
Table of Contents

Foreword 1

Part I Quick Start Tutorials 3

... 31 Tutorial 1: Complex FIR Filter on Virtex-5 Platform (EDK 10.1)

.. 4Loading the Complex FIR Filter Application

.. 5Understanding the Complex FIR Filter Application

.. 7Compiling the Application for Simulation

.. 8Building the Application for the Target Platform

.. 10Exporting Files from CoDeveloper

.. 11Creating a Platform Using Xilinx Tools

.. 16Configuring the New Platform

.. 29Importing the Generated Hardware

.. 36Generating the FPGA Bitmap

.. 36Importing the Application Software

.. 43Running the Application

... 472 Tutorial 2: Image Filter DMA Using Shared Memory on the Virtex-4 Platform (EDK 10.1)

.. 48Loading the Sample Application

.. 49Understanding the Image Filter DMA Application

.. 51Compiling the Application for Simulation

.. 53Building the Application for Hardware

.. 54Exporting the Hardware and Software Files

.. 56Creating the ML403 Test Platform

.. 69Adding the ImageFilterDMA Hardware

.. 77Adding the Software Application Files

.. 81Building and Downloading the Application

... 873 Tutorial 3: Fractal Image Generation using APU on the Virtex-4 Platform (EDK 10.1)

.. 89Loading the Sample Application

.. 90Understanding the Mandelbrot Application

.. 91Compiling the Application for Simulation

.. 93Building the Application for Hardware

.. 95Exporting the Hardware and Software Files

.. 97Copying the TFT Display Core Files

.. 98Creating the ML403 Test Platform

.. 111Adding the Mandelbrot Hardware

.. 135Adding the Software Application Files

.. 139Building and Downloading the Application

Index 0

IContents

I

© 2009 ... Your company

Foreword

This is just another title page
placed between table of contents

and topics

Foreword1

© 2009 ... Your company

Top Level Intro
This page is printed before a new

top-level chapter starts

Part

I

Title of this help project3

© 2009 ... Your company

1 Quick Start Tutorials

Overview

This following tutorials will lead you step-by-step through the compilation, execution and RTL
generation of your first Impulse C applications on the Xilinx PowerPC platform.

The tutorials that follow assume that you have previously gone through at least one of the tutorials
included in your standard CoDeveloper installation. It is also assumed that you are somewhat familiar
with the Xilinx ISE and Platform Studio (EDK) tools.

Note: These tutorials assume that you are using Xilinx Platform Studio version 10.1 or later.
Depending on the version of Platform Studio you are using, the steps may be somewhat different.

The Tutorials

Tutorial 1: Complex FIR Filter on Virtex-5 Platform (EDK 10.1)
Tutorial 2: Image Filter DMA Using Shared Memory on the Virtex-4 Platform (EDK 10.1)
Tutorial 3: Fractal Image Generation on the Virtex-4 Platform (EDK 10.1)

See Also

Platform Support Package Overview

1.1 Tutorial 1: Complex FIR Filter on Virtex-5 Platform (EDK 10.1)

Overview

This detailed tutorial will demonstrate how to use Impulse C to create, compile and optimize a digital
signal processing (DSP) example for the PowerPC platform. We will also show how to make use of
the Auxiliary Processor Unit (APU) and Fabric Co-processor Bus (FCB) provided in the PowerPC
platform.

The goal of this application will be to compile the algorithm (a Complex FIR Filter function) on
hardware on the FPGA. The PowerPC will be used to run test code (producer and consumer
processes) that will pass text data into the algorithm and accept the results.

Quick Start Tutorials 4

© 2009 ... Your company

This example makes use of the Xilinx ML507 Evaluation Platform. The board features a Virtex-5
FXT FPGA with a PowerPC 440 soft processor core. This tutorial also assumes you are using the
Xilinx EDK 10.1i (or later) development tools.

This tutorial will require approximately two hours to complete, including software run times.

Note: this tutorial is based on a sample DSP application developed by Bruce Karsten of Xilinx, Inc. A
more complete description of the algorithm can be found in the Impulse C User Guide, in the Getting
Started Tutorial #2. This tutorial assumes that you have are familiar with the basic steps involved in
using the Xilinx EDK tools. For brevity this tutorial will omit some EDK details that are covered in
introductory EDK and Impulse C tutorials.

Note also that most of the detailed steps in this tutorial only need to be performed once, during the
initial creation of your PowerPC application. Subsequent changes to the application do not require
repeating these steps.

Steps

Loading the Complex FIR Application
Understanding the Complex FIR Application
Compiling the Application for Simulation
Building the Application for the Target Platform
Creating the Platform Using the Xilinx Tools
Configuring the New Platform
Exporting Files from CoDeveloper
Importing the Generated Hardware
Generating the FPGA Bitmap
Importing the Application Software
Running the Application

See Also

Tutorial 2: Image Filter DMA Using Shared Memory on the Virtex-4 Platform (EDK 10.1)
Tutorial 3: Fractal Image Generation using APU on the Virtex-4 Platform (EDK 10.1)

1.1.1 Loading the Complex FIR Filter Application

Complex FIR Filter Tutorial for PowerPC, Step 1

To begin, start the CoDeveloper Application Manager by selecting Application Manager from the
Start -> Programs -> Impulse Accelerated Technologies -> CoDeveloper program group.

Note: this tutorial assumes that you have already read and understand the Complex FIR example and
tutorial presented in the main CoDeveloper help file.

Open the Xilinx PowerPC ComplexFIR sample project by selecting Open Project from the File
menu, or by clicking the Open Project toolbar button. Navigate to the
.\ExamplesV3\Embedded\ComplexFIR_PowerPC\ directory within your CoDeveloper installation.
(You may wish to copy this example to an alternate directory before beginning.) The project file is
also available online at http://impulsec.com/ReadyToRun/. Opening the project will result in the
display of a window similar to the following:

http://impulsec.com/ReadyToRun/

Title of this help project5

© 2009 ... Your company

Files included in the Complex FIR project include:

Source files ComplexFilter.c, Filter_hw.c and Filter_sw.c - These source files represent the
complete application, including the main() function, consumer and producer software processes and a
single hardware process.

See Also

Understanding the Complex FIR Application

1.1.2 Understanding the Complex FIR Filter Application

Complex FIR Filter Tutorial for PowerPC, Step 2

Before compiling the Complex FIR application to hardware, let's first take a moment to understand its
basic operation and the contents of the its primary source files, and in particular Filter_hw.c.

The specific process that we will be compiling to hardware is represented by the following function
(located in Filter_hw.c):

void complex_fir(co_stream filter_in, co_stream filter_out)

This function reads two types of data:

Quick Start Tutorials 6

© 2009 ... Your company

· Filter coefficients used in the Complex FIR convolution algorithm.

· An incoming data stream

The results of the convolution are written by the process to the stream filter_out.

The complex_fir function begins by reading the coefficients from the filter_in stream and storing the
resulting data into a local array (coef_mem). The function then reads and begins processing the data,
one at a time. Results are written to the output stream filter_out.

The repetitive operations described in the complex_fir function are complex convolution algorithm.

The complete test application includes test routines (including main) that run on the PowerPC
processor, generating test data and verifying the results against the legacy C algorithm from which
complex_fir was adapted.

The configuration that ties these modules together appears toward the end of the Filter_hw.c file, and
reads as follows:

void config_filt (void *arg) {
int i;

co_stream to_filt, from_filt;
co_process cpu_proc, filter_proc;

to_filt = co_stream_create ("to_filt", INT_TYPE(32), 4);
from_filt = co_stream_create ("from_filt", INT_TYPE(32), 4);

cpu_proc = co_process_create ("cpu_proc", (co_function)
call_accelerator, 2, to_filt, from_filt);

filter_proc = co_process_create ("filter_proc", (co_function)
complex_fir, 2, to_filt, from_filt);

co_process_config (filter_proc, co_loc, "PE0");
}

As in the Hello World example (described in the main CoDeveloper help file), this configuration
function describes the connectivity between instances of each previously defined process.

Only one process in this example (filter_proc) will be mapped onto hardware and compiled by the
Impulse C compiler. This process (filter_proc) is flagged as a hardware process through the use of
the co_process_config function, which appears here at the last statement in the configuration
function. Co_process_config instructs the compiler to generate hardware for complex_fir (or more
accurately, the instance of complex_fir that has been declared here as filter_proc).

The ComplexFilter.c generates a set of complex FIR coefficients and also a group of input data being
processed.

The Filter_sw.c will run in the PowerPC embedded processor, controlling the stream flow and printing
results.

See Also

Compiling the Application for Simulation

Title of this help project7

© 2009 ... Your company

1.1.3 Compiling the Application for Simulation

Complex FIR Filter Tutorial for PowerPC, Step 3

Simulation allows you to verify the correct operation and functional behavior of your algorithm before
attempting to generate hardware for the FPGA. When using Impulse C, simulation simply refers to
the process of compiling your C code to the desktop (host) development system using a standard C
compiler, in this case the gcc compiler included with the Impulse CoDeveloper tools.

To compile and simulate the application for the purpose of functional verification:

1. Select Project -> Build Simulation Executable (or click the Build Simulation Executable
button) to build the ComplexFIR.exe executable. The Build console window will display the
compile and link messages as shown below:

2. You now have a Windows executable representing the ComplexFIR application implemented as
a desktop (console) software application. Run this executable by selecting Project -> Launch
Simulation Executable. A command window will open and the simulation executable will run as
shown below:

Verify that the simulation produces the output shown. Note that although the messages indicate that
the ComplexFIR algorithm is running on the FPGA, the application (represented by hardware and
software processes) is actually running entirely in software as a compiled, native Windows
executable. The messages you will see have been generated as a result of instrumenting the
application with simple printf statements such as the following:

Quick Start Tutorials 8

© 2009 ... Your company

#ifdef IMPULSE_C_TARGET
// Print Acceleration Numbers
printf ("\r\n--> Acceleration factor: %dX\r\n\n", TimeSA/TimeHA);
printf ("------> Visit www.ImpulseC.com to learn more!");

#if defined(XPAR_MICROBLAZE_ID)
// Disable DCache
microblaze_disable_dcache();
microblaze_init_dcache_range(0, XPAR_MICROBLAZE_0_DCACHE_BYTE_SIZE);
// Disable ICache
microblaze_disable_icache();
microblaze_init_icache_range(0, XPAR_MICROBLAZE_0_CACHE_BYTE_SIZE);

#elif defined(XPAR_PPC440_VIRTEX5_ID)
// Disable DCache
XCache_DisableDCache();
// Disable ICache
XCache_DisableICache();

#endif

#else
printf ("COMPLETE APPLICATION\r\n");
printf ("Press Enter to continue...\r\n");
c = getc(stdin);

#endif

Notice in the above C source code that #ifdef statements have been used to allow the software side
of the application to be compiled either for the embedded PowerPC processor, or to the host
development system for simulation purposes.

