

Platform Support Package Details

The Impulse C Platform Support Package (PSP) “Xilinx Open Source Linux Virtex-5
APU” has been adapted from the Virtex-5 APU PSP. The HDL hardware side is
unchanged from the original, standalone PSP; only the software side is modified in
support of embedded Linux. An alternate “Xilinx Open Source Linux Virtex-4 APU”
PSP is also ready to use with Virtex-4 FPGA devices.

This tutorial assumes that you have some knowledge of Impulse C, and of the Xilinx
Virtex-5 FX devices. Experience with creating standalone Impulse C applications (with
no embedded Linux) on the Xilinx ML507 or equivalent board is also helpful.

In the standalone mode APU PSP, co_streams are implemented using Xilinx APU
specific instructions “stwfcmx” and “lwfcmx”. When running Linux over PowerPC, we
replace these instructions with Altivec extended instructions “stvewx” and “lvewx”.

In co_stream.c, the functions “co_stream_read”, “co_stream_write” and
“co_stream_close” are supported. The primitives “HW_STREAM_READ”,
“HW_STREAM_WRITE” and “HW_STREAM_CLOSE” are supported as well.

When the PowerPC CPU runs applications in standalone mode, the application
software can have privileged instructions, such as “mtmsr” to enable the APU
on the MSR register. When an application runs on Linux user space, however,
the “mtmsr” instruction is not allowed. Here, then, we must modify some
kernel code to allow the APU to work.

In the directory “linux-2.6- xlnx/arch/powerpc/include/asm”, you must
modify header files “reg.h” and “reg_booke.h” as follows:

----- reg.h -------

Application Note

Using Impulse C With Xilinx® Open Source Linux
on a Virtex™-5 PowerPC

Platform Support Package (PSP) and Tutorial

Mei Xu

Impulse Accelerated Technologies, Inc.

Copyright© 2009 Impulse Accelerated Technologies, Inc.

#ifdef CONFIG_PPC64
.......
#else /* 32-bit */
/* Default MSR for kernel mode. */
#ifndef MSR_KERNEL /* reg_booke.h also defines this */
#define MSR_KERNEL (MSR_ME|MSR_RI|MSR_IR|MSR_DR|MSR_VEC)
#endif

----- reg_booke.h ---------

/* Default MSR for kernel mode. */
#if defined (CONFIG_40x)
#define MSR_KERNEL
(MSR_ME|MSR_RI|MSR_IR|MSR_DR|MSR_CE|MSR_VEC)
#elif defined(CONFIG_BOOKE)
#define MSR_KERNEL (MSR_ME|MSR_RI|MSR_CE|MSR_VEC)
#endif

The basic idea is to add the “MSR_VEC” bit to “MSR_KERNEL” for APU
activation.

In the PSP, “export.tcl” has been modified so that a new directory “user_app”
is constructed, and application code is copied into it. The EDK/code directory
is no longer included, since the source files won’t be needed in EDK. The
necessary Impulse library source files are being copied to the sub-directory
“libImpulse” with a Makefile. “genMakefile.tcl” is added to the PSP, so that a
Makefile for the software application is generated and copied into the
“user_app” folder.

You need to go to the “user_app/libImpulse” directory to build the Impulse
library, and then go up to the “user_app” directory to build your software
application. A Makefile is already generated for you, so just a “make”
command will do the job.

In “co.h”, LINUX is defined, so that in user code, the compiler knows when to
select the Linux related code.

Software Application Development Notes

Currently, the XOSL APU PSP only supports co_streams for
hardware/software communications. The HW_STREAM_READ,
HW_STREAM_WRITE and HW_STREAM_CLOSE primitives are recommended
in software-side coding for higher efficiency and thus faster execution time.

The user C code is being built using cross compiler Denx EDLK toolchain
“ppc_4xx-gcc”. If your code previously runs in standalone mode, and you
want to adapt it to run on Linux, you need to eliminate all the Xilinx-related
functions and header files, and replace them with Linux ones. Also, since
your application runs in user mode, don’t use any privilege mode asm
instructions, such as “mtmsr”.

XOSL Development Environment Setup

Building applications for Xilinx embedded Linux requires a Linux development
environment. You can either use a dedicated Linux computer for this purpose,
or use a virtual machine. For this project, I chose to download CentOS 5.2 as
my Linux OS, running it on a VMware virtual machine. Any Linux 2.6 system
will work.

“git” is needed for installing XOSL. You can install it as follows:

su -c 'rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-
3.noarch.rpm'
su -c 'yum -y install git'

You may need to install “ncurses” for using menuconfig.

yum -y install ncurses-devel

The XOSL information is available online at http://xilinx.wikidot.com/open-source-

linux.

