
A C-to-FPGA Solution for Accelerating
Tomographic Reconstruction

Nikhil Subramanian

A thesis
submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

University of Washington

2009

Program Authorized to Offer Degree:
Department of Electrical Engineering

University of Washington

Abstract

A C-to-FPGA Solution for Accelerating Tomographic Reconstruction

Nikhil Subramanian

Chair of the Supervisory Committee:
Professor Scott A. Hauck

Electrical Engineering

Computed Tomography (CT) image reconstruction techniques represent a class

of algorithms that are ideally suited for co-processor acceleration. The Filtered

Backprojection (FBP) algorithm is one such popular CT reconstruction method

that is computationally intensive but amenable to extensive parallel execution.

We develop an FPGA accelerator for the critical backprojection step in FBP using

a C-to-FPGA tool flow called Impulse C. We document the strategies that work

well with Impulse C, and show orders of magnitude speedup over a software

implementation of backprojection. We contrast the ease of use and performance

of Impulse C against traditional HDL design, and demonstrate that Impulse C can

achieve nearly the same performance as hand coded HDL while significantly

reducing the design effort.

i

TABLE OF CONTENTS

List of Figures ... iii

List of Tables ... iv

Chapter 1 Introduction .. 1

Chapter 2 Background ... 3

2.1 Tomographic Reconstruction... 3

2.1.1 CT Systems... 3

2.1.2 Filtered Backprojection .. 4

2.1.3 Backprojection ... 8

2.2 Coprocessor Accelerators ..11

2.2.1 Coprocessor Acceleration of Backprojection ..12

2.2.2 Field Programmable Gate Arrays ...14

2.2.3 FPGA Accelerator Platforms ..16

2.3 C-to-FPGA Design Tools ...17

2.3.1 Impulse C ...18

Chapter 3 Design Considerations ..23

3.1 From C to Impulse C ..23

3.1.1 Filtered Backprojection Software Benchmark ...23

3.1.2 Porting to Impulse C ...26

3.2 Refactoring Code for Hardware Generation ..29

3.2.1 Index Generation through Offsets ...32

3.2.2 Fixed Point Representation ..35

3.2.3 Pipelined Data Path ...38

3.3 Design Architecture ...43

ii

3.3.1 Parallel Design Architecture ..43

3.3.1.1 Loop Unrolling...44

3.3.1.2 Memory Utilization ...46

3.3.1.3 DSP Utilization ...47

3.3.2 System Level View ...48

Chapter 4 Results ...50

4.1 Performance and Resource Utilization ..51

4.2 Impulse C Vs Software ...54

4.3 Impulse C Vs HDL ..56

Chapter 5 Conclusions ...61

5.1 Writing Efficient Impulse C ..61

5.2 The Strengths and Weaknesses of Impulse C ...62

5.3 Future Directions ...63

5.4 Conclusion ..64

References ..65

iii

LIST OF FIGURES

Figure 1.1 Simplified Tomography Flow ... 1

Figure 2.1 CT System... 3

Figure 2.2 Reconstruction ... 5

Figure 2.3 Backprojection.. 5

Figure 2.4 Backprojection with and without filtering .. 6

Figure 2.5 Flow of operations in software implementation of FBP 7

Figure 2.6 Image Pixels contributing to detector values .. 8

Figure 2.7 Backprojecting along rays ... 9

Figure 2.8 XD100 Development System...17

Figure 2.9 CoDeveloper Application Manager Screenshot ..19

Figure 2.10 Design flow to target XD1000 with Impulse C ...22

Figure 3.1: Data rates to Shared Memory ...27

Figure 3.2 Configuration Function code snippet ...28

Figure 3.3 Backprojection code from SW benchmark ...29

Figure 3.4 Loop Reordering..33

Figure 3.5 Offset-based index generation ...33

Figure 3.6 Detector offsets when walking through image..34

Figure 3.7 Detectors in the image space ..38

Figure 3.8 Pipelining the backprojection code..40

Figure 3.9 Impulse C Stage Master Explorer ...41

Figure 3.10 Pipelined and Parallel Data Path ...45

Figure 3.11 System Architecture ...48

Figure 4.1 System timing for CPU accumulation ...51

Figure 4.2 System timing for FPGA accumulation ..52

iv

LIST OF TABLES

Table 2.1 Custom hardware implementations of FBP ...14

Table 2.2 Altera Stratix series ...15

Table 2.3 CoDeveloper C-to-FPGA tools...18

Table 2.4 Impulse C communication objects ...21

Table 3.1 FBP source code features...24

Table 3.2 Software source code execution time ..24

Table 3.3: Fixed point format employed..36

Table 3.4 Resources on Stratix II EP2S180 FPGA...45

Table 4.1 Break-up of execution time for CPU summation design52

Table 4.2 Break-up of execution time for FPGA accumulation version53

Table 4.3 Resource utilization for CPU accumulation design..54

Table 4.4 Resource utilization for FPGA accumulation design54

Table 4.5 Impulse C Vs Software execution time..55

Table 4.6 Impulse C Vs Software speedup ..55

Table 4.7 Impulse C Vs HDL execution time ..56

Table 4.8 Impulse C Vs HDL speedup..57

Table 4.9 Breakup of execution time...57

