clock edge (keeping the “_wri” signal high) to indicate the request has been
fulfilled. The Impulse C hardware will then set the “_req” signal low and, “_wri” and
“_ack” should be set low; the request is complete.

Figure 22: Shared memory block read request (16-bit words on 32-bit bus)

If the request word size is smaller than the bus data width, then the response data must
be mirrored across the “_idata” signal (as in the above figure). The word size is
determined by the size of the elements in the destination C array. For example, the
following Impulse C code will result in a value of “2” appearing on the “_size” signal,
since the destination array contains 16-bit words:

co_int16 A[256];
co_memory_readblock(mem, 0, A, 256*sizeof(co_int16));

Block Write Requests
A block write will be requested by the Impulse C hardware for each
co_memory_writeblock function call in a hardware process. The block write operation
transfers a number of words from an on-chip buffer to a shared memory. After a request
is initiated, one word can be transferred to the bus interface per clock cycle.

At the start of a block write request, the Impulse C hardware will raise the “_req” and
“_block” signals. The “_mode” signal will be high, to indicate a write operation. The
“_size” signal will contain the word size of the request (in bytes) and the “_count” signal
will indicate the number of these words in the request. The “_base” signal will contain
the byte offset from the shared memory’s base address; the data sent by the request
should be written to the shared memory starting at this address.

Once the system is ready to respond to the request, it should place the word address in
on the “_addr” signal and the next word address on the “_nextaddr” signal; for block

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 19

write requests, the address always starts at zero and increments by one per clock cycle.
The data coming from the on-chip buffer will appear on the “_odata” signal. Note that
the “_wri” signal must be held low throughout a block write.

When “_count” words have been written, raise the “_ack” signal until the next rising clock
edge to indicate the request has been fulfilled. The Impulse C hardware will then set the
“_req” signal low, and “_ack” should be set low; the request is complete.

Figure 23: Shared memory block write request (16-bi t words on 32-bit bus)

If the request word size is smaller than the bus data width, then the request data will be
mirrored across the “_odata” signal (as in the above figure). The word size is
determined by the size of the elements in the source C array. For example, the following
Impulse C code will result in a value of “2” appearing on the “_size” signal, since the
source array contains 16-bit words:

co_int16 A[256];
co_memory_writeblock(mem, 0, A, 256*sizeof(co_int16));

Load Word Requests
To be documented.

Store Word Requests
To be documented.

Software Drivers: cpu.xml and genlib.tcl
A PSP’s software driver gives an embedded or off-chip CPU access to FPGA
accelerator hardware using the Impulse C I/O interfaces (co_stream, co_signal, etc.).
The driver uses low-level hardware access mechanisms, such as memory-mapped
registers, interrupts, or firmware libraries, to implement the Impulse C API functions
(co_stream_read, etc.) called by an application’s software processes. To initialize the
I/O interface objects in the application code with the addresses of the underlying
hardware, the compiler generates a C source file called “co_init.c”.

The source code (or precompiled library) that implements the driver is distributed with
the PSP and each file is listed in an XML component definition file (“cpu.xml”). These

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 20

driver files will then be compiled by the application developer, along with their application
source code and the generated “co_init.c”, into a software executable targeted to the
platform’s CPU that uses the FPGA hardware for acceleration.

Figure 24: Implementing Impulse C software drivers

The “cpu.xml” file controls how the Impulse C compiler generates software driver code.
This file lists driver source code and library files, and specifies a Tcl script (“genlib.tcl”)
called by the compiler to generate the “co_init.c” application initialization code.

The “cpu.xml” file defines a single “cpu” XML parent element with a “version” attribute.
(The “version” attribute is currently unused, but should be supplied.) Child elements of
“cpu” specify driver files and the driver generator script.

Software processes

Impulse C API (driver)

Low-level hardware access code

co_init.c

genlib.tcl + impulse_lib

Vendor
firmware library

Embedded system
design tool

Bus wrapper files
(from genbus.tcl)

Written by platform
developer

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 21

Figure 25: Example “proc” component definition file (“cpu.xml”)

Library Files
Files containing source code, precompiled libraries, Makefiles, or any other components
that constitute an Impulse C I/O driver for are listed using the “require” XML child
element. Each “require” element must define the following attributes:

Name Valid Values Description
file UNIX-style path File path, relative to CoDeveloper’s “Architectures”

subdirectory
dst UNIX-style path Directory path, relative to the “Software build directory”,

where the file should be copied during hardware generation
type “code" Type of file; must take value “code”
Figure 26: "require" element attributes (“cpu.xml”)

When CoDeveloper generates hardware (through the “Generate HDL” menu item), each
“required” file is copied from the “Architectures” tree to the Impulse C project’s “Software
build directory”. Each listed file must therefore be distributed to end users with the PSP.

