
Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 1

CoDeveloper Platform Support Package

Pico Computing M501 PSP
User Guide – Linux
Version 1.0.1
Impulse Accelerated Technologies, Inc.

www.ImpulseAccelerated.com

Copyright © 2007 Impulse Accelerated Technologies, Inc.

http://www.impulseaccelerated.com/

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 2

1.0 Table of Contents

1.0 TABLE OF CONTENTS ... 2

2.0 TABLE OF FIGURES ... 4

3.0 REVISION HISTORY .. 6

4.0 OVERVIEW ... 7

4.1. Hardware Block Diagram ... 7
4.1.1. Pico Computing Block Diagram .. 7

5.0 BEFORE GETTING STARTED: READ THIS FIRST .. 9

5.1. Hardware limitations: ... 9
5.2. Required Software Tools: ... 9
5.3. Additional Required Files ..10
5.4. Required Hardware ...10

6.0 HOST SYSTEM SETUP (LINUX) ... 11

6.1. Install Pico M501 driver ...11
6.2. Running ISE on Linux ...11

6.2.1. Install Xilinx ISE 13.4 ...11
6.3. Running ISE on Windows ...11

6.3.1. Copy Pico Installer source from Host PC to Development PC11

7.0 DEVELOPMENT SYSTEM SETUP (WINDOWS) .. 12

7.1. Install Impulse CoDeveloper v3.70.e.6 or newer ...12
7.2. Running ISE on Windows ...12

7.2.1. Install Xilinx ISE 13.4 ...12
7.2.2. Copy the Linux Pico Installer ..12
7.2.3. Configure Environment Variables ...12

8.0 PASSTHROUGH EXAMPLE AND TUTORIAL ... 13

8.1. Prerequisites ...14
8.2. CoDeveloper Project Files ..15
8.3. Opening Project ..17
8.4. Building Desktop Simulation Executable ...18
8.5. Running Desktop Simulation Executable ..19
8.6. Project Setup Before Hardware/Software Generation and Export21
8.7. Generating Hardware ..22
8.8. Exporting Hardware ..24
8.9. Compiling FPGA in Xilinx ISE 13.4 ...26

8.9.1. Building bitfile under Windows ...27
8.9.2. Building bitfile under Linux ...33

8.10. Exporting Software ..39
8.11. Programming the FPGA ..41
8.12. Running Target Executable on the Host System ...42

9.0 MEMTEST EXAMPLE AND TUTORIAL ... 44

9.1. Prerequisites ...44
9.2. Memtest Example Description ..45

9.2.1. Overview of memtest.h ..45

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 3

9.2.2. Overview of memtest_hw.c ..45
9.2.3. Overview of memtest_sw.c ..47

9.3. CoDeveloper Project Files ..50
9.4. Opening Project ..52
9.5. Building Desktop Simulation Executable ...53
9.6. Running Desktop Simulation Executable ..54
9.7. Project Setup Before Hardware/Software Generation and Export55
9.8. Generating Hardware ..56
9.9. Exporting Hardware ..58
9.10. Compiling FPGA in Xilinx ISE 13.4 ..59

9.10.1. Building bitfile under Windows ..59
9.10.2. Building bitfile under Linux ..63

9.11. Exporting Software ..64
9.12. Programming the FPGA ..66
9.13. Running Target Executable on the Host System ...67

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 4

2.0 Table Of Figures

Figure 1 – Firmware Architecture (Pico M50X Series Platform Support Package Users Guide) . 8
Figure 2 - Impulse C Header File with 64 bit co_stream ..15
Figure 3 - ImpulseC Hardware File with 64 bit co_stream ...16
Figure 4 - Opening a project in CoDeveloper ..17
Figure 5 - Build Simulation Desktop in CoDeveloper using pull-down menu18
Figure 6 - Build Simulation Desktop in CoDeveloper using toolbar icon18
Figure 7 - Output within the CoDeveloper IDE build window ...18
Figure 8 - Launch software simulation window using pull-down menu19
Figure 9 - Launch software simulation using toolbar icon ..19
Figure 10 - Pop-up window during desktop simulation ..20
Figure 11 - Project setup to pick Platform Support Package..21
Figure 12 - Generate HDL using pull-down menu ...22
Figure 13 - Generate HDL using toolbar icon ..22
Figure 14 - Build window output ..23
Figure 15 - Export Generated Hardware (HDL) using pull-down menu24
Figure 16 - Export Generated Hardware (HDL) using toolbar icon ..24
Figure 17 - Build window output ..25
Figure 18 - Compiling FPGA in exported ISE directory structure ...26
Figure 19 - Generate ISE project files ...27
Figure 20 - Expected gen50x_xise.log report ..28
Figure 21 - Initial Xilinx ISE GUI screen ..29
Figure 22 - Xilinx ISE regenerate IP core fifo128x512 ...29
Figure 23 - Xilinx ISE regenerate IP Core coregen_fifo_32x128 ...29
Figure 24 - Xilinx ISE 13.4 with timing score = 0 ...30
Figure 25 - Build bitfile in ISE 13.4 ..31
Figure 26 – Xilinx ISE 13.4 compile log file – timing score ..32
Figure 27 - Generate ISE project files ...33
Figure 28 - Expected gen50x_xise.log report ..33
Figure 29 - Select the ISE project ...34
Figure 30 - Initial project status after loading project ...35
Figure 31 - Regenerate fifo128x512 ..35
Figure 32 - Regenerate coregen_fifo_32x128 ...36
Figure 33 - Place and Route and bitfile generation with timing score equal to zero36
Figure 34 - Ubuntu Xilinx ISE 13.4 Command Line output ..37
Figure 35 - Xilinx ISE 13.4 results file with timing score equal to zero38
Figure 36 - Export Generated Software ...39
Figure 37 - Build window output ..40
Figure 38 - Exported software directory ..40
Figure 39 - Files & Directories to be copied to the Host System ..42
Figure 40 - Exported SW executed on target platforn ..43
Figure 41 - memtest.h ...45
Figure 42 - User defined funtion in memtest_hw.c ..46
Figure 43 - Configuration in memtest_hw.c ...47
Figure 44 - User defined stimulus in memtest_sw.c ..48
Figure 45 - Main program in memtest_sw.c ..49
Figure 46 - Impulse C Header File ..50
Figure 47 - ImpulseC Hardware File ..51
Figure 48 - Opening a project in CoDeveloper ..52
Figure 49 - Build Simulation Desktop in CoDeveloper using pull-down menu53