Table 4.10 Estimated impact of optimizing the compiler and PSP..............................58

Table 4.11 Comparison of resource utilization ..59

Table 4.12 Comparison of design time ...60

Table 4.13 Impulse C versus HDL lines of code ..60

v

ACKNOWLEDGEMENTS

I would like to thank the Washington Technology Center (Seattle, WA) and

Impulse Accelerated Technologies (Kirkland, WA), for the funding that made this

research possible. Many thanks to Adam Alessio for providing expert guidance

and the FBP software benchmarks; and Jimmy Xu for being a patient co-worker

and creating the HDL version of the design. I would like to express my deepest

and most sincere gratitude to my advisor, Professor Scott Hauck, for being a

source of tremendous inspiration. Finally, I would like to thank my family for

their constant support and encouragement; without them, this thesis could not

have been completed

1

1. Introduction

Computed Tomography (CT) is a medical imaging technique used to create cross-

sectional images from x-ray transmission data acquired by a scanner. In

tomographic systems, the primary computational demand after data capture by

the scanner is the backprojection of the acquired data to reconstruct the internal

structure of the scanned object (Figure 1.1). Backprojection can be viewed as the

mapping of raw data into the image space and has a complexity of O(n3) when

generating 2D cross-sections and O(n4) for full 3D reconstruction. In a typical CT

system, the data has ~106 entries per cross-section and the process of tracing

each datum through the image space is demanding. As a result, hardware

acceleration of this process has been the focus of numerous studies.

Figure 1.1 Simplified Tomography flow. Scanning (left) produces a set of aggregate data on
probe lines. Through backprojection (center) multiple samples are brought together to
reconstruct the internal structure of the patient (right).

Previous work on backprojection [3-10] has shown that hardware accelerators

can achieve much higher performance than microprocessor-based systems. Field

Programmable Gate Arrays (FPGAs) are often used to build such accelerators.

The traditional way to design an FPGA-based accelerator is to describe the

hardware performing the computation using a schematic or a hardware

description language (HDL). For some years now there has been interest in C-to-

FPGA tool flows that allow users to describe the computation in C and

automatically generate the hardware description. This makes the process of

creating FPGA designs easier and allows for wider adoption of FPGAs, even by

those with little or no hardware engineering expertise.

2

The general perception has been that while such high level tool flows are simple

to use, they do not provide the same level of performance as hand coded HDL. We

investigate this notion by profiling a C-to-FPGA tool flow called Impulse C

(Impulse Accelerated Technologies, Kirkland, WA, USA). Our software benchmark

was an implementation of the filtered backprojection (FBP) algorithm running on

a processor. We partitioned the design such that the compute intensive

backprojection step was run on an FPGA while the user interface and some

filtering operations were performed on the host processor. The XD1000

(XtremeData Inc., Schaumburg, IL, USA) development system was chosen for the

implementation because it offers a tightly coupled CPU-FPGA platform. Details of

the Impulse C tool flow and the XD1000 development system can be found in

Chapter 2.

This thesis provides a case study on how a C-to-FPGA tool flow can be used to

design an efficient FPGA-based accelerator by documenting some of the

strategies that work well and some common pitfalls to avoid. It is organized as

follows:

 Chapter 2: Background introduces the filtered backprojection algorithm,

FPGA-based accelerators and the Impulse C tool flow.

 Chapter 3: Design Considerations discusses issues related to porting a

design to Impulse C and also describes the implemented FPGA design.

 Chapter 4: Results presents the performance of the various versions of

the design in comparison to software and hand coded HDL.

 Chapter 5: Conclusions is a summary of the lessons learned and a

discussion of possible future research.

3

2. Background

2.1. Tomographic Reconstruction

Tomographic reconstruction is the process of generating cross-sections of an

object from a series of measurements acquired from many different directions. In

Computed Tomography (CT or “CAT” scans), the measurements are x-ray

attenuation data. We now discuss CT systems and the reconstruction process.