Driver Generator Script: genlib.tcl
A C source file named “co_init.c” will be created in the “Software build directory” by the
Impulse C compiler when generating hardware for an application. The code in this file is
responsible for configuring a driver environment for Impulse C software processes. The
“co_init.c” file is generated partially by the Impulse C compiler, and partially by a PSP-
specific Tcl script, “genlib.tcl”.

<?xml version='1.0'?>
<!DOCTYPE cpu PUBLIC "" "">
<cpu version="1.0">
 <libgen file="Xtreme/Opteron/genlib.tcl"/>
 <require file="Xtreme/Opteron/inc/co.h" dst="inc" type="code"/>
 <require file="Xtreme/Opteron/inc/co_if_sim.h" ds t="inc" type="code"/>
 <require file="Xtreme/Opteron/inc/co_math.h" dst= "inc" type="code"/>
 <require file="Xtreme/Opteron/inc/co_types.h" dst ="inc" type="code"/>
 <require file="Xtreme/Opteron/inc/cosim_log.h" ds t="inc" type="code"/>
 <require file="Xtreme/Opteron/inc/xd_fpga_sram_al loc.h" dst="inc"
type="code"/>
 <require file="Xtreme/Opteron/src/co_memory.c" ds t="src" type="code"/>
 <require file="Xtreme/Opteron/src/co_process.c" d st="src" type="code"/>
 <require file="Xtreme/Opteron/src/co_register.c" dst="src" type="code"/>
 <require file="Xtreme/Opteron/src/co_signal.c" ds t="src" type="code"/>
 <require file="Xtreme/Opteron/src/co_stream.c" ds t="src" type="code"/>
 <require file="Xtreme/Opteron/src/co_type.c" dst= "src" type="code"/>
 <require file="Xtreme/Opteron/src/xd_impc_rw.c" d st="src" type="code"/>
 <require file="Xtreme/Opteron/src/xd_fpga_sram_al loc.c" dst="src"
type="code"/>
 <require file="Xtreme/Opteron/linux_driver/xd_fpg a.c" dst="linux_driver"
type="code"/>
 <require file="Xtreme/Opteron/linux_driver/xd_drv _iface.h"
dst="linux_driver" type="code"/>
 <require file="Xtreme/Opteron/xd-fpga/xd-fpga.cpp " dst="src" type="code"/>
 <require file="Xtreme/Opteron/xd-fpga/xd-fpga.h" dst="inc" type="code"/>
</cpu>

Architectures/Xtreme/Opteron/cpu.xml

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 22

The Impulse C compiler will look for a “libgen” XML element in the “cpu.xml” file. The
“libgen” element must have one attribute, “file”, whose value is the path to a driver
generator Tcl script, named “genlib.tcl” by convention. The impulse_lib compiler tool will
invoke callback functions defined in the script to generate code within the “co_init.c” file.

The bulk of the “co_init.c” file consists of a co_initialize function that mirrors the portions
of the Impulse C application’s configuration function relating to software processes. In
several places in “co_init.c”, code can be inserted by the PSP via “genlib.tcl”. Each Tcl
callback procedure (e.g., GenerateInit), is responsible for generating a separate section
of the code in “co_init.c”.

The following figure illustrates the structure of “co_init.c”. Portions in black are
generated automatically by the Impulse C compiler, while portions in red are generated
by callbacks in “genlib.tcl”.

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 23

Figure 27: “co_init.c” example

For detailed documentation of the callback procedures that may be defined in the
“genlib.tcl” script, and of the Tcl utility procedures available to the script programmer,
see the “Impulse C Software Interface Generation API” documentation, available for
download on the Impulse Support Forum here:

http://www.impulse-support.com/forums/index.php?showtopic=342

Portability and the Impulse C API
The driver software specified through “cpu.xml” is free to implement any Application
Programming Interface (API) that allows software to communicate with the hardware
generated for an Impulse C application. To enable Impulse C processes to be ported
more easily between desktop simulation, hardware, and target platform software,
however, the Impulse C API should be implemented by the PSP’s software driver. This

#include "co.h"

/* Architecture Includes */
#include <stdlib.h>
#include "xio.h"
#include "xparameters.h"
#include "xpseudo_asm.h"

extern void *ext0_alloc(size_t);