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 5

Figure 50 - Build Simulation Desktop in CoDeveloper using toolbar icon53
Figure 51 - Output within the CoDeveloper IDE build window ...53
Figure 52 - Launch software simulation window using pull-down menu54
Figure 53 - Launch software simulation using toolbar icon ..54
Figure 54 - Pop-up window during desktop simulation ..54
Figure 55 - Project setup to pick Platform Support Package..55
Figure 56 - Generate HDL using pull-down menu ...56
Figure 57 - Generate HDL using toolbar icon ..56
Figure 58 - Build window output ..57
Figure 59 - Export Generated Hardware (HDL) using pull-down menu58
Figure 60 - Export Generated Hardware (HDL) using toolbar icon ..58
Figure 61 - Build window output ..58
Figure 62 - Compiling FPGA in Quartus directory structure ...59
Figure 63 - Generate ISE project files ...60
Figure 64 - Expected Gen_Ise_File log report ...60
Figure 65 - Initial Xilinx ISE 13.4 GUI screen ..61
Figure 66 - Xilinx ISE 13.4 regenerate IP core fifo128x512com ..61
Figure 67 - Xilinx ISE 13.4 regenerate IP Core fifo128x512 ..62
Figure 68 - Xilinx ISE 13.4 regenerate IP Core coregen_fifo_32x128 ..62
Figure 69 - Xilinx ISE 13.4 with timing score = 0 ...62
Figure 70 - Export Generated Software ...64
Figure 71 - Build window output ..64
Figure 72 - Exported software directory ..65
Figure 73 - Files & Directories to be copied to the Host System ..67
Figure 74 - Exported SW executed on target platforn ..68

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 6

3.0 Revision History

Date Version Description Author

11/3/2012 1.0 Initial Creation Shaumil Dave

11/10/2012 1.1 Added Memtest description Shaumil Dave

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 7

4.0 Overview

This user guide covers the CoDeveloper Platform Support Package (PSP) for the Pico
Computing M501 module (referred hereon simply as “M501”). Highlights for this PSP include:

 Automatic creation of a complete ready-to-build Xilinx ISE project upon exporting

hardware for creating FPGA binary ‘.bit’ file referred to as the “bitfile”. The bitfile

may be built under Windows or Linux and either via the ISE GUI or from

command line using a build script.

 Application executable built via Makefile on a Linux platform.

 Loading of the FPGA on the M501 via host CPU over PCIe.

4.1. Hardware Block Diagram

4.1.1. Pico Computing Block Diagram

Below is a diagram of the M50X platform:

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 8

Figure 1 – Firmware Architecture (Pico M50X Series Platform Support Package Users Guide)

The only elements of the architecture the user has control of are those contained inside
the Verilog module “PicoUserLogic.v”. All of the logic generated by Impulse
CoDeveloper and any external HDL modules must be instantiated inside this top level
user module

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 9

5.0 Before Getting Started: Read This First
Before getting started, please ensure that you have obtained and installed all the necessary
software tools, additional files, and hardware as described below.

5.1. Hardware limitations:

1. co_streams require all data transfers to be a multiple of 128-bits/16bytes

2. co_memory (not used in Passthrough example) use limitations:

a. The memory interface requires that memory transfers begin at an address
with 256-byte alignment

b. The memory interface assumes that the transfer size in bytes is a multiple
of 16

5.2. Required Software Tools:

 Impulse CoDeveloper v3.70.e.6 or newer for the Development System.

 NOTE: The use of floating point for Virtex-6 and newer devices requires the use of

Xilinx’s v5.0 CORE Generator cores which is supported via a patch to CoDeveloper

made available via the ‘XilinxFPv5BetaPatch’ link under the supplied Pico PSP link.

 Xilinx ISE 13.4 for Windows (exactly, not newer) for the Development System.

 Windows 7 for Impulse CoDeveloper and Xilinx ISE 13.4 (the Development System).

 Ubuntu (Debian) 12.04 LTS for the Host System (With EX500 PCIe card and either

M501 or M503 FPGA modules)

 Pico Linux installer package version 5.0.6.1 or newer for the Host System:

o Go to http://picocomputing.com/support/software

o Select Linux Installer (M-501, M-503, M-505)

 Linux_5.0.6.1_all.deb

http://picocomputing.com/support/software

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 10

5.3. Additional Required Files

The following Examples files are not included with the installation of the software tools
and are required for development using this PSP. They include the CoDeveloper project
file (*.icProj), associated design files (*_hw.c, *_sw.c, *.h), and data files (*.dat) used as
stimulus. A link to download the M5xx PSP and Examples files should have already
been provided, if not please email support@impulsec.com to request one.