2.1.1. CT Systems

A CT system comprises of a scanner that is housed in a radiation safe scanning

room and an adjoining computer suite to generate, view and print images. The

scanner has a movable platform and a ring shaped gantry that carries x-ray

sources on one side and detectors on the other side. The gantry rotates about an

axis perpendicular to the platform, enabling measurements at various angles. The

sources and detectors in the gantry can come in two configurations, leading to

distinct beam geometries. The simpler of these is the parallel beam geometry,

which arises from a linear array of sources and detectors. Fan beam geometry is

the result of a single source and a linear array of detectors.

Figure 2.1 CT System. Scanner [14] with movable patient platform and ring shaped rotating
gantry. Parallel Beam (center) and Fan Beam (right) geometry.

4

Patients lie down on the platform, which is moved into the gantry to position the

scan area in the path of the x-rays. The sources then generate and direct x-rays

through the patient. Different parts of the human anatomy, such as bones and soft

tissue, attenuate the incident x-rays by varying amounts. The detectors record

the received intensity. The set of detector intensity readings for any angle is

called a projection. The gantry rotates and collects several projections at

equidistant angles over a 180-360 degree span. From this set of projections a

single image slice can be generated. In a typical CT exam, multiple closely spaced

image slices are generated to image an entire organ.

First generation CT scanners consisted of a single source and single detector.

Both the source and detector needed to translate to collect a single projection;

then the source/detector mechanism rotated to collect more projections. In

second generation CT scanners, multiple detectors were included to reduce the

number of translations and rotations required. Third generation CT scanners

have a large array of detectors opposite a single source on a fixed rotating gantry;

these scanners do not require a translating step leading to dramatically reduced

scan times. Fourth generation CT systems have a fixed detector array that

completely surrounds the patient; only the CT tube rotates. The increased

sophistication of modern scanners naturally increases the complexity of the

reconstruction process; however, the core computation is still conversion of the

detector data into an image. One way to solve the image reconstruction problem

is with the popular filtered backprojection (FBP) algorithm.

2.1.2. Filtered Backprojection (FBP)

The set of all projections acquired by a scanner is a two dimensional matrix of

data. This data represents a 2D spatial function termed a sinogram, because each

point in the image has contributions from several points that lie on a sine wave in

the 2D spatial function. The problem of reconstruction can be viewed as the

problem of transforming the sinogram into the image space (X,Y). A plot of the

5

sinogram data on a grayscale is shown in figure 2.2 (left). The simplest way one

can imagine solving this is through backprojection which is also known as the

summation method or linear superposition method.

Figure 2.2 Reconstruction [17]. Transformation from sinogram (left) to image space (right)

Backprojection simply reverses the measurement process and can be thought of

as smearing the projections back across the reconstructed image. Figure 2.3

below provides some intuition for how this works. In the simplest case,

projections are taken in only two orientations. The reconstruction is obtained by

wiping each projection back across the image at the angle at which it was

acquired. The additive effect of overlapping regions makes those parts of the

image brighter.

Figure 2.3 Backprojection [18]. In the simple case an image can be generated from just two
projections (top). Images generated from 4, 8, 16 and 32 projections (bottom)

6

As seen in figure 2.3, more projections give a better reconstruction. However,

even for a large number of projections, there is blurring around the object. The

streaking and star-like artifacts in the image arise because backprojection is not

the exact inverse operation of the image acquisition process. To eliminate the low

frequency blur, the acquired data (sinogram) is high-pass filtered before

backprojection. This is Filtered Backprojection (FBP). The Ramp Filter is often

used in FBP because it provides ideal reconstruction in the absence of noise [11].

If noise is present, the Ramp Filter leads can lead to excessively noisy images

because it accentuates the high frequency components in the data. Since

measured data can contain some noise, the Ramp Filter is often apodized to

reduce high frequency contributions. Smooth apodization filters are generally

better when viewing soft tissue and sharper filters aid high resolution imaging.

Figure 2.4 shows the difference in image quality when backprojection is

performed with and without filtering.

Figure 2.4 Backprojection with and without filtering [17]

7

The flowchart (figure 2.5) below shows the sequence of operations involved in a

simple software implementation of FBP. There is strong motivation to accelerate

the backprojection stage that has a computational complexity of O(n3).

Figure 2.5 Flow of operations in software implementation of FBP

The transformation of generating a sinogram by taking line integrals through the

image is known as the x-ray transform which in two dimensions is the same as

the Radon transform. FBP is one analytical reconstruction method to implement

the inverse Radon transform. Reconstruction can also be performed through

other analytic image reconstruction techniques such as Direct Fourier Methods

or iterative reconstruction techniques such as Maximum-Likelihood Expectation-

Minimization (ML-EM). For a formal mathematical treatment of the analytical and

iterative image reconstruction concepts, the reader is directed to this excellent

reference [1].