/* Run Procedures */
extern void Producer(co_stream);
extern void Sum(co_stream, co_stream);
extern void Consumer(co_stream);

co_architecture co_initialize(void *arg)
{
 co_stream istream;
 co_stream ostream;

 unsigned int membase;

 istream = co_stream_create("istream",
INT_TYPE(32), 4);

ostream = co_stream_create("ostream",
INT_TYPE(32), 4);

co_process_create("produce r_process",
 (co_function)Producer,

 1,
 istream);

co_process_create("consumer_proc",
 (co_function)Consumer,

 1,
 ostream);

 /* Architecture Initialization */
 mtmsr(XREG_MSR_APU_AVAILABLE);
 co_stream_attach(istream,0,HW_INPUT);

co_stream_attach(ostream,4,HW_OUTPUT);

return(NULL);

}

PSP-specific #includes
Callback: GenerateIncludes

Allocation function prototypes

Process run procedure
prototypes and I/O object
declarations

Variable declarations, etc.
Callback: GenerateBegin

I/O and software process
object creation

Arbitrary initialization code,
e.g., to set base addresses
Callback: GenerateInit

http://www.impulse-support.com/forums/index.php?showtopic=342

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 24

means writing versions of the co_* functions that work in the target platform’s software
environment.

The Role of Embedded System Design Tools
Many embedded systems platforms depend on tools such as Xilinx Platform Studio or
Altera SOPC Builder to make each I/O interface accessible to software code. These
tools are used to map I/O ports to a bus slave or master interface, and to generate C
code to help refer to the interfaces in software, for example as memory-mapped
registers.

For example, the “Xilinx MicroBlaze OPB” PSP uses the OPB system bus to implement
streams between the FPGA logic and an embedded MicroBlaze processor. The PSP’s
“genbus.tcl” script generates HDL and other files that connect each stream interface to
an OPB bus slave. Each slave is connected to registers when a “pcore” module,
comprising the generated hardware files, is connected in a Xilinx Platform Studio (XPS)
project. A command within XPS then maps these registers into the embedded
processor’s address space. XPS creates a C header file that defines a macro for each
bus slave, whose value is the base address of the slave’s memory-mapped registers.
The “genlib.tcl” script generates a #include directive for this header file, as well as code
that associates each stream’s base address (using the macro) with the corresponding
co_stream object, in “co_init.c”. A driver library implements the Impulse C API by
reading and writing the registers using processor-specific assembly code. Finally, the
Impulse C user application’s software process code is compiled with the driver and
“co_init.c” into an executable that is uploaded to the FPGA from within XPS.

Impulse C Software I/O Interfaces
The Impulse C API can be implemented in numerous ways, depending on the platform
and what low-level hardware access functions are available on the platform CPU. This
section offers suggestions for implementations using memory-mapped registers, based
on a hardware model described below.

CoDeveloper ships with several PSPs whose driver source code can be used as a basis
for developing a new PSP. These PSPs implement the complete Impulse C API to
greater or lesser degrees; choose one that most closely matches your platform’s
hardware model.

The best reference for the expected behavior of each Impulse C API function is the
“Function Reference” section of the “Impulse C User Guide”, accessible from the Help
menu in CoDeveloper.

Assigning Base Addresses
In all of the following examples, the base address of each interface is stored in a data
structure (e.g., a co_stream) passed to each software process that uses that interface.
This initialization is done in “co_init.c” by a call to a co_*attach function (e.g.,
co_stream_attach) defined in the driver. The actual addresses passed to co_*attach are
determined by the “genlib.tcl” script based on what the platform developer knows about
the hardware address space. On a Xilinx embedded platform, for example, “genlib.tcl”
can pass as base addresses macros named after the Impulse C “pcore” and defined in a
C header file generated by Xilinx Platform Studio.

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 25

Reading and Writing Streams
Hardware model: Each stream is connected to a system bus slave, which is assigned a
base address. HDL components, one each for input and output streams, bridge the bus-
side ports and the stream-side ports, translating bus addresses to one of up to three
available registers within the HDL component. A read-only status register encodes
“ready”, “error”, and “end-of-stream” signals in single bits. A write-only register on input
streams can be written with any value to close the stream.

To read or write a stream, the driver code polls the status register until only the “ready”
bit is high, then reads (or writes) the data register.

Register Read/write from software? Address Offset (bytes)
Transmit data Write 0
Status Read 4
End-of-stream (close) Write 8
Figure 28: Bus-to-FPGA stream registers (example)

Register Read/write from software? Address Offset (bytes)
Receive data Read 0
Status Read 4
Figure 29: FPGA-to-bus stream registers (example)

Posting and Waiting on Signals
Hardware model: Signals are mapped through bus slaves into the CPU address space,
as described above with streams. Each signal has a data and status register within the
bus/signal HDL bridge component. The status register has a “ready” bit, and an “error”
bit for debugging.