To clone the Xilinx Linux Kernel tree run:

git clone git://git.xilinx.com/linux-2.6-xlnx.git

Also, clone the device tree bsp using git:

git clone git://git.xilinx.com/device-tree.git

Copy the device-tree to the following directory on your PC:

 [Xilinx Installation Directory]\10.1\EDK\sw\ThirdParty\bsp

The EDK runs on Windows, so we need to mount a windows share folder on
the Linux machine for sharing documents between your Linux machine and
windows PC.

mount -t cifs //[IP address of the Windows host]/[folder name] [/dir in Linux
machine] -o username=[xxx],password=[***]

You need to download a cross compiler for PowerPC, such as DENX_ELDK.
You can download ISO image ppc-2008-04-01_amcc.iso using FTP from site
ftp.sunet.se at /pub/Linux/distributions/eldk/4.2/ppc-linux-x86/iso/.

To mount ISO:

 su

 mkdir /mnt/iso
 mount myiso.iso /mnt/iso/ -t iso9660 -o ro,loop=/dev/loop0

To install:

 cd /mnt/iso

 ./install -d /home/meixu/Xlinx/DENK_ELDK ppc_4xx

To set path and environment variable:

PATH=/home/meixu/Xlinx/DENX_ELDK/usr/bin:/home/meixu/Xlinx/DENX_ELDK/bin:

$PATH --let the ELDK/usr/bin dir first to use the new binutils.

export CROSS_COMPILE=ppc_4xx-

Using CoDeveloper to Generate Hardware and Software

Copy the ComplexFIR project folder “ComplexFIR_XOSL_PPC440” to your
windows share directory. Open the project in CoDeveloper Application
Manager.

Open the Project � Options Dialogue, and choose “Xilinx Open Source Linux
Virtex-5 APU (VHDL)” as the Platform Support Package. Checking the
“Generate dual clock” will allow the Impulse hardware module to use a
different clock other than the APU clock of PowerPC.

Next, generate HDL code by clicking the “HDL” button below:

Export the generated hardware to designated directory “EDK” by clicking the
“HW” button.

Export the generated software by clicking the “SW” button.

The directory structure is shown below. The HDL code and drivers are in the
“EDK” directory. Software code is in the “user_app” directory.

In next step, we use Xilinx Platform Studio to build a PowerPC system with
the generated Impulse module.

Create a new XPS project in the “EDK” directory above. In Base System
Builder (BSB), select Xilinx ML507 as the development platform.

Select PowerPC as the processor.

Next, choose processor clock to be 400 MHz, and bus clock 100 MHz. Enable
cache, and disable the FPU.

In IO configuration, select device RS232_Uart_1 with type XPS UART 16550,
and check “Use interrupt”.

Unselect the RS232_Uart_2 and the LEDs_8Bit.

On the next page, select the IIC_EEPROM only.

Next, select the FLASH and the PCIe_Bridge devices.

Select the DDR2_SDRAM and the SysACE_CompactFlash.

Next, enlarge the memory size of XPS BRAMs to 64 KB.

Add a peripheral “xps_timer_1” to the system. Choose one timer mode, and
use interrupt.

Next, select the cache options.

On the next page, select the sample applications as you wish.

Next, click OK to accept memory settings for the sample applications.
A page of design summary appears. Click “generate” to build the system.

Here is the bus interface view of the PowerPC system you just built:

In order to use the APU feature, we need to add a Fabric Co-processor Bus to
the system.

Next, add the Impulse generated module apu_filt from the Project Local
pcores\USER.

Next, connect the FCB bus to both ppc440_0 and apu_filt_0 as shown
below:

Open the “Clock Generator” window by double-clicking the module
clock_genrator_0. Add another clock output “pcore_co_clk” of frequency
33.333333 MHz as shown below.

In the “Ports” tab, connect the reset and clock ports of fcb_v20_0.
And connect the co_clk and apu_clk ports of apu_filt_0 as shown below.

Double-click the ppc440_0 to open the dialogue below. In the APU tab, set
the APU Controller Configuration Register Value to 0b0010010000100001.

Next, go to the Addresses tab, and generate addresses for the system.

Open the Software Platform Settings Dialogue. Select “device-tree” as the OS.

In the OS and Libraries view, type “RS232_Uart_1” as the console device,
and “console=ttyS0 root=/dev/ram rw ip=off” as the bootargs.

Next, click Software � Generate Libraries and BSPs. This will create a file
“Xilinx.dts” in directory EDK\ppc440_0\libsrc\device-tree.