8

2.1.3. Backprojection

As mentioned earlier, different parts of the scanned object attenuate the incident

x-rays by varying amounts. Thus, the scanning process can be modeled as

detectors acquiring line integrals of the attenuation along the scanned object.

Figure 2.6 shows this model of data acquisition in the image space. The value of

an image pixel is proportional to the attenuation at that point. The highlighted

pixels along the ray contribute to the measured value, which we will call the “ray-

value”. These values are aggregated as entries of the sinogram.

Figure 2.6 Image Pixels contributing to detector values

When reconstructing, we start with an image initialized to 0. Corresponding to

each entry of the sinogram (i.e. a ray-value) we identify all the pixels that lie on

the ray. The values of those image pixels are then incremented by the

corresponding ray-value (figure 2.7). When this process is performed for all

entries in the sinogram, we have reconstructed the image. This is ray-by-ray

reconstruction. Another way to approach this is to reconstruct one pixel at a time.

In this scheme, given a pixel and an angle of measurement, the ray-value that

9

contributes to the pixel needs to be identified. If we go through all angles,

identifying all rays that the pixel was on, and add the ray-values together, that

pixel is fully reconstructed. We can then go ahead and reconstruct all the other

pixels in the same way. This is pixel-by-pixel reconstruction.

Figure 2.7 Backprojecting along rays

The ray-by-ray and pixel-by-pixel methods produce identical results, and

primarily differ in their implications for resources required for implementation.

We will carry forward the discussion with the pixel-by-pixel method, realizing

that similar concepts apply to the ray-by-ray approach.

When we reconstruct a pixel at a time, the operation that was informally

introduced as “smearing” projections back across the image actually involves

summing the detector values that contributes to the pixel at each angle. Recall

that the sinogram is a 2D matrix with a row of detector values for each angle.

Hence, we need the index of the detector value that contributes to the pixel being

10

reconstructed. For a given pixel (x,y) and angle theta, the index of the sinogram

entry that contributes to that pixel value can be identified using the formula

T = x*cos(theta) + y*sin(theta)

The value of T derived from the computation above does not always result in a

unique integer index corresponding to a single ray-value. For example, if T=3.7,

the value at index 3 and at index 4 contribute to the image pixel. The fractional

part of T (.7 in this case), is used to perform interpolation between the two ray

values at index 3 and 4.

The computations involved in reconstructing a pixel are: simple trigonometry to

find detector index for each angle, interpolation and accumulation. These

procedures by themselves are simple. The computational complexity of FBP does

not stem from the complexity of the individual operations, but rather from the

sheer number of them. CT scanners acquire between 512 and 1024 projections

(with ~1024 entries each) per slice, and so reconstructing a pixel involves

performing the computations 512 – 1024 times. Typically 512x512 images are

reconstructed, and thus during backprojection each pixel in a 512 by 512 matrix

goes through 512-1024 of the simple computations mentioned above.

There is further motivation to focus on the acceleration of backprojection.

Filtered backprojection produces the correct reconstructed image from noise-

free, continuous data. However, the acquired data in tomographic systems are

subject to various random phenomenon and irregularities which FBP does not

account for. In order to employ a “closer to real” model of the acquisition process,

iterative techniques are employed [15]. From a computation standpoint, these

techniques involve repeated transformations between the image space and the

projection space in contrast to FBP which makes just one transform of the

projection data into the image space (with associated filtering). As a result,

depending on the number of iterations used, iterative techniques can be orders of

11

magnitude more computationally demanding than FBP. In FBP, backprojection

accounts for 70-80% of the total execution time. In iterative techniques,

backprojection and forward projection can account for as much as 70% to 90% of

the execution. As a result hardware acceleration of the backprojection and the

forward projection step has been the focus of numerous studies [3-10].

2.2. Coprocessor Accelerators

Frequently occurring or complex computations can overwhelm the primary

microprocessor (host or CPU) in a computer system. While the host processor

performs useful functions such as the user interface and interfacing with

peripherals, a coprocessor is better suited to undertake heavy workloads. The

most common coprocessor is the Graphics Processing Unit (GPU), also known as

a Graphics Card or Graphics Accelerator. GPUs are specially designed chips used

to accelerate 3D graphics rendering and texture mapping. With the proliferation

of high definition computer displays and rich 3D content, their utility is justified

in most modern computing scenarios.