See Also

Building the Application for the Target Platform

1.1.4 Building the Application for the Target Platform

Complex FIR Filter Tutorial for PowerPC, Step 4

The next step in the tutorial is to create FPGA hardware and related files from the C code found in the
Filter_hw.c source file. This requires that we select a platform target, specify any needed options,
and initiate the hardware compilation process.

Specifying the Platform Support Package

To specify a platform target, select from the menu Project -> Options to open the Generate
Options dialog as shown below:

Title of this help project9

© 2009 ... Your company

Specify Xilinx Virtex-5 APU (VHDL) as the Platform Support Package. Also specify hw and sw for
the hardware and software directories as shown, and specify EDK for both the hardware and software
export directories. Also ensure that the Generate dual clocks option is checked, which will allow the
generated hardware core to run at a different clock speed than the system bus speed on the FPGA.

Click OK to save the options and exit the dialog.

Generate HDL for the Hardware Process

To generate hardware in the form of HDL files, and to generate the associated software interfaces
and library files, select from the menu Project -> Generate HDL. A series of processing steps will run
in the Build console window as shown below:

Quick Start Tutorials 10

© 2009 ... Your company

Note: the processing of this example may require a few minutes to complete, depending on the
performance of your system.

When processing has completed you will have a number of resulting files created in the hw and sw
subdirectories of your project directory.

See Also

Exporting Files from CoDeveloper

1.1.5 Exporting Files from CoDeveloper

Complex FIR Filter Tutorial for PowerPC, Step 5

Recall that in Step 4 you specified the directory EDK as the export target for hardware and software.
These export directories specify where the generated hardware and software processes are to be
copied when the Export Software and Export Hardware features of CoDeveloper are invoked.
Within these target directories (in this case EDK), the specific destination (which may be a
subdirectory under EDK) for each file previously generated is determined from the Platform Support
Package architecture library files. It is therefore important that the correct Platform Support
Package (in this case Xilinx Virtex-5 APU) is selected prior to starting the export process.

To export the files from the build directories (in this case hw and sw) to the export directories (in this
case the EDK directory), select Project -> Export Generated Hardware (HDL) and Project ->
Export Generated Software from the menu. The Build console window will display some processing
messages, as shown below:

Export the Hardware Files

Title of this help project11

© 2009 ... Your company

Export the Software Files

Note: you must select BOTH Export Software and Export Hardware before going onto the next
step.

You have now exported all necessary files from CoDeveloper to the Xilinx tools environment.

See Also

Creating the Platform Using the Xilinx Tools

1.1.6 Creating a Platform Using Xilinx Tools

Complex FIR Filter Tutorial for PowerPC, Step 6

From the previous step, CoDeveloper creates a number of hardware and software-related output files
that must all be used to create a complete hardware/software application on the target platform (in
this case a Xilinx FPGA with an embedded PowerPC processor). This section will walk you through
the file export/import process for this example, using the Xilinx EDK System Builder, Xilinx
Platform Studio.

Creating a New Xilinx Platform Studio Project

Now we'll move into the Xilinx tool environment. Begin by launching Xilinx Platform Studio from the
Windows Start ->Xilinx ISE Design Suite 10.1 -> EDK -> Xilinx Platform Studio. The Xilinx
Platform Studio dialog appears as shown below:

Quick Start Tutorials 12

© 2009 ... Your company

Select the Base System Builder wizard (recommended), and click OK.

Next, in the Create New XPS Project Using BSB Wizard dialog, click Browse and navigate to the
directory you created for your Xilinx EDK project files. For this tutorial we choose the directory name
EDK , which is also the directory name we specified earlier in the Generate Options dialog. Click
Save to create a project file called system.xmp (you can specify a different project name if desired):

Now click OK in the Create New XPS Project Using BSB Wizard dialog. The Base System Builder
- Welcome page will appear as shown below:

Title of this help project13

© 2009 ... Your company

Select I would like to create a new design (the default), then click Next to choose your target
board.

Choose your development board from the dropdown boxes. This example will use the following
board (you should choose the reference board you have available for this step):

 Board Vendor: Xilinx

Quick Start Tutorials 14

© 2009 ... Your company

 Board Name: Virtex 5 ML507 Evaluation Platform
 Board Revision: A

Click Next to continue with the Base System Builder Wizard. In the next wizard page, make sure
that PowerPC is selected as the processor:

Title of this help project15

© 2009 ... Your company

Click Next to continue with the Base System Builder Wizard.

Note: the Base System Builder options that follow may be different depending on the development
board you are using.

The next steps will demonstrate how to configure the PowerPC processor and create the necessary
I/O interfaces for our sample application.

Quick Start Tutorials 16

© 2009 ... Your company

See Also

Configuring the New Platform

1.1.7 Configuring the New Platform

Complex FIR Filter Tutorial for PowerPC, Step 7

Now that you have created a basic PowerPC project in the Base System Builder Wizard, you will
need to specify additional information about your platform in order to support the requirements of your
software/hardware application. Continuing with the steps provided in the Base System Builder
Wizard, specify the following information in the Configure processor page, making sure to increase
the local data and instruction memory as shown:

System Wide Setting
Reference Clock Frequency: 125 MHz
Bus Clock Frequency: 125 MHz

Processor Configuration
Debug I/F: FPGA JTAG (default setting)
Cache setup: Enable
Unselect Enable floating point unit (FPU)

Title of this help project17

© 2009 ... Your company

Click Next to continue with the wizard. You will now be presented with a series of pages specifying
the I/O peripherals to be included with your processor. (The actual layout of these pages will depend
on your screen resolution.) Select one RS232 device peripheral by setting the following options:

 I/O Device: RS232_Uart_1
 Peripheral: XPS UARTLITE
 Baudrate: 9600

Quick Start Tutorials 18

© 2009 ... Your company

 Data Bits: 8
 Parity: NONE
 Use Interrupt: disabled

Unselect the RS232_Uart_2 and LED_8Bit devices.

Click Next to continue. In the next wizard page, unselect all the IO devices as shown below:

Title of this help project19

© 2009 ... Your company

Click Next to continue. Again, in the next wizard page, unselect all the IO devices as shown below:

Quick Start Tutorials 20

© 2009 ... Your company

Click Next to continue. In the next wizard page, disable all the IO interfaces except the
DDR2_SDRAM:

 I/O Devices: DDR2_SDRAM
 Peripheral: MPMC

Title of this help project21

© 2009 ... Your company

Click Next to continue. In the Add Internal Peripherals page, the xps_bram_if_cntlr is being added
with Memory size of 8KB.

Click the Add Peripheral... button, and select the XPS TIMER peripheral from the dropdown list as
shown below:

Quick Start Tutorials 22

© 2009 ... Your company

Click Next, and the xps_timer_1 appears in the Peripherals list. Choose to the Timer mode as One
timer is present, and do not Use interrupt.

Title of this help project23

© 2009 ... Your company

Click OK to add the above two peripherals.

In the Cache Setup page, choose the cache settings as follows:

Quick Start Tutorials 24

© 2009 ... Your company

On the Software Setup dialog that appears, select the Memory test option, and unselect the
Peripheral selftest option:

Title of this help project25

© 2009 ... Your company

Click Next to view the Memory Test software settings as shown below:

Quick Start Tutorials 26

© 2009 ... Your company

Click Next to accept the default Memory Test memory settings.

You have now configured the platform and processor features. The Base System Builder Wizard
displays a summary of the system you have created:

Title of this help project27

© 2009 ... Your company

Click Generate to generate the system and project files. After this is done, the Base System Builder
will display the Finish page as shown below:

Quick Start Tutorials 28

© 2009 ... Your company

Click Finish to close the wizard.

The System Assembly View of the Platform Studio should look like this:

Title of this help project29

© 2009 ... Your company

See Also

Importing the Generated Hardware

1.1.8 Importing the Generated Hardware

Complex FIR Filter Tutorial for PowerPC, Step 8

You will now create the target platform in the Xilinx Platform Studio. This procedure is somewhat
lengthy but will only need to be done once for any new project.

Add the ComplexFIR Hardware IP Core

First, add the module representing the ComplexFIR hardware process to your development system.
Switch to the IP Catalog tab in the Project Information Area. Expand Project Local pcores ->
USER to reveal the generated apu_filt IP core. Right-click the apu_filt and select Add IP as shown
below:

Quick Start Tutorials 30

© 2009 ... Your company

The apu_filt module will appear in the list of peripherals in the System Assembly View on the right.

Connect the IP Core to PowerPC

In order to connect the apu_filt IP core to the APU of the processor, a Fabric Co-processor Bus is
needed for interfacing purposes. Click on the IP Catalog tab and select the Fabric Co-processor
Bus V2.0 (FCB) IP core from the Bus and Bridge category. Right-click it and select Add IP as
shown:

Title of this help project31

© 2009 ... Your company

When you have added the FCB IP core, your project should look like this:

Quick Start Tutorials 32

© 2009 ... Your company

Notice that there are an empty square and an empty circle on the FCB bus. Click the empty square to
connect the ppc440_0's MFCB interface to the fcb_v20_0 bus. Click the empty circle to connect the
apu_filt_0's SFCB2 interface to the fcb_v20_0 bus. They should be connected as shown below:

Title of this help project33

© 2009 ... Your company

Two ports have to configured for the FCB. Click on the Ports tab in the System Assembly View and
expand fcb_v20_0 IP core. Set SYS_Rst to sys_bus_reset and set FCB_Clk to sys_clk_s as
shown.