Examples
 M5XX
 Passthrough
 filter_in.dat
 passthrough.icProj
 passthrough_hw.c
 passthrough_sw.c
 passthrough.h

CoDeveloper will use the project file, “passthrough.icProj”, to generate HDL as well as a
software application to load the FPGA image.

5.4. Required Hardware

The following hardware is required for development using this PSP:

 EX500 x16 full length full height PCIe FPGA Development Board.

 M501 or M503 FPGA module.

 Host System with Ubuntu 12.04 LTS 64-bit OS based development PC for running all

tools – Recommended: 100GB disk space available for tools installation and 12GB

RAM.

 Host System that has an Intel Motherboard with x58 chipset and available x16

(physical) Gen 2 PCIe express slot. Consideration for your PCIe video card must be

given if it is a x16 video card. The motherboard must accommodate (not a shared

resource) independent x16 Gen 2 PCIe slots.

 Available 12 volt PCIe power supply for the M501 FPGA development board in the

Host System. Consideration for your video card must be given if it also requires a

separate 12 volt power connection.

 Development System for installation of CoDeveloper and Xilinx ISE 13.4.

o Impulse CoDeveloper and M50x PSP: Windows only (32 or 64-bit)

o Xilinx ISE 13.4: Windows 64-bit or Linux 64-bit

mailto:support@impulsec.com

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 11

6.0 Host System Setup (Linux)

6.1. Install Pico M501 driver

After the Pico M501 and EX-xxx carrier are installed, the user must install the drivers.

1. After downloading the Pico Linux installer package (Linux_*.deb), follow the
“Linux_PicoGettingStarted.pdf” to install Linux software, firmware, and the driver
for the M50x.

6.2. Running ISE on Linux

6.2.1. Install Xilinx ISE 13.4

1. Please see vendor supplied documentation for installation.

2. Please see vendor supplied documentation for licensing.

6.3. Running ISE on Windows

6.3.1. Copy Pico Installer source from Host PC to Development PC

If Xilinx ISE will be run on Windows, prepare to copy the directory
“/usr/src/picocomputing-5.0.6.1” from the Linux Host PC to the Windows
Development system. For example, save the directory to a USB flash drive.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 12

7.0 Development System Setup (Windows)

7.1. Install Impulse CoDeveloper v3.70.e.6 or newer
NOTE: The use of floating point for Virtex-6 and newer devices requires the use of
Xilinx’s v5.0 CORE Generator cores which is supported via a patch to CoDeveloper
made available via the ‘XilinxFPv5BetaPatch’ link under the supplied Pico PSP link

1. Add the Pico M5XX PSP to the CoDeveloper installation.

a. Copy the supplied “Architectures” directory to “Impulse\CoDeveloper3\”.

Architectures

 Pico

pico_m501_linux_vhdl.xml

pico_m503_linux_vhdl.xml

2. Copy the supplied “Examples” directory to a working directory on the
development PC for access to the pre-built example files.

3. Download the latest version 3.x and installation note
a. http://www.impulseaccelerated.com/ReleaseFiles/
b. (optional) Installation of floating point support is via unzipping the .zip

file (password: impulsefpv5beta) into ‘Impulse’ after each
CoDeveloper installation. Please see enclosed README file for
specific notes on the patch.

7.2. Running ISE on Windows

7.2.1. Install Xilinx ISE 13.4

1. Please see vendor supplied documentation for installation.

2. Please see vendor supplied documentation for licensing.

7.2.2. Copy the Linux Pico Installer

1. If Xilinx ISE is to be run on Windows: From the Host PC, copy “/usr/src/
picocomputing-5.0.6.1” to “c:\usr\src\picocomputing-5.0.6.1”

7.2.3. Configure Environment Variables

1. Add environment variable PICOBASE = “c:\usr\src\picocomputing-5.0.6.1”

2. Add environment variable XILINX = “c:\Xilinx\13.4\ISE_DS\ISE”

3. Add environment variable XILINX_BASE = “c:\Xilinx\13.4”

http://www.impulseaccelerated.com/ReleaseFiles/

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 13

8.0 Passthrough Example and Tutorial

“Passthrough” is provided as an example that may be used for quickly creating user
applications and for the purpose of a tutorial showing the steps involved to go from an
Impulse C application in CoDeveloper all the way through to a Xilinx ISE 13.4-compiled
FPGA binary and target application executable. The base files required for recreating
the example using this tutorial are provided within the Impulse supplied examples which
needs to be copied to a working directory on the development PC in order to run the
tutorial.

NOTE: Ensure there are no spaces (‘ ‘) in the directory path chosen to avoid potential
path issues with any of the tools.