With increasing demand for higher computational performance and increased

power efficiency, there are many new and promising coprocessor technologies.

The Cell Broadband Engine (CBE) (IBM Corporation, Armonk, NY, USA), is a novel

general purpose architecture optimized for distributed computing and is suitable

for performing data parallel operations [5]. The Ambric (Nethra Imaging Inc.,

Santa Clara, CA, USA) is a Massively Parallel Processor Array (MPPA) with 336

processing cores that process data in parallel. It is a streaming architecture with

an asynchronous array of processors and memories. These coprocessors can

accelerate a wide variety of applications.

For custom or “niche market” computations that require acceleration, an off-the-

shelf coprocessor might not provide adequate performance or have the desired

power efficiency. For such applications, there are two choices. The first is to

12

design a full custom Application Specific Integrated Circuit (ASIC), which is a

piece of custom silicon that can perform the computation. For any given

computational task, a well designed ASIC fabricated in the current process

technology will provide the best performance. However, this performance comes

at a very high cost that can, usually, only be offset by large scale mass production

of the design. Since the economic model of a “niche market” computation might

not lend itself to mass production, people turn to another choice - Field

Programmable Gate Arrays (FPGAs).

FPGAs are prefabricated Integrated Circuits (ICs) that can be programmed and

reprogrammed to implement arbitrary logic. The logic circuit to be implemented

is usually described using a Hardware Description Language (HDL), which is

mapped to the resources on the FPGA by a compiler. Modern FPGAs have millions

of gates of logic capacity, millions of memory bits and may even contain one or

more embedded microprocessors. Although FPGA performance generally does

not rival that of an ASIC, they can provide much higher performance than a

standard processor for complex computing tasks. The advantage of FPGAs is that

they do not have the prohibitively high costs associated with creating and

fabricating ASICs. Hence FPGAs are often used to implement custom coprocessor

accelerators.

2.2.1. Coprocessor Acceleration of Backprojection

One of the obvious observations about backprojection is that the reconstruction

of any one pixel is completely independent of any other. Thus, multiple pixels can

be reconstructed in parallel on hardware that supports parallel processing. This

is pixel parallelism. The other option is to reconstruct a single pixel from multiple

projections in parallel. This is projection parallelism. An n-way parallel system

(pixel or projection parallelism) is n times faster than a system that processes

one pixel or one projection at a time. However, there is a significant difference in

13

the required memory bandwidth. If n pixels are reconstructed in parallel, pixel

parallelism requires n times the memory bandwidth required for the

reconstruction of a single pixel, whereas projection parallelism does not require

higher bandwidth than a non-parallel implementation [3].

On an FPGA, projection parallelism can be easily exploited. By pipelining the

trigonometry, interpolation and summing operations we can further increase the

number of operations running in parallel. An FPGA implementation of a 16-way

projection parallel implementation with a 7 stage compute pipeline was

demonstrated by Leeser et al. [3]. The implementation was on an Annapolis

Micro Systems Firebird board comprising one Xilinx Virtex2000E FPGA chip and

36 Mbytes of on board SRAM. They could process a 512x512 image from 1024

projections in 250ms, which represented over 100x speedup compared to their

software implementation running on a 1GHz Pentium.

GPUs have been employed to accelerate medical imaging reconstruction [7-10].

One of the main advantages of GPU as a co-processor is that they are relatively

ubiquitous in computer systems. Xue et al. [7] demonstrated that backprojecting

a 256x256 image from 165 equiangular projections having 512 detectors was

21x faster if implemented using 32 bit fixed point on an Nvidia GPU when

compared to floating point on a CPU. Further, a 16 bit fixed point implementation

on the same GPU was 44x faster than the CPU.

Table 2.1, adapted from Kachlerieβ et al. [5] below, shows the performance of the

CBE in comparison with other custom hardware implementations of FBP The

numbers in the table are scaled for the reconstruction of 512x512 images from

512 projections with 1024 detector channels and for advances in process

technology. The table also shows the bit-width of the data path employed with i

representing integer and f representing floating point. Agi et al. [4] demonstrated

the first ASIC to implement backprojection. The ASIC performance is superior to

14

that of other custom hardware platforms for reasons described in the previous

section. The custom hardware accelerators consistently outperform the software

benchmarks in all the studies.

Table 2.1 Custom hardware implementations of FBP [5]. Time taken to reconstruct
512x512 images from 512 projections; each having 1024 detector channels.