Configuring the Clock

Quick Start Tutorials 34

© 2009 ... Your company

The ComplexFIR hardware requires a separate clock source. For this purpose, we configure the
clock_generator_0 settings by right-clicking and selecting Configure IP... as shown:

Here we add a new clock output from CLKOUT5 named filt_co_clk. The frequency is set to be
62,500,000 Hz, which is half of the 125,000,000 Hz system bus frequency.

Click OK to save the settings and exit the configure IP dialog.

Select the Ports tab in the System Assembly View and expand apu_filt_0. This should reveal ports
co_clk and apu_clk. The co_clk has to be connected to the filt_co_clk clock that we configured in
the previous steps. The apu_clk should be connected to sys_clk_s, as shown below:

Title of this help project35

© 2009 ... Your company

Note: if co_clk is missing from the apu_filt_0 section, then will need to return to step 3 of this tutorial
and specify the Dual Clock option in the CoDeveloper Generate Options page.

Generate the Addresses

Now you will need to set the addresses for each of the peripherals specified for the platform. This can
be done simply by clicking on the Generate Addresses button in the Addresses tab and . The
addresses will be assigned for you automatically:

You have now exported all necessary hardware files from CoDeveloper to the Xilinx tools
environment and have configured your new platform. The next step will be to compile the HDL files
and generate downloadable FPGA bitstream.

See Also

Generating the FPGA Bitmap

Quick Start Tutorials 36

© 2009 ... Your company

1.1.9 Generating the FPGA Bitmap

ComplexFIR Filter Tutorial for PowerPC, Step 9

At this point, if you have followed the tutorial steps carefully you have successfully:

· Generated hardware and software files from the CoDeveloper environment.

· Created a new Xilinx Platform Studio project and created a new PowerPC-based platform.

· Imported your CoDeveloper-generated files to the Xilinx Platform Studio environment.

· Connected and configured the Impulse C hardware process to the PowerPC processor via the
FCB bus.

You are now ready to generate the bitmap.

From within Xilinx Platform Studio, select the menu Hardware -> Generate Bitstream.

Note: this process may require 10 minutes or more to complete, depending on the speed and memory
size of your development system.

After the generation process is done, the message in the Output Console Window will be like shown
below:

Now we can move on to add our own software application.

See Also

Importing the Application Software

1.1.10 Importing the Application Software

ComplexFIR Filter Tutorial for PowerPC, Step 10

You will now import the relevant software source files to your new Platform Studio project.

On the Applications tab of the Project Information Area, create a new software project by double-
clicking the Add Software Application Project... item. An Add Software Application Project
dialog will appear. Type in the project name: filter.

Title of this help project37

© 2009 ... Your company

Click OK to continue.

A new Project: filter appears in the Software Projects list. Double-click the Sources item under the
Project: filter to add source files.

In the Select Source/Header File to Add to Project dialog, enter the code subdirectory and select
all the three C files are shown below:

Quick Start Tutorials 38

© 2009 ... Your company

Click Open to add the source files shown to your project. These files comprise the software
application that will run on the PowerPC CPU.

Next, double-click Headers item under the Project: filter to add header files. A file selection dialog
appears. Select both the header files in the code directory shown below.

Title of this help project39

© 2009 ... Your company

Click Open to add the header files to your project.

The on-chip memory is not enough for the project. The instruction and data sessions need to be put
into external DDR2 SDRAM, and also for the heap and stack. To do this, right-click the Project: filter,
and select Generate Linker Script...

Quick Start Tutorials 40

© 2009 ... Your company

The Generate Linker Script dialog will appear. Make sure that all the sections in the Sections View
are using DDR2_SDRAM as memory. For the Heap and Stack, enlarge the size to 0x1000 bytes,
and also use DDR2_SDRAM as memory.

Title of this help project41

© 2009 ... Your company

Click OK to generate the Linker Script file.

Next, right-click the Project: filter and select Build Project.

Quick Start Tutorials 42

© 2009 ... Your company

The following messages shown in the Console Window Output indicate the software project is built.

Now you will need to change the BRAM initialization application, which is currently the
TestApp_Memory project. Right-click the Default: PowerPC_0_bootloop and select Mark to
Initialize BRAMs. This will let the bootloop reside in the BRAMs.

Title of this help project43

© 2009 ... Your company

Next, you will run the application.

See Also

Running the Application

1.1.11 Running the Application

ComplexFIR Filter Tutorial for PowerPC, Step 11

Now let's run the application on the development board.

Connect the serial port of your development machine to that of your development board via a RS232
cable. Make sure the JTAG download cable is connected on the development board. Also ensure that
the board is configured to be programmed. Turn on the power to the board.

Open Tera Term or Windows HyperTerminal application to display the UART output message. Use
the same communication settings you chose when defining the RS232_Uart_1 peripheral in Base
System Builder (9600 baud, 8-N-1). Turn off flow control, if available.

Quick Start Tutorials 44

© 2009 ... Your company

Now, download the bitstream to the device by selecting Device Configuration -> Download
Bitstream.

When downloading is done, the Console Window Output will be like this:

Select from menu Debug -> Launch XMD...

The XMD Debug Options dialog will appear for the first time opening XMD.

Title of this help project45

© 2009 ... Your company

Click OK to accept the default settings.

A Cygwin bash shell will come up. It runs a script, connecting to the PowerPC processor and the
debugger inside the FPGA, as shown below:

Quick Start Tutorials 46

© 2009 ... Your company

Now, we can download the filter project ELF file to the target board and run the application with the
following XMD command:

dow filter/executable.elf
con

Watch Tera Term window again. You should see the messages generated by the software process
indicating that the test data has been successfully filtered. The execution with hardware acceleration
is 4 times faster than software only running on PowerPC microprocessor.

Title of this help project47

© 2009 ... Your company

Congratulations! You have successfully completed this tutorial and run the generated hardware on the
development board.

See Also

Tutorial 2: Image Filter DMA Using Shared Memory on the Virtex-4 Platform (EDK 10.1)

1.2 Tutorial 2: Image Filter DMA Using Shared Memory on the Virtex-4
Platform (EDK 10.1)

Overview

This tutorial will demonstrate how to create, simulate and build an application targeting the Xilinx
Virtex-4 FX platform, including the use of data streams and the shared memory interface. It includes
all steps necessary to create a new platform using the Xilinx EDK 10.1 tools.

This tutorial will require approximately one hour to complete, including software run times. To
complete the application, you will need access to a Xilinx ML403 development board (or equivalent
board equipped with a Xilinx Virtex-4 FX device).

General Steps

This tutorial will take you through the entire process of creating a hardware-accelerated system in the
Virtex-4 FX FPGA using the Impulse and Xilinx tools. This is an advanced tutorial with many detailed
steps, but can be summarized as the following general steps:

Quick Start Tutorials 48

© 2009 ... Your company

1. Describe and simulate the application using C language and the Impulse CoDeveloper tools.
2. Automatically generate hardware, in the form of VHDL source files, for the hardware

accelerator portion of the application.
3. Export the generated files to an EDK project directory.
4. Build a new EDK project describing the PowerPC and all required peripherals.
5. Attach the hardware accelerator generated in step 2 to the PowerPC via the PLB interface.
6. Add all needed software files representing the application to be run on the PowerPC.
7. Run synthesis and place-and-route to generate a downloadable bitmap.
8. Download the application to the ML403 board using a JTAG programming cable.

Detailed Steps

Loading the Sample Application
Understanding the ImageFilterDMA Application
Compiling the Application for Simulation
Building the Application for Hardware
Exporting the Hardware and Software Files
Creating the ML403 Test Platform
Adding the ImageFilterDMA Hardware
Adding the Software Application Files
Building and Downloading the Application

See Also

Tutorial 2: Image Filter DMA Using Shared Memory on the Virtex-4 Platform (EDK 10.1)
Tutorial 3: Fractal Image Generation on the Virtex-4 Platform (EDK 10.1)

1.2.1 Loading the Sample Application

Image Filter DMA Accelerator Tutorial for Virtex-4 FX, Step 1

To begin, start the CoDeveloper Application Manager by selecting Application Manager from the Start
-> Programs -> Impulse Accelerated Technologies -> CoDeveloper program group.

Open the Xilinx Virtex-4 FX Mandelbrot sample project by selecting Open Project from the File menu,
or by clicking the Open Project toolbar button. Navigate to the .\Examples\Xilinx\Virtex4\Mandelbrot\
directory within your CoDeveloper installation. (You may wish to copy this example to an alternate
directory before beginning.) Opening the project will result in the display of a window similar to the
following:

Title of this help project49

© 2009 ... Your company

Files included in the Mandelbrot project include:

Source file img_hw.c - This source file includes the Image Filter DMA process, and also includes the
application's configuration function.

Source file img_sw.c - This source file includes the test application that runs on the target PowerPC
processor. The test application includes a main() function, and a call_fpga function to access the
external DDR SDRAM. As written, this test application can be compiled either on the PowerPC
processor or as a desktop simulation executable.

Source file img.h - This header file defines the size of the test image.

Source file test.h - This header file include a test image.

See Also

Understanding the ImageFilterDMA Application

1.2.2 Understanding the Image Filter DMA Application

Image Filter DMA Accelerator Tutorial for Virtex-4 FX, Step 2

This tutorial example demonstrates a number of important concepts of Impulse C programming for
Xilinx Virtex-4 FPGA platforms. The most important of these concepts is the use of shared memory.
In platforms based on the PowerPC processor, it is often most efficient to move large blocks of data
between software and hardware elements of the system using direct memory access (DMA)

Quick Start Tutorials 50

© 2009 ... Your company

techniques, rather than making use of streams. Which method you use (memories or streams) will
depend on the nature of the application, so you may wish to try both methods and compare relative
performance.

In this example we will create a simple image filter, which operates on incoming image data (pixel
values) to generate a converted image. The specific image processing algorithm that we have chosen
for this example is an image convolution algorithm, which is a critical step in many image processing
algorithms and is representative of other such image processing filters.