Rename the DTS file to virtex440-ml507.dts, and copy it to linux-2.6-
xlnx/arch/powerpc/boot/dts/

Go back to XPS, Hardware � Generate Bitstream. This will take 10 minutes
or more to finish, depending on your PC speed.

In the Applications Tab, select the ppc440_0_bootloop as the application
for initializing BRAMs.

Building the XOSL OS and File System on the Linux
Machine

Go to the XOSL main directory: linux-2.6-xlnx

make ARCH=powerpc 44x/virtex5_defconfig
make ARCH=powerpc menuconfig

Make changes to the following options:

• Kernel options � Initial kernel command string: console=ttyS0

boot=/dev/ram rw ip=off
• File systems � Ext3 journalling file system support
• Device Dirvers � Block devices � Xilinx systemACE support
• Exit and save changes.

Next, download “ramdisk.image.gz” from http://xilinx.wikidot.com/open-
source-linux. At the end of the page, click “files”, and a list of downloadable
files will show. Copy the file to your windows share folder “win_share_5”.

Switch to the user_app directory:
 win_share-5/ComplexFIR_XOSL_PPC440/user_app

User application source files and a Makefile are in the user_app folder. The
Impulse library source files and a Makefile are in the libImpulse subdirectory.
Use command “make” to build the Impulse library “libImpulse.a”, and in the
user_app directory, use command “make” to build the executable file “filt”.

For the purpose of easy operation, I create a shell script
“makeDiskComplexFIR.sh” to add the ComplexFIR software application into
the ramdisk and then build the XOSL system.

gunzip ramdisk.image.gz
mount -o loop ramdisk.image temp
rm temp/tmp/*

cp ComplexFIR_XOSL_PPC440/user_app/filt temp/tmp/
umount ramdisk.image
gzip ramdisk.image
cp ramdisk.image.gz ../linux-2.6-xlnx/arch/powerpc/boot/

cd ../linux-2.6-xlnx
make ARCH=powerpc clean
make ARCH=powerpc zImage
cp arch/powerpc/boot/simpleImage.initrd.virtex440-

ml507.elf ../win_share_5/ComplexFIR_XOSL_PPC440

This will take a few minutes to finish execution. As a result, an ELF file
“simpleImage.initrd.virtex440-ml507.elf” will be copied to the
ComplexFIR_XOSL_PPC440 project directory.

Downloading and Execution

Now, the bitstream and the ELF file are ready, and we can download them to
the FPGA, and run Linux.

• Connect the ML507 board with Xilinx USB Platform Cable via JTAG, and

also connect the RS-232 serial cable and power adaptor. Turn on the
power switch.

• Open the Tera Term application, select type “Serial”, and make sure the
settings are 9600-8-N-1.

• In Xilinx XPS, Device Configuration � Download Bitstream. This will
program the Virtex-5 FPGA via JTAG connection.

• Debug � Lauch XMD. For the first time open XMD, the XMD Debug
Options Dialogue will appear. Just click OK to accept the default settings.

• Download the generated ELF file to FPGA and let it run as shown below.

Watch the Linux boot display in the Tera Term window:

The user application executable file “filt” is located in /tmp folder in the file
system.

Execute the user application. As a result, the APU accelerated with Impulse
hardware runs 4.82 times faster than the software only version.

This is the end of the tutorial.

References

1. Xilinx Open Source Linux Wiki: Configuring, Building and
Loading Linux After 9/1/08
http://xilinx.wikidot.com/configuring-building-and-loading-linux-
after-9-1-08

2. PowerPC Processor Reference Guide
http://www.xilinx.com/support/documentation/user_guides/ug0
11.pdf

3. PowerPC 405 Processor Block Reference Guide
http://www.xilinx.com/support/documentation/user_guides/ug0
18.pdf

4. Embedded Processor Block in Virtex-5 FPGAs Reference Guide
http://www.xilinx.com/support/documentation/user_guides/ug2
00.pdf

5. Accelerated System Performance with the APU Controller and
XtremeDSP Slices
http://www.xilinx.com/support/documentation/application_note
s/xapp717.pdf

6. GNU Compiler Collection (GCC): Assembler Instructions with C
Expression Operands http://gcc.gnu.org/onlinedocs/gcc-
3.4.3/gcc/Extended-Asm.html

7. AltiVec Instruction Cross-Reference
http://developer.apple.com/hardwaredrivers/ve/instruction_cros
sref.html

8. Impulse Support Forum: APU and Linux http://impulse-
support.com/forums/index.php?showtopic=143&st=0&p=671