The Passthrough example’s hardware process is “Passthrough()”, located in the source
file “Passthrough_hw.c”. It performs the following operations:

1) Read value from co_stream “input_stream”

2) Write value to co_stream to “output_stream”

NOTE: The hardware code runs continuously

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 14

8.1. Prerequisites

The tutorial in this Platform Support Package assumes that you have read and
understand the introductory sections of the CoDeveloper User's Guide, installed with
CoDeveloper and accessed from the Help menu. In particular, you should take the time
to go through the tutorials provided with CoDeveloper so you have a good understanding
of the front-end design flow including both desktop software simulation and hardware
compilation.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 15

8.2. CoDeveloper Project Files
The Passthrough example CoDeveloper project is made up of the following files:

 Passthrough.icProj – CoDeveloper project file

 Passthrough_hw.c – Source code for hardware process

 Passthrough_sw.c – Source code for software processes

 Passthrough.h – Header file that defines the width of the stream

When you define the width of the steam, you must make the changes in the header file as well
as the in the passthrough_hw.c file. The default example defines the steam to be the maximum
width of 64 bit data bus.

Figure 2 - Impulse C Header File with 64 bit co_stream

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 16

Figure 3 - ImpulseC Hardware File with 64 bit co_stream

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 17

8.3. Opening Project
Open the CoDeveloper project file ‘Passthrough.icProj’ by selecting and pressing ‘Enter’
or by double-clicking it:

Figure 4 - Opening a project in CoDeveloper

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 18

8.4. Building Desktop Simulation Executable
Build the desktop software simulation executable via the “Project” menu:

Figure 5 - Build Simulation Desktop in CoDeveloper using pull-down menu

Or via toolbar:

Figure 6 - Build Simulation Desktop in CoDeveloper using toolbar icon

Note the compiler output in the CoDeveloper IDE “Build” window:

Figure 7 - Output within the CoDeveloper IDE build window

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 19

8.5. Running Desktop Simulation Executable
Launch the desktop software simulation executable via “Project” menu:

Figure 8 - Launch software simulation window using pull-down menu

Or via toolbar:

Figure 9 - Launch software simulation using toolbar icon

A command window will pop up in which the desktop simulation executable runs. Press
“Enter” to exit:

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 20

Figure 10 - Pop-up window during desktop simulation

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 21

8.6. Project Setup Before Hardware/Software Generation and
Export

Settings within the CoDeveloper IDE necessary for generating and exporting both
hardware and software using this PSP are summarized below:

 Platform Support Package: “Pico M-501 Linux (VHDL)”

 Hardware export directory: <user hardware export directory>

 Software export directory: <user software export directory>

 Unsupported settings include:

o Generate dual clocks (must be unchecked)
o Active-low reset (must be unchecked)
o Include floating point library (must be unchecked)

An example of these settings as it appears in the Passthrough example:

Figure 11 - Project setup to pick Platform Support Package

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 22

8.7. Generating Hardware
Generate hardware via “Project” menu:

Figure 12 - Generate HDL using pull-down menu

Or via toolbar:

Figure 13 - Generate HDL using toolbar icon

Final results will appear in the directory specified during project setup in “Hardware build
directory”. Note the final output in the CoDeveloper IDE’s “Build” window:

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 23

Figure 14 - Build window output

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 24

8.8. Exporting Hardware
Export hardware via “Project” menu:

Figure 15 - Export Generated Hardware (HDL) using pull-down menu

Or via toolbar:

Figure 16 - Export Generated Hardware (HDL) using toolbar icon

Final results will appear in the directory specified during project setup in “Hardware
export directory”. Note the final output in the CoDeveloper IDE’s “Build” window:

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 25

Figure 17 - Build window output

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 26

8.9. Compiling FPGA in Xilinx ISE 13.4
After exporting hardware, under the specified hardware export directory will be a
directory structure that includes all necessary files for building the FPGA binary.

Figure 18 - Compiling FPGA in exported ISE directory structure

At this point either Windows or Linux may be used to produce the bitfile running Xilinx
ISE either through the GUI or from command line. Windows and Linux both use the
following similar steps. Choose the one that suits your needs.

Windows:

1. Generate the ISE project files by running “gen_ise_files.bat”

2. Build the bit file using Xilinx ISE either by:

a. Running the generated “build_m50*.bat” file

b. Launching the Xilinx ISE GUI opening the newly built “m50*.xise” file

Linux:

3. Generate the ISE project files by running “gen_ise_files.sh”

4. Build the bit file using Xilinx ISE either by:

a. Running the generated “build_m50*.sh” file

b. Launching the Xilinx ISE GUI opening the newly built “m50*.xise” file

These methods will generate the necessary bitfile to be loaded on the Host System and
are outlined in the sections that follow.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 27

8.9.1. Building bitfile under Windows

8.9.1.1. Generate Xilinx ISE Project Files

First generate the ISE project by executing “gen_ise_files.bat”. This process will
create an ISE project file as well as copy all the necessary HDL files and CORE
Generator components from the Pico installation needed by ISE to generate the
FPGA bitfile.

1. Open a command window

2. Change directories to “export_hw”

3. Execute “gen_ise_files.bat” as shown in Figure 19.

4. Verify that the files were created successfully by viewing the end of log file, as
shown in Figure 20. “Successful!” should be the last line in the log file (use “type
gen50x_xise.log” to display log).

Figure 19 - Generate ISE project files

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 28

Figure 20 - Expected gen50x_xise.log report

8.9.1.2. Compiling FPGA in Xilinx ISE GUI

Launch the Xilinx ISE GUI and open the ISE project located in the export_hw
directory. Select Pico_Toplevel in the Hierarchy window and double-click “generate
programming file” in the Processes window.