The specific convolution performed in this test case is an edge-detection function, in which a 3x3
pixel "window" is assembled and processed for each pixel in the source image. The algorithm is
represented by two pipelined hardware processes that decompose the image data into three rows of
image data and process those rows to calculate a resulting value from a 3x3 pixel window. Two
additional hardware processes are used to read and write image data from shared memory and
present the data to the image processing algorithm as a stream.

These four processes and the corresponding stream, memory and signal declarations are described
using Impulse C and interconnected using the configuration function shown below:

void config_img(void *arg)
{
int error;
co_signal startsig, donesig;
co_memory shrmem;
co_stream istream, row0, row1, row2, ostream;
co_process reader, writer;
co_process cpu_proc, prep_proc, filter_proc;

startsig = co_signal_create("start");
donesig = co_signal_create("done");
shrmem = co_memory_create("image", "heap0", IMG_WIDTH * IMG_HEIGHT *
sizeof(uint16));
istream = co_stream_create("istream", INT_TYPE(32), IMG_HEIGHT/2);
row0 = co_stream_create("row0", INT_TYPE(32), 4);
row1 = co_stream_create("row1", INT_TYPE(32), 4);
row2 = co_stream_create("row2", INT_TYPE(32), 4);
ostream = co_stream_create("ostream", INT_TYPE(32), IMG_HEIGHT/2);

cpu_proc = co_process_create("cpu_proc", (co_function)call_fpga, 3, shrmem,
startsig, donesig);
reader = co_process_create("reader", (co_function)to_stream, 3, startsig,
shrmem, istream);
prep_proc = co_process_create("prep_proc", (co_function)prep_run, 4, istream,
row0, row1, row2);
filter_proc = co_process_create("filter", (co_function)filter_run, 4, row0,
row1, row2, ostream);
writer = co_process_create("writer", (co_function)from_stream, 3, ostream,

Title of this help project51

© 2009 ... Your company

shrmem, donesig);

co_process_config(reader, co_loc, "PE0");
co_process_config(prep_proc, co_loc, "PE0");
co_process_config(filter_proc, co_loc, "PE0");
co_process_config(writer, co_loc, "PE0");

IF_SIM(error = cosim_logwindow_init();)
}

Note that a fifth process (call_fpga) is included that represents the controlling software application that
will run on the embedded PowerPC processor.

See Also

Compiling the Application for Simulation

1.2.3 Compiling the Application for Simulation

Image Filter DMA Accelerator Tutorial for Virtex-4 FX, Step 3

The software test bench provided with this example (in img_sw.c) has been written in such a way
that it can be compiled either to an FPGA as hardware (using fixed point math operations) or be
compiled for desktop simulation, using either fixed or floating point math operations. This makes it
possible to compile and simulate the application for the purpose of functional verification.

Select Project -> Build Simulation Executable (or click the Build Simulation Executable button) to
build the Mand.exe executable. The CoDeveloper transcript window will display the compile and link
messages as shown below:

You now have a Windows executable representing the application implemented as a desktop
(console) software application. You can run this executable by selecting Project -> Launch Simulation
Executable. A command window will open and the simulation executable will run as shown below:

Quick Start Tutorials 52

© 2009 ... Your company

The left-hand side is the output from software only filtering, and the right-hand side is from the
hardware accelerated filtering.

See Also

Building the Application for Hardware

Title of this help project53

© 2009 ... Your company

1.2.4 Building the Application for Hardware

Image Filter DMA Accelerator Tutorial for Virtex-4 FX, Step 4

Specifying the Platform Support Package

To specify a platform target, open the Generate Options dialog as shown below:

Specify Xilinx Virtex-4 PLB v4.6 as shown. Also specify "hw" and "sw" for the hardware and software
directories as shown, and specify "EDK" for the hardware and software export directories. ("EDK" is
the directory in which you will be creating a Xilinx Platform Studio project.)

Click OK to save the options and exit the dialog.

Generate HDL for the Hardware Process

To generate hardware in the form of HDL files, and to generate the associated software interfaces

Quick Start Tutorials 54

© 2009 ... Your company

and library files, select Generate HDL from the Project menu, or click the Generate HDL button as
shown:

A series of processing steps will run in a command window as shown below:

Note: the processing of this example may require a minute or more to complete, depending on the
performance of your system.

When processing has completed you will have a number of resulting files created in the hw and sw
subdirectories of your project directory. These files are ready to be exported into a Xilinx Platform
Studio project directory.

See Also

Exporting the Hardware and Software Files

1.2.5 Exporting the Hardware and Software Files

Image Filter DMA Accelerator Tutorial for Virtex-4 FX, Step 5

Title of this help project55

© 2009 ... Your company

Recall that in the previous step you specified the directory "EDK" as the export target for hardware
and software. These export directories specify where the generated hardware and software processes
are to be copied when the Export Software and Export Hardware features of CoDeveloper are
invoked. Within these target directories (in this case "EDK"), the specific destination for each file
previously generated is determined from the Platform Support Package architecture library files. It is
therefore important that the correct Platform Support Package (in this case Xilinx Virtex-4 APU) is
selected prior to starting the export process.

To export the files from the build directories (in this case "hw" and "sw") to the export directories (in
this case the "EDK" directory), select Project -> Export Generated Hardware (HDL) and Project ->
Export Generated Software, or select the Export Generated Hardware and Export Generated
Software buttons from the toolbar.

Export the Hardware Files

Export the Software Files

Note: you must select BOTH Export Software and Export Hardware before going onto the next step.

You have now exported all necessary files from CoDeveloper for use in the Xilinx tools environment.
By opening a Windows Explorer window, you can see how the hardware and software files have been
copied into subdirectories of your EDK directory. In particular, notice that CoDeveloper has created a
"pcores/plb_img_arch_v1_00_a" directory containing the generated HDL and other related files. This
generated directory structure will allow you to import the generated core directly into the Platform
Studio tools.

See Also

Creating the ML403 Test Platform

Quick Start Tutorials 56

© 2009 ... Your company

1.2.6 Creating the ML403 Test Platform

Image Filter DMA Accelerator Tutorial for Virtex-4 FX, Step 6

At this point you have:

· Created hardware for the Mandelbrot accelerator.
· Exported the generated hardware to the EDK subdirectory as a pcore.
· Exported the PowerPC software application files to the EDK subirectory.

In this tutorial section, you will be making use of the Platform Studio tools, including the Base System
Builder Wizard, to define and build a new PowerPC-based platform targeting the Xilinx ML403
development board. You will first create a test platform allowing you to download and verify your
PowerPC and its standard peripherals. After successfully creating and testing the basic platform, you
will add the necessary hardware and software files to build, download and test the Mandelbrot sample
application.

Note: If you are using a different Virtex-4 FPGA development board, you will need to obtain an
associated .XBD file from your board vendor, as described in the introduction to this tutorial.

Using Base System Builder to Create the Platform

To begin, start the Xilinx Platform Studio tools and select the Base System Builder Wizard as shown
below:

Click the OK button to proceed. When asked for a project name and location, specify the EDK
subdirectory of your project, and accept the default project name (system.xmp) as shown below:

Title of this help project57

© 2009 ... Your company

Press the OK button to continue.

You will now be presented with the Base System Builder Wizard. Select the "I would like to create a
new design" option, then click Next to continue:

Next, select your target board using the "Board vendor" and "Board name" drop-down lists. To use the
Xilinx ML403 board with attached LCD display, choose the "Virtex 4 ML403"" board as shown:

Quick Start Tutorials 58

© 2009 ... Your company

Click the Next button to proceed to the next Wizard page.

On the Select Processor page, be sure PowerPC is selected as the target processor, then click Next:

On the Configure PowerPC page, specify the following options:

Processor clock frequency: 100 MHz
Bus clock frequency: 50 MHz
Debug I/O: JTAG
Cache setup: Enable
On-chip memory (OCM): NONE

Title of this help project59

© 2009 ... Your company

Click Next to continue. You will now be presented with a series of pages for configuring various I/O
interfaces. Select the RS232_Uart and LEDs_4Bit peripherals as shown, but do not select the
LEDs_Positions and the Push_Button_Position peripheral:

Quick Start Tutorials 60

© 2009 ... Your company

Click Next.

On the next Wizard page, select only the DDR_SDRAM peripheral:

Title of this help project61

© 2009 ... Your company

Click Next.

On the page that follows, do not select any of the peripherals:

Quick Start Tutorials 62

© 2009 ... Your company

Click Next.

On the Add Internal Peripherals page, change the memory size of the plb_bram_if_cntlr_1 to 16 KB
as shown:

Title of this help project63

© 2009 ... Your company

Click Add Peripheral button to open the Add Peripheral dialogue. Choose XPS TIMER from the
peripheral list as shown below:

Click OK.The xps_timer_1 is added to the peripheral list. Configure the timer as the following options:
Counter bit width: 32
Timer mode: One timer is present
Use interrupt: no

Click Next to continue.

On the Cache Setup page, enable both cache selections as shown:

Quick Start Tutorials 64

© 2009 ... Your company

Click Next.

The Wizard will now ask if you want to create memory and peripheral test applications. Select the
"Peripheral selftest" application, but do not select the "Memory test" application:

Click Next.

You will now be prompted for memory locations for Instruction, Data and Stack/Heap for the

Title of this help project65

© 2009 ... Your company

PeripheralTest application. Select xps_bram_if_cntlr_1 for the Instruction field, the Data and
Stack/Heap fields as shown below:

Click Next.

The Wizard will now display a summary of your platform selections:

Click the Generate button to generate the platform with the specified configurations. After the
platform has been generated, the Wizard will display a final page, and will give you the option of
saving the platform settings to a .BSB file. This file can be used when creating new platforms with
similar settings.

Quick Start Tutorials 66

© 2009 ... Your company

Click Finish to exit the Wizard.