Group Type Hardware Time

Leeser et al. [3] i09 CPU 4.66 s

i09 FPGA (Virtex -2) 125 ms

Agi et al. [4] i12 ASIC (1um) .7 ms

Kachelrieß et al.[5] f32 CPU (reference) 5.2 s

Cell 7.9 ms

Ambric [6] i16 MPPA 54 ms

Xui et al. [7] f32 CPU 7.13 s

i32 FPGA (Altera) 273 ms

i32 GPU (Nvidia GF 7800) 295 ms

2.2.2. Field Programmable Gate Arrays

FPGAs come in various capacities, ranging from a few thousand gates of logic

capacity, to several million. A designer makes the decision on which chip to use

based on the requirements of the design. In FPGAs, speedup is not achieved by

operating the design at very high clock frequencies, but rather by exploiting the

parallelism in the design. Many signal processing and scientific computations

have parallelism profiles that make them good targets for parallel computation.

FPGA resources often include distributed memories called Block RAMs, logic

cells, registers, and hard wired digital signal processing (DSP) blocks. Each

vendor uses different terminology to refer to these resources. This thesis uses the

Altera (Altera Corporation, San Jose, CA, USA) names for FPGA resources. Other

15

FPGA vendors generally have comparable functionality in their chips. The Stratix

series is Altera’s range of high-end chips, and is frequently used in high

performance computations.

Table 2.2 Altera Stratix series [19]

Device Family Stratix Stratix II Stratix III Stratix IV

Year of Introduction 2002 2004 2006 2008

Process Technology 130 nm 90 nm 65 nm 40 nm

Equivalent Logic
Elements

10,570 to
79,040

15,600 to
179,400

47,500 to
338,000

105,600 to
681,100

Adaptive Logic
Modules

N/A 6,240 to 71,760 19,000 to
135,200

42,240 to
272,440

Total RAM (Kbits) 899 to 7,253 410 to 9,163
1,836 to
16,272

8,244 to
22,977

DSP Blocks 6 to 22 12 to 96 27 to 112 48 to 170

The basic building block of logic in an FPGA is a “slice”, which contains look up

tables (LUTs) to implement combinational logic, registers to implement

sequential logic, and in many cases a carry chain to implement adders. Altera

calls this an Adaptive Logic Module (ALM) in its Stratix series of FPGAs. The term

adaptive comes from the fact that the ALM can be put in different modes that

gives it flexibility to implement arithmetic between the LUTs in the ALM or

certain many-input combinational functions with input sharing.

The Block RAMs in FPGAs come in various capacities. Altera calls its largest on-

chip memory M-RAM, each of which has 576 Kbits. There are a small number of

these distributed around the chip. M4K RAM blocks, each of which has 4.5 Kbits,

are much more widespread. There are also several instances of very small

memories that are useful as local scratch space or to store constants. M512 RAM

blocks are an example of these, and they have 576 bits each. Table 2.2 shows the

total memory bits available in each Stratix chip.

16

The memories can be configured as Single Port, Simple Dual Port, or True Dual

Port. A Single Port memory can be read from or written to once every clock cycle.

A Simple Dual Port memory can be written to and read from in the same cycle. In

addition to this functionality, a True Dual Port memory can have 2 values written

to it or read from it in a single cycle. The M512 memory blocks in the Altera chips

can operate only in Single Port or Simple Dual Port mode. The M4ks and M-RAMs

support all three modes.

The third important resource available in most FPGAs today is hard-wired DSP

blocks, which are custom logic that implements DSP arithmetic more efficiently

than ALM-based implementations. The Stratix-II DSP block can be configured

either as one 36x36 multiplier, four 18x18 multipliers or eight 9x9 multipliers.

They can also be configured to perform Multiply-Accumulate (MAC) operations,

which are frequently encountered in DSP applications.

2.2.3. FPGA Accelerator Platforms

The term "platform" is somewhat arbitrary, but generally refers to a known,

previously verified hardware configuration that may be used as the basis for of

one or more specific applications [12]. FPGA Accelerator Platforms have an FPGA

coprocessor connected to a host through a high speed communication protocol.

Traditionally, the utility of FPGA coprocessors was limited by the fact that the

relatively slow links between the host and FPGA eliminated the gains achieved

through acceleration. Today multi-gigabit, low latency communication links have

made it attractive to offload data parallel applications. The Accelium platform

made by DRC Computer and the XD development systems by XtremeData are

good examples of devices with high capacity CPU-FPGA links. We chose the

XD1000 development system for our implementation.