NOTE: Xilinx ISE will ask the user to regenerate two fifos (a one time process). The
following figures illustrate initial project launch, regenerate the two corgen fifos, and
final output with timing score equal to zero.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 29

Figure 21 - Initial Xilinx ISE GUI screen

Figure 22 - Xilinx ISE regenerate IP core fifo128x512

Figure 23 - Xilinx ISE regenerate IP Core coregen_fifo_32x128

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 30

Figure 24 - Xilinx ISE 13.4 with timing score = 0

Once ISE 13.4 has completed, a bitfile “pico_toplevel.bit” will be present in the
export_hw directory.

Note: The bitfile will need to be renamed to “Pico_Toplevel.bit” when copying to
Linux to run with the software in the example.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 31

8.9.1.3. Compiling FPGA in Xilinx ISE using Command Line

In the top directory there will be the batch file “build_passthrough_arch.bat” used to
automatically run Xilinx ISE to create the necessary .bit file used to program the
M501 FPGA.

1. Open a command window

2. Execute “build_m501lx240_passthrough_arch.bat” as shown in Figure 25.

Figure 25 - Build bitfile in ISE 13.4

A command window will appear showing the FPGA build process (primarily made up
of many, many info and warning messages). Compile time will vary by machine
depending upon project size. When completed successfully, something similar to the
following will appear and a bitfile “pico_toplevel.bit” will be present in the export_hw
directory.

Note: The bitfile will need to be renamed to “Pico_Toplevel.bit” when copying to
Linux to run with the software in the example.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 32

Figure 26 – Xilinx ISE 13.4 compile log file – timing score

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 33

8.9.2. Building bitfile under Linux

8.9.2.1. Generate Xilinx ISE Project Files

First generate the ISE project by executing “gen_ise_files.sh”. This process will
create an ISE project file as well as copy all the necessary HDL files and CORE
Generator components from the Pico installation needed by ISE to generate the
FPGA bitfile.

1. Copy the export_hw directory to a location on your Host System that has the Linux

operating system. (ie Pico/Passthrough/export_hw).

2. Open a command console

3. Change directories to “export_hw”

4. Execute “source ./gen_ise_files.sh” as shown in Figure 27.

5. Verify that the files were created successfully by viewing the end of log file, as
shown in Figure 28. “Successful!” should be the last line in the log file (use “cat
gen50x_xise.log” to display log).

Figure 27 - Generate ISE project files

Figure 28 - Expected gen50x_xise.log report

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 34

8.9.2.2. Compiling FPGA in Xilinx ISE GUI

1. If you already haven’t done so, launch or verify that the license manager is operational

and that your license is valid. Contact Xilinx for more information on licensing related to a

Linux installation.

2. Open a terminal window and set environment variables by executing the “settings64.sh”

script as well as the following variables:

a. source /opt/Xilinx/13.4/ISE_DS/setting64.sh

b. export PICOBASE=/usr/src/picocomputing-5.0.6.1

c. export XILINX=/opt/Xilinx/13.4/ISE_DS/ISE

3. Go to the export_hw directory and begin executing the shell scripts to generate the Xilinx

ISE project.

a. cd /Pico/Passthrough/export_hw

b. source gen_ise_files.sh

4. Launch the Xilinx ISE 13.4 GUI, select the project, regenerate coregent files, and

generate the bitfile.

a. /opt/Xilinx/13.4/ISE_DS/ISE/bin/lin64/ise &

Figure 29 - Select the ISE project

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 35

Figure 30 - Initial project status after loading project

Figure 31 - Regenerate fifo128x512

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 36

Figure 32 - Regenerate coregen_fifo_32x128

Figure 33 - Place and Route and bitfile generation with timing score equal to zero

8.9.2.3. Compiling FPGA in Xilinx ISE using Command Line

1. Copy the export_hw directory to a location on your Host System that has the Ubuntu

operating system. (ie Pico/Passthrough/export_hw).

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 37

2. If you already haven’t done so, launch or verify that the license manager is operational

and that your license is valid. Contact Xilinx for more information on licensing related to a

Linux installation.

3. Open a terminal window and set environment variables by executing the “settings64.sh”

script as well as the following variables:

c. cd /opt/Xilinx/13.4/ISE_DS

d. sudo ./setting64.sh

e. export PICOBASE=/usr/src/picocomputing-5.0.6.1

f. export XILINX=/opt/Xilinx/13.4/ISE_DS/IS

4. Go to the export_hw directory and begin executing the shell scripts to generate then

build the FPGA bitfile.

g. cd /Pico/Passthrough/export_hw

h. source gen_ise_files.sh

i. source build_m501lx240_passthrough_arch.sh

5. Verify that the bitfile was generated and that the timing score equals zero.

j. ll *.bit (should see Pico_Toplevel.bit)

k. grep –i score *.par

Figure 34 - Ubuntu Xilinx ISE 13.4 Command Line output

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 38

Figure 35 - Xilinx ISE 13.4 results file with timing score equal to zero

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 39

8.10. Exporting Software

The software application to be run on the host computer (with the M501 installed with it’s
drivers) can be exported in CoDeveloper.

Figure 36 - Export Generated Software

Once completed without error in the Build window, it should be noted that the software
code will be written to a newly created directory. The user can modify the target
directory name. In this example, export_sw contains the exported software files.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 40

Figure 37 - Build window output

Figure 38 - Exported software directory

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 41

8.11. Programming the FPGA
The compiled software application in the “export_sw” directory will program the FPGA

on the M501. Please continue to the next section.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 42

8.12. Running Target Executable on the Host System

The Host System will need the following files:

1. Compiled bitfile output from ISE 13.4

2. Input data file

3. Application software source code

4. Makefile to compile the software

Please copy the following files and directory over to the Host System (figure 30). Create
a folder (ie Pico) and copy the following to that folder.