The Platform Studio interface will now appear similar to the following:

Title of this help project67

© 2009 ... Your company

Building and Running the Peripheral Test

Before creating and building the ImageFilterDMA sample application, it is a good idea to do a quick
test of the platform, using the Peripheral Selftest test application created by Base System Builder. To
build the test application, you must first generate the PowerPC libraries, peripheral drivers, and other
files needed for the software portion of the application. To do this, select the Generate Libraries and
BSPs command from the Software menu as shown below:

When the libraries have been built, Platform Studio will display a message similar to the following:

Quick Start Tutorials 68

© 2009 ... Your company

Next, select the Generate Bitstream command from the Hardware menu as shown below. This
command starts the synthesis and place-and-route process, resulting in a downloadable .BIT file. This
will take a few minutes, depending on the speed of your computer.

After the bitstream generation has completed, make sure your JTAG cable is plugged in properly and
the ML403 board is powered up. Select Download Bitstream from the Device Configuration menu as
shown below:

When the FPGA has been successfully programmed, you will see a "Programming Complete"
message in the Platform Studio transcript, and you will see a small row of LEDs located light up in
sequence on the lower right corner of board.

Title of this help project69

© 2009 ... Your company

You have now verified the complete design flow and all needed hardware connections, from Platform
Studio and Base System Builder to the ML403 board. In the next tutorial section, you will replace this
test application with a new application representing the Image Filter DMA.

See Also

Adding the ImageFilterDMA Hardware

1.2.7 Adding the ImageFilterDMA Hardware

Image Filter DMA Accelerator Tutorial for Virtex-4 FX, Step 7

In the previous step you used Xilinx Platform Studio and the Base System Builder to create a test
application, ready to download and run on the ML403 board. This test was important because it
established that all required peripherals, memories, etc. had been properly assembled, forming a
base platform on which the Mandelbrot example can be implemented.

In the steps that remain, we will modify the base platform to:

· Add the ImageFilterDMA accelerator
· Make bus and port connections of the components
· Add the ImageFilterDMA software application files
· Build the platform, including synthesizing the new cores
· Download and run the ImageFilterDMA application on the target board

Adding the ImageFilterDMA Core

To add the ImageFilterDMA accelerator core as a peripheral, select the IP Catalog tab and look for
the category titled "Project Local pcores". Under USER directory you will find the core that was
created (copied to) the EDK/pcores directory of your project. Add the plb_img_arch core by clicking
the right mouse button as shown below:

Quick Start Tutorials 70

© 2009 ... Your company

This will add the core to the project as a peripheral.

Adding IP Cores

Next, add a Processor Local Bus (PLB) 4.6 as shown below:

Title of this help project71

© 2009 ... Your company

A XPS Central DMA Controller (MPLB device) is needed on the PLB to keep the EDK from
optimizing out some arbitrating mechanism. Add the IP core as shown below:

Configure the DDR_SDRAM Controller

The MPLB of plb_img_arch_0 needs to connect to the DDR_SDRAM through a separate SPLB port.
To do this, open the Configure IP Dialogue of the DDR_SDRAM:

Quick Start Tutorials 72

© 2009 ... Your company

Change the Port Type Configuration of Port 2 from INACTIVE to PLBV46 as shown below. This will
add another PLBV46 port to the DDR_SDRAM.

Connect Bus Interfaces

Now, the Bus Interfaces view of the system should look like this:

Title of this help project73

© 2009 ... Your company

Connect the MPLB of the plb_img_arch_0, and the MPLB of the xps_central_dma_0 to the newly
added PLB (plb_v46_0), also connect the SPLB2 of the DDR_SDRAM to the same plb_v46_0.

Connect the SPLB of the plb_img_arch_0 to the shared PLB (plb) as shown below (as indicated in red
circles):

Quick Start Tutorials 74

© 2009 ... Your company

Connecting the Peripheral Clock and Reset Signals

To do this, switch to the Ports Tab in the System Assembly View Window.

Connect the PLB_Clk signal of the plb_v46_0 peripheral to sys_clk_s:

Title of this help project75

© 2009 ... Your company

And connect the SYS_Rst signal of plb_v46_0 to sys_bus_reset:

Generate Addresses

Quick Start Tutorials 76

© 2009 ... Your company

Next step is to generate addresses for the memory related modules in EDK. Switch to the Addresses
Tab of the System Assembly View Window.

Change the size of the xps_central_dma_0 from U (undefined) to 64 as shown below:

Click the Generate Addresses button on the upper right corner to let EDK assign addresses for the
modules as shown below:

Generate Bitstream

Now, build the hardware by choosing the Hardware -> Generate Bitstream menu. The synthesis,
place-and-route and bitstream generation process will take a few minutes to complete depending on
your PC.

Title of this help project77

© 2009 ... Your company

The process is done. A file "system.bit" is created.

The hardware side of the application, including the ImageFilterDMA accelerator and the PLB
interface, is now ready for use. In the next tutorial section you will set up the software side of the
application.

See Also

Adding the Software Application Files

1.2.8 Adding the Software Application Files

Image Filter DMA Accelerator Tutorial for Virtex-4 FX, Step 8

The hardware configuration, including all required peripheral settings and connections, is now
complete. The next step is to add the Mandelbrot sample application.

Create Image Filter DMA Software Application

Select the Applications tab of the project, double-click the Add Software Application Project to show a
dialogue. Type in the Project Name as "ImageFilterDMA" and click OK as shown below:

Quick Start Tutorials 78

© 2009 ... Your company

Adding the Image Filter DMA Application Source Files

To add source C files to the project, open the Add Existing Files Dialogue from the Sources category
by using right mouse button as shown below:

Title of this help project79

© 2009 ... Your company

Select all files from the code subdirectory of your project as shown below:

Next, add header files to your project similar to above as shown below:

Quick Start Tutorials 80

© 2009 ... Your company

Setting Compiler Options

Now you will need to set compiler options for the project. To set the compiler options, right-click on
the project title and select Generate Linker Script from the menu as shown below:

A Generate Linker Script dialogue appears. Change the Heap Size and Stack Size to 0x2000000 and
0x1000000, respectively:

Title of this help project81

© 2009 ... Your company

Click OK to close the Generate Linker Script dialog.

The software application is now ready to compile for the PowerPC processor.

See Also

Building and Downloading the Application

1.2.9 Building and Downloading the Application

Image Filter DMA Accelerator Tutorial for Virtex-4 FX, Step 9

The Mandelbrot application is now ready to build, download and execute on the target ML403 board.

First, compile the software application to create a PowerPC executable. Do this by selecting Build
Project from the Project: mand entry as shown below:

Quick Start Tutorials 82

© 2009 ... Your company

The size of the generated executable is shown below. It will be included in the FPGA bitstream.

Next, mark the ppc405_bootloop to initialize BRAMs by using the right mouse button. This will put a
loop in the starting address of the on-chip memory.

Title of this help project83

© 2009 ... Your company

Now, it is time to download the bitstream to the ML403 board. Make sure the JTAG cable is properly
connected and that the ML403 board is powered on. Also make sure the crossover RS-232 serial
cable is connected properly between the ML403 and your PC.

Open the TeraTerm application to receive the UART output. The serial port is set to be 9600-8-N-1,
no flow control, as shown below:

Click OK to accept the settings.

Select Download Bitstream as shown below:

Quick Start Tutorials 84

© 2009 ... Your company

Next, launch Xilinx Microprocessor Debugger (XMD) from the menu as shown below:

If this is the first time you have launched XMD for this EDK project, a couple of dialogue windows will
pop up. Just click OK, then the XMD terminal will appear.

Download the ImageFilterDMA ELF file to the DDR_SDRAM, and then start running the program
using the following commands:

dow ImageFilterDMA/executable.elf
con

Title of this help project85

© 2009 ... Your company

After downloading has completed, the application will start running, resulting in an output image in the
TeraTerm window similar to the following:

Quick Start Tutorials 86

© 2009 ... Your company

Title of this help project87

© 2009 ... Your company

The execution times of software only filtering and hardware accelerated filtering are measured and
compared, and the acceleration factor is 103.

Congratulations! You have completed this advanced tutorial.

See Also

Quick Start Tutorials

1.3 Tutorial 3: Fractal Image Generation using APU on the Virtex-4
Platform (EDK 10.1)

Overview

This tutorial will demonstrate how to create, simulate and build an application targeting the Xilinx
Virtex-4 FX platform, including the use of data streams and the Auxiliary Peripheral Unit (APU)
interface. It includes all steps necessary to create a new platform using the Xilinx EDK 10.1 tools.

This example is described in Chapter 13 of Practical FPGA Programming in C.

Quick Start Tutorials 88

© 2009 ... Your company

This tutorial will require approximately one hour to complete, including software run times. To
complete the application, you will need access to a Xilinx ML403 development board (or equivalent
board equipped with a Xilinx Virtex-4 FX device), and a VGA monitor as shown above.

You should also download and read the following Xilinx Application Note APP901:

Accelerating Software Applications Using the APU Controller and C-to-HDL Tools.

General Steps

This tutorial will take you through the entire process of creating a hardware-accelerated system in the
Virtex-4 FX FPGA using the Impulse and Xilinx tools. This is an advanced tutorial with many detailed
steps, but can be summarized as the following general steps:

1. Describe and simulate the application using C language and the Impulse CoDeveloper tools.
2. Automatically generate hardware, in the form of VHDL source files, for the hardware

accelerator portion of the application.
3. Export the generated files to an EDK project directory.
4. Build a new EDK project describing the PowerPC and all required peripherals, including the

TFT display peripheral.
5. Attach the hardware accelerator generated in step 2 to the PowerPC via the APU interface.
6. Add all needed software files representing the application to be run on the PowerPC.
7. Run synthesis and place-and-route to generate a downloable bitmap.
8. Download the application to the ML403 board using a JTAG programming cable.

http://direct.xilinx.com/bvdocs/appnotes/xapp901.pdf

Title of this help project89

© 2009 ... Your company

Detailed Steps

Loading the Sample Application
Understanding the Mandelbrot Application
Compiling the Application for Simulation
Building the Application for Hardware
Exporting the Hardware and Software Files
Copying the TFT display core files
Creating the ML403 Test Platform
Adding the Mandelbrot Hardware
Adding the Software Application Files
Building and Downloading the Application

See Also

Tutorial 1: Complex FIR Filter on Virtex-5 Platform (EDK 10.1)
Tutorial 2: Image Filter DMA Using Shared Memory on the Virtex-4 Platform (EDK 10.1)

1.3.1 Loading the Sample Application

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 1

To begin, start the CoDeveloper Application Manager by selecting Application Manager from the Start
-> Programs -> Impulse Accelerated Technologies -> CoDeveloper program group.