To post a signal from software, simply write the data register. To wait on a signal, poll
the status register until only the “ready” bit is high, then read the data register.

Reading and Writing Registers
Hardware model: Each co_register is mapped to a single register in an HDL component
that bridges between the bus and the register.

Reading and writing a co_register is as simple as reading/writing the memory location
mapped to the register.

Shared Memory Allocation
Each memory location (see “Figure 20: Memory locations”) has its own memory
allocation function, which must be defined as part of the software driver library. All
memory allocation functions are modeled after the C library’s malloc function:

void * malloc(size_t size);

That is, they take a number of bytes as an argument and return a pointer to a free
memory region of the requested size. It is entirely up to the platform developer to decide
how the memory allocation function manages memory.

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 26

Shared Memory Initialization
Calls to the co_memory_create function are generated by the Impulse C compiler in
“co_init.c”. A pointer to the associated memory location’s allocation function is passed
as an argument, so that co_memory_create can call it to allocate the internal storage
used by the co_memory object. Each co_memory* function should operate on the
pointer returned by the allocation function.

The Impulse C DMA interface hardware must be initialized with a base address for each
memory location. The base address values (which may be the same as the pointer
values stored in the co_memory structures) must be written sequentially to the
automatically generated “config” stream using code generated in “co_init.c”. The
“GenerateInit” Tcl callback is the usual place for generating shared memory base
address initialization code.

Shared Memory Operations
Shared memory operations are easy to implement, as the platform CPU should support
some way to read and write the off-chip memory. For example, the memcpy function
may be supported.

Integration with Third-party Tools: export.tcl
The Platform Support Package infrastructure allows external design tools to be invoked
from Tcl scripts in order to integrate CoDeveloper with the entire hardware/software
design flow. After CoDeveloper has generated HDL, bus wrappers, and software drivers
for an Impulse C application, the hardware and software portions can be exported for
compilation down to binary files suitable for programming the FPGAs and CPUs in the
system. These steps in the development process are accomplished using third-party
compilers and synthesis tools; a PSP can control such tools through the “export.tcl”
script.

The simplest implementation of an export script simply copies the contents of the
“Hardware build directory” to the “Hardware export directory” (and similarly for software).
However, arbitrary code can be written in the export script, so integration with the post-
CoDeveloper design flow is limited only by the platform developer’s imagination. In fact,
any of the Tcl scripts in a PSP (“genbus.tcl”, “genlib.tcl”) can be used to integrate with
third-party design tools to automate the development process.

The export script (“export.tcl” by convention) is defined by the “exporter” element in the
PSP’s top-level XML file, the platform definition file.

Figure 30: Defining an export script ("exporter")

<?xml version='1.0'?>
<!DOCTYPE architecture PUBLIC "" "">
<architecture version="1.0" name="Xilinx Virtex-4 A PU">
 <!-- ... -->
 <exporter file="Xilinx/EDK/export.tcl"/>
</architecture>

xilinx_v4_apu.xml

Application Note IATAPP-109 Updated 8/6/2011

Creating Platform Support Packages, 27

The export script can define two Tcl callbacks, each invoked by the impulse_export
compiler tool when exporting the hardware and software portions of an Impulse C
application, respectively.

Export Hardware
The Tcl callback procedure CopyHardwareFiles is invoked when the “Export generated
hardware” action is selected. This procedure takes three parameters:

Parameter name Description
name Name of the Impulse C hardware module. Corresponds to the

third argument to co_architecture_create (“arch”), as called in the
Impulse C application.

srcdir UNIX-style path to the “Hardware build directory”
dstdir UNIX-style path to the “Hardware export directory”
Figure 31: Parameters to CopyHardwareFiles

Export Software
The Tcl callback procedure CopySoftwareFiles is invoked when the “Export generated
software” action is selected. This procedure takes three parameters:

Parameter name Description
name Name of the Impulse C hardware module. Corresponds to the

third argument to co_architecture_create (“arch”), as called in the
Impulse C application.

srcdir UNIX-style path to the “Software build directory”
dstdir UNIX-style path to the “Software export directory”
Figure 32: Parameters to CopySoftwareFiles

	Creating Platform Support Packages
	Input Streams
	Figure 20: Memory locations

	Shared Memory Allocation
	Shared Memory Initialization