1. export_hw directory which includes “pico_toplevel.bit” bitfile

2. export_sw directory which includes the Makefile and software application source
code

3. filter_in.dat file which will be used to input stimulus to the FPGA via the software
application.

4. Once the files are copied, please copy filter_in.dat to the export_sw directory. The
application software will expect the input data file to be present in that directory.

Figure 39 - Files & Directories to be copied to the Host System

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 43

The software application will load the FPGA every time it is executed and report the
results upon completion. Please note that the process of loading the FPGA may take up
to 20 seconds due to the driver re-start sequence after the FPGA bitfile has been
transferred to the card.

1. Open a terminal window.

2. Navigate to the location of your copied files and directories:

 (ie. cd Pico/export_sw/software).

3. Run “make”

4. Execute the generated application: “./passthrough_arch”

Figure 40 - Exported SW executed on target platforn

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 44

9.0 Memtest Example and Tutorial

9.1. Prerequisites

The tutorial in this Platform Support Package assumes that you have read and
understand the introductory sections of the CoDeveloper User's Guide, installed with
CoDeveloper and accessed from the Help menu. In particular, you should take the time
to go through the tutorials provided with CoDeveloper so you have a good understanding
of the front-end design flow including both desktop software simulation and hardware
compilation.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 45

9.2. Memtest Example Description
The Memtest example is a CoDeveloper project that includes three source files. A brief
description of the files and their functions is outlined in the following sections. This
example targets existing external DDR3 memory available on the M501 FPGA module.

1. memtest.h
2. memtest_hw.c
3. memtest_sc.c

The Memtest example allows a stream to write to DDR3 memory. The Impulse User
module will read from DDR3, increment the data by one, and write it back out to a
stream. The software application generates the data and checks the data returned from
the FPGA.

9.2.1. Overview of memtest.h

The figure below is a screen shot of header file. It defines the stream widths
(STREAMWIDTH) as 128 bits. It also defines the size of the target memory
(MEMORY_SIZE) that will be used by the co_memory API calls.

Figure 41 - memtest.h

9.2.2. Overview of memtest_hw.c

The memtest_hw.c file is the user defined function that accesses external DDR3
memory. The figure below shows the user defined function, pass, that will be
implemented on the FPGA. On line 18, the ports are defined as input stream idata,
output stream odata, and memory port mem.

In this example, the function pass will receive, on stream idata, the number of words to
read from external DDR3. The “do” loop on line 29 indicates that this hardware process
run continuously. Input and output streams, idata and odata, are open as shown on
lines 32 & 33. Line 36 is an Impulse API to read in data from the stream. Line 39 shows
the Impulse API to read a block of data from external memory. The “for” loop on line 41
operates on each word as it is received from external memory and is also incremented
by one. Once all data had been read and incremented, it is written back to external
memory as shown on line 47. The data is also written back out on the stream, odata, as
shown on line 49. Once all data and processing is complete, the input and output
streams are closed.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 46

Figure 42 - User defined funtion in memtest_hw.c

The configuration process defines the processes and ports that can be accessed by the
user defined function pass. Line 58 is the configuration config_memtest. Line 60 thru
62 defined the available ports while line 64 & 65 define processes. Lines 67 shows the
Impulse defined co_memory with type “mc0” and size MEMORY_SIZE. Lines 68 & 69
shows the Impulse defined co_streams of widths STREAMWIDTH and depth
STREAMDEPTH (both defined in the header file). The configuration statement also
defines the testbench process (line 71) as well as the user process (line 77). Line 86 is
necessary when using co_memory.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 47

Figure 43 - Configuration in memtest_hw.c

9.2.3. Overview of memtest_sw.c

The software application provides stimulus and receives return data for post processing
of the user defined functions. Line 20 defines a process “Testbench” which also has
ports ipassdata, opassdata and mem. The port opassdata will send data to the user
defined function. In this example, line 31 generates data to be written to external
memory. Similar to the hardware process, streams must be open in order to read or
write to them. Lines 38 & 39 open streams. Line 42 calls the Impulse API co_memory
to write a block of data to external memory. Line 46 sends the number of bytes to be
read by the hardware process while line 49 waits for data to be return by the hardware
process. Line 55 reads data from external memory and that data is used to verify the
data received on the input stream as shown in the “for” loop on line 58. Finally, the
streams are closed as shown on lines 66 & 67.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 48

Figure 44 - User defined stimulus in memtest_sw.c

The main function is shown below. The first step for the software application is to load
the FPGA bitfile using the Pico API Pico_LoadFPGA as shown on line 78. If the file
does not exist or an error is encountered, then an error is reported. Otherwise the
testbench is executed.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 49

Figure 45 - Main program in memtest_sw.c

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 50

9.3. CoDeveloper Project Files
The Memtest example CoDeveloper project is made up of the following files:

 memtest.icProj – CoDeveloper project file

 memtest_hw.c – Source code for hardware process

 memtest_sw.c – Source code for software processes

 memtest.h – Header file that defines the width of the stream

When you define the width of the steam, you must make the changes in the header file as well
as the in the memtest_hw.c file. The default example defines the steam to be the width of 128
bit data bus.