Open the Xilinx Virtex-4 FX Mandelbrot sample project by selecting Open Project from the File menu,
or by clicking the Open Project toolbar button. Navigate to the .\Examples\Xilinx\Virtex4\Mandelbrot\
directory within your CoDeveloper installation. (You may wish to copy this example to an alternate
directory before beginning.) Opening the project will result in the display of a window similar to the
following:

Quick Start Tutorials 90

© 2009 ... Your company

Files included in the Mandelbrot project include:

Source file mand_accel_hw.c - This source files includes the Mandelbrot fractal image generator
process, and also includes the application's configuration function.

Source file mand_accel_sw.c - This source file includes the test application that runs on the target
PowerPC processor. The test application includes a main() function, and a consumer/producer
function. As written, this test application can be compiled either on the PowerPC processor or as a
desktop simulation executable.

Source file mand.h - This source files includes global definitions, including the image size and
precision. This file also includes macros used for fixed-point math operations.

Other .C and .H source files - The remainder of the application source files are used for displaying
the results of the application (the generated fractal image) on an LCD display, and for creating a timer
used to compare performance.

See Also

Understanding the Mandelbrot Application

1.3.2 Understanding the Mandelbrot Application

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 2

Fractal texturing is a technique used in image rendering to create imagery with an organic
appearance. The Mandelbrot image generation algorithm is one example of fractal texturing. This
sample application is a fractal image generator that calculates and displays an image such as the one
shown below:

Title of this help project91

© 2009 ... Your company

To generate this image, the algorithm examines all points in a subregion of a complex plane that has
both real and imaginary parts between -2 and +2. The maximum number of iterations to determine if
a given point converges is defined by MAX_ITERATIONS, which is defined in source file mand.h.
You can increase this value for more precision in the generated output.

The generator is implemented as a single Impulse C process. The process accepts configuration data
defining the image subregion on a single input stream, and generates the resulting image as a stream
of pixels on the output stream. The provided software test bench is compatible with the PPC405
processor in the Virtex-4 FX, and communicates with the hardware process via the APU (Auxiliary
Peripheral Unit) interface.

The Virtex-4 APU Controller

The APU controller provides a flexible and high-bandwidth data transfer mechanism between the
FPGA fabric (via the Fabric Control Modules, or FCMs) and the embedded PowerPC processor on
Virtex-4 FX FPGAs. The APU interface is connected directly to the instruction pipeline and to one or
more FCMs. The advantage of this approach is that the typical latency associated with arbitration on
a peripheral bus (such as PLB or OPB) is absent.

The Virtex-4 APU controller performs two main functions:

· The APU provides a synchronization mechanism between the PowerPC processor and the FCM,
which may be running at a lower clock rate.

· The APU decodes instructions or allows the FCM to decode instructions. Execution, however, is
always carried out by the FCM.

When the instruction is due for decoding, it is presented to both the PowerPC processor and APU
controller. If the instruction is not recognized as a CPU instruction, the PowerPC processor looks for a
response from the APU controller to signal a valid instruction. If valid, the required operands are
fetched and passed to the APU for processing. Instructions directed towards the FCM can be either
predefined in the Instruction Set Architecture (ISA), such as floating-point instructions, or can be user-
defined instructions. The CoDeveloper toolset creates hardware cores designed to interface with the
APU interface for easy integration into FPGA systems using XPS. In this example, CoDeveloper uses
the load/store instructions (predefined by the ISA) to transfer data between the PowerPC data
memory system and the FCM.

See Also

Compiling the Application for Simulation

1.3.3 Compiling the Application for Simulation

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 3

The software test bench provided with this example (in mand_sw.c) has been written in such a way
that it can be compiled either to an FPGA as hardware (using fixed point math operations) or be
compiled for desktop simulation, using either fixed or floating point math operations. This makes it
possible to compile and simulate the application for the purpose of functional verification.

Select Project -> Build Simulation Executable (or click the Build Simulation Executable button) to

Quick Start Tutorials 92

© 2009 ... Your company

build the Mand.exe executable. The CoDeveloper transcript window will display the compile and link
messages as shown below:

You now have a Windows executable representing the application implemented as a desktop
(console) software application. You can run this executable by selecting Project -> Launch Simulation
Executable. A command window will open and the simulation executable will run as shown below:

When complete, two BMP format files will be created in the project directory that represent the
generated hardware and software images, which have been sized for eventual display on the output
LCD:

Title of this help project93

© 2009 ... Your company

See Also

Building the Application for Hardware

1.3.4 Building the Application for Hardware

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 4

Specifying the Platform Support Package

To specify a platform target, open the Generate Options dialog as shown below:

Quick Start Tutorials 94

© 2009 ... Your company

Specify Xilinx Virtex-4 APU as shown. Also specify "hw" and "sw" for the hardware and software
directories as shown, and specify "EDK" for the hardware and software export directories. ("EDK" is
the directory in which you will be creating a Xilinx Platform Studio project.)

Also ensure that the Generate Dual Clocks option is selected as shown. (The Generate Dual Clocks
option is important because you will be clocking the PowerPC processor at a different rate than the
generated FPGA logic.)

Click OK to save the options and exit the dialog.

Generate HDL for the Hardware Process

To generate hardware in the form of HDL files, and to generate the associated software interfaces
and library files, select Generate HDL from the Project menu, or click the Generate HDL button as
shown:

Title of this help project95

© 2009 ... Your company

A series of processing steps will run in a command window as shown below:

Note: the processing of this example may require a minute or more to complete, depending on the
performance of your system.

When processing has completed you will have a number of resulting files created in the hw and sw
subdirectories of your project directory. These files are ready to be exported into a Xilinx Platform
Studio project directory.

See Also

Exporting the Hardware and Software Files

1.3.5 Exporting the Hardware and Software Files

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 5

Recall that in the previous step you specified the directory "EDK" as the export target for hardware

Quick Start Tutorials 96

© 2009 ... Your company

and software. These export directories specify where the generated hardware and software processes
are to be copied when the Export Software and Export Hardware features of CoDeveloper are
invoked. Within these target directories (in this case "EDK"), the specific destination for each file
previously generated is determined from the Platform Support Package architecture library files. It is
therefore important that the correct Platform Support Package (in this case Xilinx Virtex-4 APU) is
selected prior to starting the export process.

To export the files from the build directories (in this case "hw" and "sw") to the export directories (in
this case the "EDK" directory), select Project -> Export Generated Hardware (HDL) and Project ->
Export Generated Software, or select the Export Generated Hardware and Export Generated
Software buttons from the toolbar.

Export the Hardware Files

Export the Software Files

Note: you must select BOTH Export Software and Export Hardware before going onto the next step.

You have now exported all necessary files from CoDeveloper for use in the Xilinx tools environment.
By opening a Windows Explorer window, you can see how the hardware and software files have been
copied into subdirectories of your EDK directory. In particular, notice that CoDeveloper has created a
"pcores/apu_mand_v1_00_a" directory containing the generated HDL and other related files. This
generated directory structure will allow you to import the generated core directly into the Platform
Studio tools.

See Also

Copying the TFT Display Core Files

Title of this help project97

© 2009 ... Your company

1.3.6 Copying the TFT Display Core Files

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 6

As described in the previous step, the CoDeveloper tools are capable of generating all required files
for "pcore" components usable within the Xilinx Platform Studio tools. These pcore components
represent processor peripherals and other components that can be assembled, using the Platform
Studio tools, to create a complete system.

In this example, we will also make use of another pcore for driving the TFT display. This pcore has
been provided by Xilinx, but is not part of the standard Platform Studio (EDK) installation. For your
convenience, the required TFT pcore has been included as a ZIP file with the Mandelbrot sample
project.

To add the TFT pcore to our EDK project directory, unzip the supplied file (located in the
../Mandelbrot/EDK directory), resulting in the following directory structure in your EDK project
subdirectory:

Note: The included ZIP file may include other directories, including a pre-built Mandelbrot accelerator
pcore. These additional files can be ignored. In particular, you should take care not to overwrite the
pcores/apu_mand_v1_00_a directory created in the previous step.

See Also

Creating the ML403 Test Platform

Quick Start Tutorials 98

© 2009 ... Your company

1.3.7 Creating the ML403 Test Platform

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 7

At this point you have:

· Created hardware for the Mandelbrot accelerator.
· Exported the generated hardware to the EDK subdirectory as a pcore.
· Exported the PowerPC software application files to the EDK subirectory.
· Created/copied an additional pcore representing the TFT display interface.

In this tutorial section, you will be making use of the Platform Studio tools, including the Base System
Builder Wizard, to define and build a new PowerPC-based platform targeting the Xilinx ML403
development board. You will first create a test platform allowing you to download and verify your
PowerPC and its standard peripherals. After successfully creating and testing the basic platform, you
will add the necessary hardware and software files to build, download and test the Mandelbrot sample
application.

Note: If you are using a different Virtex-4 FPGA development board, you will need to obtain an
associated .XBD file from your board vendor, as described in the introduction to this tutorial.

Using Base System Builder to Create the Platform

To begin, start the Xilinx Platform Studio tools and select the Base System Builder Wizard as shown
below:

Click the OK button to proceed. When asked for a project name and location, specify the EDK
subdirectory of your project, and accept the default project name (system.xmp) as shown below:

Title of this help project99

© 2009 ... Your company

Press the OK button to continue.

You will now be presented with the Base System Builder Wizard. Select the "I would like to create a
new design" option, then click Next to continue:

Next, select your target board using the "Board vendor" and "Board name" drop-down lists. To use the
Xilinx ML403 board with attached LCD display, choose the "Virtex 4 ML403"" board as shown:

Quick Start Tutorials 100

© 2009 ... Your company

Click the Next button to proceed to the next Wizard page.