The XD1000 system has a dual Opteron® motherboard populated with one AMD

Opteron processor and one XD1000 FPGA coprocessor module [13]. The

17

coprocessor module has an Altera Stratix II FPGA and a 4 Mbytes of SRAM. The

coprocessor communicates to the CPU on the HyperTransport bus. Both the CPU

and the coprocessor also have access to additional DDR3 RAM. Figure 2.8 shows

the system architecture annotated with theoretical maximum data rates.

Figure 2.8 XD100 Development System [13]

2.3. C-to-FPGA Design Tools

FPGA designs are usually created by drawing a schematic or writing a hardware

description in Verilog or VHDL. Current C-to-FPGA design tools allow users to

create designs using C language semantics with added library functions to invoke

specific hardware operations. The compiler generates HDL design files from the C

code. Special compiler directives in the C code can be used to modify the outcome

of the hardware generation process. Once the HDL is available, normal FPGA tool

flows supplied by the FPGA vendor can be used to synthesize and map the design

to the target chip.

18

The DK design suite by Agility Design Solutions Inc (Palo Alto, CA, USA) [24], the

Mitrion-C compiler by Mitrionics, Inc (Lund, Sweden) [25], Catapult C by Mentor

Graphics (Wilsonville, Oregon, USA) [26], and Impulse C by Impulse Accelerated

Technologies (Kirkland, WA, USA) [27] are examples of commercially available C-

to FPGA solutions. Our goal was to benchmark the performance of Impulse C

against software and hand-coded HDL, and to provide a case study on how a C-to-

FPGA flow might be applied to accelerate CT reconstruction.

2.3.1. Impulse C

The Impulse C tools include the CoDeveloper C-to-FPGA tools and the

CoDeveloper Platform Support Packages (PSPs). Table 2.3 gives a summary of the

C-to-FPGA tools. PSPs add platform-specific capabilities to the Impulse

CoDeveloper programming tools. With the PSP, users can partition the

application between the host and coprocessors, make use of other on board

resources, and automatically generate the required interfaces. The interfaces are

implemented as a wrapper function around the user logic. We used the Impulse C

tools (version 3.20.b.6) with the XtremData XD1000 PSP (version 3.00.a).

Table 2.3 CoDeveloper C-to-FPGA tools

Tool Name Function

CoDeveloper Application Manager Project Management and Design Entry.

CoMonitor Application Monitor Monitoring designs as they execute.

CoBuilder Hardware Generation Generate HDL from the C processes designated
as “hw”.

Stage Master Explorer Graphical tool to analyze effectiveness of
compiler in parallelizing code.

Stage Master Debugger
Graphical debugging tool to observe cycle-by-
cycle behavior of C code.

Figure 2.9 shows a screenshot of the Application manager. As seen in the figure,

each source file is designated as “sw” or “hw” to indicate if they run on the host

processor or on the FPGA. The files also have the “►” symbol just below the “sw”

19

or “hw” tag, indicating that they are targets for desktop simulation. Desktop

simulation can simulate the entire design, including the interaction between

software and hardware processes. While not cycle accurate, it is useful for

functional verification of the design.

Figure 2.9 CoDeveloper Application Manager Screenshot

The CoMonitor Application Monitor allows the designer to observe the

application as it executes by capturing messages, stream data values and other

information. Code must be instrumented with special commands to indicate

which variables and stream buffers need to be tracked by CoMonitor. Another

useful tool is the Stage Master Explorer which is a graphical tool used to analyze

how effectively the compiler was able to parallelize the C language statements.

The tool also provides pipeline graphs, showing the estimated impact of various

pipelining and compilation strategies.

CoBuilder generates synthesizable VHDL or Verilog only from processes in the

files designated as “hw”. It also generates various hardware/software interface

20

files, including a C runtime library and various hardware components that enable

hardware/software communication on the XD1000. It creates a script that can be

run to invoke Altera Quartus tools and synthesize the design. The software

generation provides a software project directory that can be built and executed

on the host Opteron processor.

The Impulse C programming model has two main types of elements: processes

and communication objects. Processes are independently executing sections of

code that interface with each other through communication objects. A software

process is designated to run on a conventional processor and is constrained only

by the limitations of the target processor. A hardware process is designated to

run on an FPGA and is typically more constrained. It must be written using a

somewhat narrowly-defined subset of C to meet the constraints of the Impulse

CoBuilder FPGA compiler.