Figure 46 - Impulse C Header File

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 51

Figure 47 - ImpulseC Hardware File

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 52

9.4. Opening Project
Open the CoDeveloper project file ‘Memtest.icProj’ by selecting and pressing ‘Enter’ or
by double-clicking it:

Figure 48 - Opening a project in CoDeveloper

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 53

9.5. Building Desktop Simulation Executable
Build the desktop software simulation executable via the “Project” menu:

Figure 49 - Build Simulation Desktop in CoDeveloper using pull-down menu

Or via toolbar:

Figure 50 - Build Simulation Desktop in CoDeveloper using toolbar icon

Note the compiler output in the CoDeveloper IDE “Build” window:

Figure 51 - Output within the CoDeveloper IDE build window

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 54

9.6. Running Desktop Simulation Executable
Launch the desktop software simulation executable via “Project” menu:

Figure 52 - Launch software simulation window using pull-down menu

Or via toolbar:

Figure 53 - Launch software simulation using toolbar icon

A command window will pop up in which the desktop simulation executable runs. Press
“Enter” to exit:

Figure 54 - Pop-up window during desktop simulation

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 55

9.7. Project Setup Before Hardware/Software Generation and
Export

Settings within the CoDeveloper IDE necessary for generating and exporting both
hardware and software using this PSP are summarized below:

 Platform Support Package: “Pico M-501 Linux (VHDL)”

 Hardware export directory: <user hardware export directory>

 Software export directory: <user software export directory>

 Unsupported settings include:

o Generate dual clocks (must be unchecked)
o Active-low reset (must be unchecked)
o Include floating point library (must be unchecked)

An example of these settings as it appears in the Memtest example:

Figure 55 - Project setup to pick Platform Support Package

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 56

9.8. Generating Hardware
Generate hardware via “Project” menu:

Figure 56 - Generate HDL using pull-down menu

Or via toolbar:

Figure 57 - Generate HDL using toolbar icon

Final results will appear in the directory specified during project setup in “Hardware build
directory”. Note the final output in the CoDeveloper IDE’s “Build” window:

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 57

Figure 58 - Build window output

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 58

9.9. Exporting Hardware
Export hardware via “Project” menu:

Figure 59 - Export Generated Hardware (HDL) using pull-down menu

Or via toolbar:

Figure 60 - Export Generated Hardware (HDL) using toolbar icon

Final results will appear in the directory specified during project setup in “Hardware
export directory”. Note the final output in the CoDeveloper IDE’s “Build” window:

Figure 61 - Build window output

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 59

9.10. Compiling FPGA in Xilinx ISE 13.4
After exporting hardware, under the specified hardware export directory will be a
directory structure that includes all necessary files for building the FPGA binary.

Figure 62 - Compiling FPGA in Quartus directory structure

At this point either Windows or Linux may be used to produce the bitfile running Xilinx
ISE either through the GUI or from command line. Windows and Linux both use the
following similar steps. Choose the one that suits your needs.

Windows:

1. Generate the ISE project files by running “gen_ise_files.bat”

2. Build the bit file using Xilinx ISE either by:

a. Running the generated “build_m50*.bat” file

b. Launching the Xilinx ISE GUI opening the newly built “m50*.xise” file

Linux:

1. Generate the ISE project files by running “gen_ise_files.sh”

2. Build the bit file using Xilinx ISE either by:

a. Running the generated “build_m50*.sh” file

b. Launching the Xilinx ISE GUI opening the newly built “m50*.xise” file

These methods will generate the necessary bitfile to be loaded on the Host System and
are outlined in the sections that follow.

9.10.1. Building bitfile under Windows

9.10.1.1. Generate Xilinx ISE Project Files

First generate the ISE 13.4 project by executing “gen_ise_files.bat”. This process
will create an ISE project file as well as all the necessary HDL files and corgen
components used to generate the bitfile when building in ISE.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 60

1. Open a command window

2. Change directories to “export_hw”

3. Execute “gen_ise_files.bat” as shown in Figure 58.

4. Verify that the files were created successfully by viewing the end of log file, as
shown in Figure 59. “Successful!” should be the last line in the log file.

Figure 63 - Generate ISE project files

Figure 64 - Expected Gen_Ise_File log report

There are two method to produce the bitfile. The first is to launch the Xilinx ISE
GUI and generate the bitfile. The second method it to execute the build script in
the export_hw directory. Both method will generate the necessary bitfile to be
loaded on the Host System.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 61

9.10.1.2. Compiling FPGA in Xilinx ISE GUI

Launch the Xilinx ISE GUI and open the ISE project located in the export_hw
directory. Select Pico_Toplevel in the Hierarchy window and double-click “generate
programming file” in the Processes window.

NOTE: Xilinx ISE 13.4 will ask the user to regenerate three fifos (a one time process).
The following figures illustrate initial project launch, regenerate the three corgen fifos,
and final output with timing score equal to zero.

Figure 65 - Initial Xilinx ISE 13.4 GUI screen

Figure 66 - Xilinx ISE 13.4 regenerate IP core fifo128x512com

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 62

Figure 67 - Xilinx ISE 13.4 regenerate IP Core fifo128x512

Figure 68 - Xilinx ISE 13.4 regenerate IP Core coregen_fifo_32x128

Figure 69 - Xilinx ISE 13.4 with timing score = 0

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 63

Once ISE 13.4 has completed, a bitfile “pico_toplevel.bit” will be present in the
export_hw directory.

9.10.1.3. Compiling FPGA in Xilinx ISE using Command Line

In the top directory there will be the batch file “build_memtest_arch.bat” used to
automatically run Xilinx ISE 13.4 to create the necessary .bit file used to program the
M501 FPGA.