On the Select Processor page, be sure PowerPC is selected as the target processor, then click Next:

On the Configure PowerPC page, specify the following options:

Processor clock frequency: 200 MHz
Debug I/O: JTAG
Cache setup: Enable
On-chip memory: 16 KB each for data and instruction

Title of this help project101

© 2009 ... Your company

Click Next to continue. You will now be presented with a series of pages for configuring various I/O
interfaces. Select the RS232_Uart and LEDs_4Bit peripherals as shown, but do not select the
LEDs_Positions and the Push_Button_Position peripheral:

Quick Start Tutorials 102

© 2009 ... Your company

Click Next.

On the next Wizard page, select only the DDR_SDRAM peripheral:

Title of this help project103

© 2009 ... Your company

Click Next.

On the page that follows, do not select any of the peripherals:

Quick Start Tutorials 104

© 2009 ... Your company

Click Next.

On the Add Internal Peripherals page, remove the plb_bram_if_cntlr_1 as shown:

Title of this help project105

© 2009 ... Your company

Click Next.

On the Cache Setup page, enable both cache selections as shown:

Click Next.

The Wizard will now ask if you want to create memory and peripheral test applications. Select the
"Peripheral selftest" application, but do not select the "Memory test" application:

Click Next.

Quick Start Tutorials 106

© 2009 ... Your company

You will now be prompted for memory locations for Instruction, Data and Stack/Heap for the
PeripheralTest application. Select ppc405_0_iocm_cntlr for the Instruction field, and
ppc405_0_docm_cntlr for the Data and Stack/Heap fields as shown below:

Click Next.

The Wizard will now display a summary of your platform selections:

Title of this help project107

© 2009 ... Your company

Click the Generate button to generate the platform with the specified configurations. After the
platform has been generated, the Wizard will display a final page, and will give you the option of
saving the platform settings to a .BSB file. This file can be used when creating new platforms with
similar settings.

Quick Start Tutorials 108

© 2009 ... Your company

Click Finish to exit the Wizard.

The Platform Studio interface will now appear similar to the following:

Title of this help project109

© 2009 ... Your company

Building and Running the Peripheral Test

Before creating and building the Mandelbrot sample application, it is a good idea to do a quick test of
the platform, using the Peripheral Selftest test application created by Base System Builder. To build
the test application, you must first generate the PowerPC libraries, peripheral drivers, and other files
needed for the software portion of the application. To do this, select the Generate Libraries and BSPs
command from the Software menu as shown below:

When the libraries have been built, Platform Studio will display a message similar to the following:

Quick Start Tutorials 110

© 2009 ... Your company

Next, select the Generate Bitstream command from the Hardware menu. This command starts the
synthesis and place-and-route process, resulting in a downloadable .BIT file.

After the bitstream generation has completed, make sure your JTAG cable is plugged in properly and
the ML403 board is powered up. Select Download Bitstream from the Device Configuration menu as
shown below:

When the FPGA has been successfully programmed, you will see a "Programming Complete"

Title of this help project111

© 2009 ... Your company

message in the Platform Studio transcript, and you will see a small row of LEDs located light up in
sequence on the lower right corner of board.

You have now verified the complete design flow and all needed hardware connections, from Platform
Studio and Base System Builder to the ML403 board. In the next tutorial section, you will replace this
test application with a new application representing the Mandelbrot fractal image generator.

See Also

Adding the Mandelbrot Hardware

1.3.8 Adding the Mandelbrot Hardware

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 8

In the previous step you used Xilinx Platform Studio and the Base System Builder to create a test
application, ready to download and run on the ML403 board. This test was important because it
established that all required peripherals, memories, etc. had been properly assembled, forming a
base platform on which the Mandelbrot example can be implemented.

In the steps that remain, we will modify the base platform to:

· Configure clock generator component
· Configure the TFT display
· Add the Mandelbrot APU accelerator
· Add the Mandelbrot software application files
· Build the platform, including synthesizing the new cores
· Download and run the Mandelbrot application on the target board

Configuring the Clock Generator

Our fractal image generator application requires three distinct clock sources, one for the PowerPC
processor, one for the fabric control bus (FCB), and one for the hardware accelerator, which in this
example runs at 40MHz. The TFT Controller needs a 25 MHz clock.

To configure the Clock Generator, right-click the clock_generator_0 to open the Configure IP option
as shown below:

Quick Start Tutorials 112

© 2009 ... Your company

Add a new clock output in CLKOUT3, type in the name "pcore_co_clk", and frequency as "40000000"
Hz as shown:

Title of this help project113

© 2009 ... Your company

Add another clock output in CLKOUT4, type in the name "tft_25mhz_clk", and frequency as
"25000000" Hz as shown:

Adding PLBV46_TFT_CNTLR Constraints

The PLBv46 TFT Controller is currently not included in the standard Xilinx IP Cores, so the
PLBV46_TFT_CNTLR constaints need to be added manually to the .UCF file associated with the
project (system.ucf). To edit this file, open the Project tab, and find the .UCF file listed under Project
Files as shown below. Double-click on the system.ucf file entry.

Quick Start Tutorials 114

© 2009 ... Your company

Using the editing window that appears, add the following lines shown below to the end of the .UCF
file:

Module plbv46_tft_cntlr constraints

NET plbv46_tft_cntlr_0_TFT_LCD_B_pin<1> LOC = C5; # VGA_B3
NET plbv46_tft_cntlr_0_TFT_LCD_B_pin<2> LOC = C7; # VGA_B4
NET plbv46_tft_cntlr_0_TFT_LCD_B_pin<3> LOC = B7; # VGA_B5
NET plbv46_tft_cntlr_0_TFT_LCD_B_pin<4> LOC = G8; # VGA_B6
NET plbv46_tft_cntlr_0_TFT_LCD_B_pin<5> LOC = F8; # VGA_B7
NET plbv46_tft_cntlr_0_TFT_LCD_B_pin<*> SLEW = FAST | DRIVE = 8;

NET plbv46_tft_cntlr_0_TFT_LCD_G_pin<1> LOC = E4; # VGA_G3
NET plbv46_tft_cntlr_0_TFT_LCD_G_pin<2> LOC = D3; # VGA_G4
NET plbv46_tft_cntlr_0_TFT_LCD_G_pin<3> LOC = H7; # VGA_G5
NET plbv46_tft_cntlr_0_TFT_LCD_G_pin<4> LOC = H8; # VGA_G6
NET plbv46_tft_cntlr_0_TFT_LCD_G_pin<5> LOC = C1; # VGA_G7
NET plbv46_tft_cntlr_0_TFT_LCD_G_pin<*> SLEW = FAST | DRIVE = 8;

NET plbv46_tft_cntlr_0_TFT_LCD_R_pin<1> LOC = C2; #VGA_R3
NET plbv46_tft_cntlr_0_TFT_LCD_R_pin<2> LOC = G7; #VGA_R4
NET plbv46_tft_cntlr_0_TFT_LCD_R_pin<3> LOC = F7; #VGA_R5
NET plbv46_tft_cntlr_0_TFT_LCD_R_pin<4> LOC = E5; #VGA_R6
NET plbv46_tft_cntlr_0_TFT_LCD_R_pin<5> LOC = E6; #VGA_R7
NET plbv46_tft_cntlr_0_TFT_LCD_R_pin<*> SLEW = FAST | DRIVE = 8;

NET plbv46_tft_cntlr_0_TFT_LCD_CLK_pin LOC = AF8;
NET plbv46_tft_cntlr_0_TFT_LCD_CLK_pin IOSTANDARD = LVDCI_33 | SLEW = FAST |
DRIVE = 8;

NET plbv46_tft_cntlr_0_TFT_LCD_VSYNC_pin LOC = A8;
NET plbv46_tft_cntlr_0_TFT_LCD_VSYNC_pin SLEW = FAST | DRIVE = 8;

NET plbv46_tft_cntlr_0_TFT_LCD_HSYNC_pin LOC = C10;
NET plbv46_tft_cntlr_0_TFT_LCD_HSYNC_pin SLEW = FAST | DRIVE = 8;

The modified .UCF file should look as shown below:

Title of this help project115

© 2009 ... Your company

Save the .UCF file using the File Save menu command, then close the editing window.

Adding the Mandelbrot Accelerator Core

To add the Mandelbrot fractal image generator core as a peripheral, select the IP Catalog tab and
look for the category titled "Project Local pcores". Under USER directory you will find the two cores
that were created (copied to) the EDK/pcores directory of your project. Add the apu_mand core by
clicking the right mouse button as shown below:

Quick Start Tutorials 116

© 2009 ... Your company

This will add the core to the project as a peripheral.

Adding Fabric Co-processor Bus

To connect the peripheral to the PowerPC via the APU interface, you will also need to add a Fabric
Co_processor Bus (FCB) to the system. To add this core, select the Bus category and find the "Fabric
Co_processor Bus" item. Add the FCB to your systemby clicking the right mouse button as shown
below:

Title of this help project117

© 2009 ... Your company

After you have added the FCB, it will appear in the Platform Studio connections window as shown
below. Use the mouse pointer to select and connect the MFCB port of the ppc405_0 to the FCB, by
clicking on the square connection point, and then connect the apu_mand_0 peripheral (SFCB
connection) to the FCB as shown below (and indicated by the the red circle):

Quick Start Tutorials 118

© 2009 ... Your company

The apu_mand peripheral is now connected via the APU to the PowerPC.

Adding the PLBV46 TFT Controller Core

Next, add the PLBV46_TFT_CNTLR by clicking the right mouse button as shown below:

Title of this help project119

© 2009 ... Your company

The PLBV46_TFT_CNTLR controls the Thin Film Transistor LCD Display, which gives us the
graphical output of the computation results. The PLBV46_TFT_CNTLR has a SDCR bus interface, a
MPLB and an SPLB bus interface. We need to add a DCR bus and an additional PLB bus to connect
the PLBV46_TFT_CNTLR properly. Choose Device Control Register (DCR) Bus from the Bus and
Bridge Category, and add it by right-clicking as shown below:

Quick Start Tutorials 120

© 2009 ... Your company

Add a Processor Local Bus (PLB) as shown below:

Title of this help project121

© 2009 ... Your company

A PLBV46 to DCR Bridge is needed to connect the DCR and the PLB together. Add the bridge as
shown below:

Quick Start Tutorials 122

© 2009 ... Your company

Now, connect the bus interfaces. Connect the MDCR bus of the plbv46_dcr_bridge_0 and the SDCR
bus of the plbv46_tft_cntlr_0 by mouse clicking the connection points as shown below (indicated in
the red oval):

Title of this help project123

© 2009 ... Your company

The MPLB of plbv46_tft_cntlr_0 needs to connect to the DDR_SDRAM through a separate SPLB port.
To do this, open the Configure IP Dialogue of the DDR_SDRAM:

Quick Start Tutorials 124

© 2009 ... Your company

Change the Port Type Configuration of Port 2 from INACTIVE to PLBV46 as shown below. This will
add another PLBV46 port to the DDR_SDRAM.

Then, connect the MPLB of the plbv46_tft_cntlr_0 to the newly added PLB, also conect the SPLB2 of
the DDR_SDRAM to the same PLB. Connect the SPLB of the plbv46_tft_cntlr_0 and the SPLB of the
plbv46_dcr_bridge_0 to the shared PLB as shown below (as indicated in red circles):

Title of this help project125

© 2009 ... Your company

Connecting the Peripheral Clock and Reset Signals

To do this, switch to the Ports Tab in the System Assembly View Window.

To connect the DCR clock of the PLBv46 DCR Bridge, make a new connection to the PLB_dcrClk as
shown below:

Quick Start Tutorials 126

© 2009 ... Your company

Connect this clock to the SYS_dcrClk port of the plbv46_tft_cntlr. To view the port, change the port
filter to show default connections.

A long list of ports will show up. Find the SYS_dcrClk port under the plbv46_tft_cntlr and connect it to
the plbv46_dcr_bridge_0_PLB_dcrClk port as shown below:

Title of this help project127

© 2009 ... Your company

After this step is done, change back the port filter setting to avoid showing default ports.

Next, connect the following 6 ports of the plbv46_tft_cntlr to outside of the FPGA by select the Make
External for each port as shown below:

TFT_LCD_B
TFT_LCD_G
TFT_LCD_R
TFT_LCD_CLK
TFT_LCD_HSYNC
TFT_LCD_VSYNC

The resulting port connection should be like this:

Connect the SYS_tftClk port to the tft_25mhz_clk from the Clock Generator as shown below:

Quick Start Tutorials 128

© 2009 ... Your company

The next step is to connect the two apu_mand_0 clock signals. To do this, change the apu_clk entry
to sys_clk_s as shown below:

Now change the co_clk entry to pcore_co_clk as shown below:

Title of this help project129

© 2009 ... Your company

Connect the FCB_CLK signal of the fcb_v10_0 peripheral to sys_clk_s:

And connect the SYS_RST signal of fcb_v10_0 to sys_bus_reset:

Quick Start Tutorials 130

© 2009 ... Your company

Connect the PLB_Clk signal of the plb_v46_0 peripheral to sys_clk_s:

And connect the SYS_Rst signal of plb_v46_0 to sys_bus_reset:

The port view of your project should now appear similar to the following:

Title of this help project131

© 2009 ... Your company

Modifying the C_APU_CONTROL Parameter

The C_APU_CONTROL parameter is used to enable the APU interface, which in this example is used
to transmit data between the PowerPC processor and the hardware accelerator. This parameter can
be viewed and edited in the Configure IP Dialogue as shown below.

Quick Start Tutorials 132

© 2009 ... Your company

Switch to the APU Tab and change the APU Controller Configuration Register Initial Value to
0b0000000000000001 as shown below:

Modifying the TFT Base Address Parameter

The C_DEFAULT_TFT_BASE_ADDR parameter is used to set the starting address of the TFT image
memory. This is very important to have the TFT LCD display properly, and you will need to set the
corresponding value in the software code. This parameter can be viewed and edited in the Configure
IP Dialogue as shown below.

Title of this help project133

© 2009 ... Your company

Change the C_DEFAULT_TFT_BASE_ADDR value to 0b00001000000 (11 bits altogether) as shown
below:

Clink OK to save the change.

Quick Start Tutorials 134

© 2009 ... Your company

Generate Addresses

Next step is to generate addresses for the memory related modules in EDK. Switch to the Addresses
Tab of the System Assembly View Window.

First, change the size of the DDR_SDRAM from 64MB to 256MB. The actual size of the
DDR_SDRAM is 64MB. The purpose of mapping it to upper address space is to use the uncached
memory space for the TFT image memory.

Next, click the Generate Addresses button on the upper right corner to let EDK assign addresses for
the modules as shown below:

An error message might show up when generating the addresses:

ERROR:MDT - C_IDCR_BASEADDRof ppc405_0 has no high address in MHS

If this happens, add the following line to the ppc405_virtex4 paremeters, in the system.mhs file:

 PARAMETER C_IDCR_HIGHADDR = 0b0111111111

Before buiding the hardware, check the system.mhs file to make sure that ppc405_virtex4 comes
before all other instances. If not, move it to the top. The instance order might affect the hardware
synthesis for some reason.

Now, build the hardware by choosing the Hardware -> Generate Bitstream menu. The synthesis,
place-and-route and bitstream generation process will take a few minutes to complete depending on

Title of this help project135

© 2009 ... Your company

your PC.

During the building process, an error message might pop up due to a known issue with the EDK
software:

 FATAL_ERROR: GuiUtilities:Gq_Application.c:590:1.20

If this happens, just close the EDK window, and then re-open it and restart the building
process. Clearing the output window frequently may help. Please refer to
 Xilinx Answers Database for a possible solution.

The process is done. A file "system.bit" is created.

The hardware side of the application, including the APU interface and Mandelbrot fractal image
generator core, is now ready for use. In the next tutorial section you will set up the software side of
the application.

See Also

Adding the Software Application Files

1.3.9 Adding the Software Application Files

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 9

The hardware configuration, including all required peripheral settings and connections, is now
complete. The next step is to add the Mandelbrot sample application.

http://www.xilinx.com/support/answers/30859.htm

Quick Start Tutorials 136

© 2009 ... Your company

Create Mandelbrot Software Application

Select the Applications tab of the project, double-click the Add Software Application Project to show a
dialogue. Type in the Project Name as "mand" and click OK as shown below:

Adding the Mandelbrot Application Source Files

To add source C files to the project, open the Add Existing Files Dialogue from the Sources category
by using right mouse button as shown below:

Title of this help project137

© 2009 ... Your company

Select all files from the code subdirectory of your project as shown below:

Next, add header files to your project similar to above as shown below:

Quick Start Tutorials 138

© 2009 ... Your company

Setting Compiler Options

Now you will need to set a few compiler options for the project. To set the compiler options, double-
click on the Compiler Options category in the Software Projects window:

Title of this help project139

© 2009 ... Your company

In the Environment tab, select Use Default Linker Script, set the Program Start Address as
0x02000000 to avoid overlap with the TFT image memory location. Then enter Stack Size and Heap
Size values of 0x4000 and 0x8000, respectively:

Click OK to close the Compiler Options dialog.

The software application is now ready to compile for the PowerPC processor.

See Also

Building and Downloading the Application

1.3.10 Building and Downloading the Application

Mandelbrot Extended Tutorial for Virtex-4 FX, Step 10

The Mandelbrot application is now ready to build, download and execute on the target ML403 board.

First, compile the software application to create a PowerPC executable. Do this by selecting Build
Project from the Project: mand entry as shown below:

Quick Start Tutorials 140

© 2009 ... Your company

The size of the generated executable is shown below. It will be included in the FPGA bitstream.

Next, mark the ppc405_bootloop to initialize BRAMs by using the right mouse button. This will put a
loop in the starting address of the on-chip memory.

Title of this help project141

© 2009 ... Your company

Now, it is time to download the bitstream to the ML403 board. Make sure the JTAG cable is properly
connected and that the ML403 board is powered on. Also make sure the VGA display is connected
and powered on.

Select Download Bitstream as shown below:

Next, launch Xilinx Microprocessor Debugger (XMD) from the menu as shown below:

If this is the first time you have launched XMD for this EDK project, a couple of dialogue windows will
pop up. Just click OK, then the XMD terminal will appear.

Download the Mandelbrot ELF file to the DDR_SDRAM, and then start running the program as
follows:

Quick Start Tutorials 142

© 2009 ... Your company

After downloading has completed, the application will start running, resulting in a display similar to the
following:

Congratulations! You have completed this advanced tutorial.

Title of this help project143

© 2009 ... Your company

See Also

Quick Start Tutorials

Endnotes 2... (after index)

144

© 2009 ... Your company

Back Cover

	Quick Start Tutorials
	Tutorial 1: Complex FIR Filter on Virtex-5 Platform (EDK 10.1)
	Loading the Complex FIR Filter Application
	Understanding the Complex FIR Filter Application
	Compiling the Application for Simulation
	Building the Application for the Target Platform
	Exporting Files from CoDeveloper
	Creating a Platform Using Xilinx Tools
	Configuring the New Platform
	Importing the Generated Hardware
	Generating the FPGA Bitmap
	Importing the Application Software
	Running the Application

	Tutorial 2: Image Filter DMA Using Shared Memory on the Virtex-4 Platform (EDK 10.1)
	Loading the Sample Application
	Understanding the Image Filter DMA Application
	Compiling the Application for Simulation
	Building the Application for Hardware
	Exporting the Hardware and Software Files
	Creating the ML403 Test Platform
	Adding the ImageFilterDMA Hardware
	Adding the Software Application Files
	Building and Downloading the Application

	Tutorial 3: Fractal Image Generation using APU on the Virtex-4 Platform (EDK 10.1)
	Loading the Sample Application
	Understanding the Mandelbrot Application
	Compiling the Application for Simulation
	Building the Application for Hardware
	Exporting the Hardware and Software Files
	Copying the TFT Display Core Files
	Creating the ML403 Test Platform
	Adding the Mandelbrot Hardware
	Adding the Software Application Files
	Building and Downloading the Application