1. Open a command window

2. Execute “build_m501lx240_memtest_arch.bat”.

A command window will appear showing the FPGA build process (primarily made
up of many, many info and warning messages). Compile time will vary by machine
depending upon project size. When completed successfully, something similar to the
following will appear and a bitfile “pico_toplevel.bit” will be present in the export_hw
directory.

9.10.2. Building bitfile under Linux

Please follow the steps outlined in the Passthrough example, Sections 8.9.1 – Building
bitfile under Linux, in order to build the bitfile for the Memtest example under Linux. It
is left to the user, as an exercise, to successfully build the bitfile.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 64

9.11. Exporting Software

The software application to be run on the host computer (with the M501 installed with it’s
drivers) can be exported in CoDeveloper.

Figure 70 - Export Generated Software

Once completed without error in the Build window, it should be noted that the software
code will be written to a newly created directory. The user can modify the target
directory name. In this example, export_sw contains the exported software files.

Figure 71 - Build window output

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 65

Figure 72 - Exported software directory

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 66

9.12. Programming the FPGA
The compiled software application in the “export_sw” directory will program the FPGA

on the M501. Please continue to the next section.

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 67

9.13. Running Target Executable on the Host System

The Host System will need the following files:

1. Compiled bitfile output from ISE 13.4

2. Input data file

3. Application software source code

4. Makefile to compile the software

Please copy the following files and directory over to the Host System (figure 68). Create
a folder (ie Pico/Memtest) and copy the following to that folder.

1. export_hw directory which includes “pico_toplevel.bit” bitfile

2. export_sw directory which includes the Makefile and software application source
code

Figure 73 - Files & Directories to be copied to the Host System

The software application will load the FPGA every time it is executed and report the
results upon completion. Please note that the process of loading the FPGA may take up

Pico Computing M501 PSP User Guide – Linux v1.0.1 Updated 11/13/2012

 68

to 20 seconds due to the driver re-start sequence after the FPGA bitfile has been
transferred to the card.

1. Open a terminal window.

2. Navigate to the location of your copied files and directories:

 (ie. cd Pico/Memtest/export_sw/software).

3. Run “make”

4. Execute the generated application: “./memtest_arch”

Figure 74 - Exported SW executed on target platforn

	1.0 Table of Contents
	2.0 Table Of Figures
	3.0 Revision History
	4.0 Overview
	4.1. Hardware Block Diagram
	4.1.1. Pico Computing Block Diagram

	5.0 Before Getting Started: Read This First
	5.1. Hardware limitations:
	5.2. Required Software Tools:
	5.3. Additional Required Files
	5.4. Required Hardware

	6.0 Host System Setup (Linux)
	6.1. Install Pico M501 driver
	6.2. Running ISE on Linux
	6.2.1. Install Xilinx ISE 13.4

	6.3. Running ISE on Windows
	6.3.1. Copy Pico Installer source from Host PC to Development PC

	7.0 Development System Setup (Windows)
	7.1. Install Impulse CoDeveloper v3.70.e.6 or newer
	7.2. Running ISE on Windows
	7.2.1. Install Xilinx ISE 13.4
	7.2.2. Copy the Linux Pico Installer
	7.2.3. Configure Environment Variables

	8.0 Passthrough Example and Tutorial
	8.1. Prerequisites
	8.2. CoDeveloper Project Files
	8.3. Opening Project
	8.4. Building Desktop Simulation Executable
	8.5. Running Desktop Simulation Executable
	8.6. Project Setup Before Hardware/Software Generation and Export
	8.7. Generating Hardware
	8.8. Exporting Hardware
	8.9. Compiling FPGA in Xilinx ISE 13.4
	8.9.1. Building bitfile under Windows
	8.9.1.1. Generate Xilinx ISE Project Files
	8.9.1.2. Compiling FPGA in Xilinx ISE GUI
	8.9.1.3. Compiling FPGA in Xilinx ISE using Command Line

	8.9.2. Building bitfile under Linux
	8.9.2.1. Generate Xilinx ISE Project Files
	8.9.2.2. Compiling FPGA in Xilinx ISE GUI
	8.9.2.3. Compiling FPGA in Xilinx ISE using Command Line

	8.10. Exporting Software
	8.11. Programming the FPGA
	8.12. Running Target Executable on the Host System

	9.0 Memtest Example and Tutorial
	9.1. Prerequisites
	9.2. Memtest Example Description
	9.2.1. Overview of memtest.h
	9.2.2. Overview of memtest_hw.c
	9.2.3. Overview of memtest_sw.c

	9.3. CoDeveloper Project Files
	9.4. Opening Project
	9.5. Building Desktop Simulation Executable
	9.6. Running Desktop Simulation Executable
	9.7. Project Setup Before Hardware/Software Generation and Export
	9.8. Generating Hardware
	9.9. Exporting Hardware
	9.10. Compiling FPGA in Xilinx ISE 13.4
	9.10.1. Building bitfile under Windows
	9.10.1.1. Generate Xilinx ISE Project Files
	9.10.1.2. Compiling FPGA in Xilinx ISE GUI
	9.10.1.3. Compiling FPGA in Xilinx ISE using Command Line

	9.10.2. Building bitfile under Linux

	9.11. Exporting Software
	9.12. Programming the FPGA
	9.13. Running Target Executable on the Host System