The following constraints are imposed on FPGA hardware processes [12]:

a. No recursion. A hardware process or function may not call itself, either

directly or indirectly.

b. Limited use of function calls. A hardware process may call only the

following types of C functions:

 Impulse C API functions (named co_*)

 Hardware primitive functions (using #pragma CO PRIMITIVE)

 External HDL functions

c. Pointers must be resolvable at compile time

d. Limited support for C structs

e. No support for unions in C

Impulse C is designed for dataflow-oriented applications, but is also flexible

enough to support alternate programming models including the use of shared

memory as a communication mechanism. The programming model that is

21

selected will depend on the requirements of the application and on the

architectural constraints of the selected programmable platform target. A shared

memory model is the preferred communication method between the host and

FPGA on the XD1000 when using the Impulse C XD1000 PSP. Shared memory is

implemented in the 4 MB SRAM found on the XD1000 module, and provides

significantly better performance than streaming data between the CPU and FPGA.

In a software or hardware process, predefined Impulse C functions that perform

inter-process communication may be referenced. These functions operate on

communication objects to share data among processes. For example, read/write

operations on a shared memory can be performed by calling functions on

co_memory objects within the processes. The Impulse CoBuilder compiler with

XD1000 PSP generates synthesis compatible hardware descriptions (HDL code

compatible with Quartus synthesis tools) for the Stratix II FPGA, as well as a set of

communicating processes (in the form of C code compatible with the target cross-

compiler) to be implemented on the Opteron processor.

Impulse C defines several mechanisms for communicating among processes, as

shown in Table 2.4. Our FBP implementation on the XD1000 exclusively used

shared memories to share data between the host and FPGA. We also employed

signals for synchronization.

Table 2.4 Impulse C communication objects [12]

Communication Object Function
Streams Buffered, fixed-width data streams
Signals One-to-one synchronization with optional data
Semaphores One-to-many synchronization
Registers Un-buffered data or control lines
Shared memories Memory shared between hardware and software

Every Impulse C application has a configuration function which is used to define

the overall architecture of the application. It includes the declaration of all

22

processes and their communication. To use the communication mechanisms

shown in figure 2.4, the programmer declares objects in the configuration

function. Processes can take these objects as arguments and call functions on

them to communicate with other processes. The processes and signals need to be

statically configured at compile time (i.e. no new processes can be generated

during the execution). The configuration function used in the FBP

implementation is discussed in section 3.1.2.

The summary of the Impulse C design flow to target the XD1000 is shown in

figure 2.10.

Figure 2.10 Design flow to target XD1000 with Impulse C

23

3. Design Considerations

Acceleration on an FPGA is achieved by exploiting parallelism in the application.

Designers need to consider how the hardware resources will be used by the

computing elements and how the data flows through the system. Further, when

partitioning a design across a host and coprocessor, the designer has to define

how the host communicates and hands off the computation to the coprocessor.

There is a tradeoff between the time it takes to transfer the data required to

perform a certain computation and the acceleration that can be achieved by

doing so.

3.1. From C to Impulse C

This section describes how Impulse C was used to accelerate the FBP software by

partitioning the design between the host and FPGA on the XD1000 development

system. The backprojection was carried out on the FPGA while the filtering, file

I/O and other miscellaneous operations were performed on the CPU.

3.1.1. Filtered Backprojection Software Benchmark

The FBP software source code [20] is a C implementation of FBP compatible with

parallel beam CT systems. It handles the file IO, and supports a variety of

common filters. It uses 32-bit floating-point operations to perform computations.

A floating-point implementation has sufficient precision to be considered near-

perfect reconstruction in the absence of noise, and can be used as the standard to

verify the accuracy of the hardware implementation. Table 3.1 summarizes the

features of the FBP software source code.

24

Table 3.1 FBP source code features

FBP Software Benchmark Features
Filters Supported Ramp, Hamming, Hanning
Beam Geometry supported Parallel beam
No. Of projections supported Adapts to input Sinogram
Image size produced User defined at run time
Data-path Width 32-bit floating-point
Interpolation Type Bi-linear

We profiled the software source code by running it on the 2.2 GHz Opteron-248

processor in the XD1000 system. Data from profiling the source code (table 3.2)

shows that the backprojection is the slowest step, accounting for 70-80% of the

execution time. The filter step accounts for most of the remaining execution time

with the file I/O and miscellaneous operations account for less than 0.6%. Both

the filter and backprojection operations are good targets for FPGA acceleration

and could both be run on the FPGA, thereby utilizing the CPU for just the file I/O

and miscellaneous operations.

Table 3.2 Software source code execution time for the reconstruction of a 512x512 image

Execution Stage 512 Projections 1024 Projections
Filter Stage 0.89 s 3.56 s
Backprojection Stage 3.85 s 10.03 s
Misc and File IO 0.03 s 0.03 s
Total Execution Time 4.77 s 13.62 s

Efficient structures to implement high performance filters on FPGAs are well

understood and are often provided by FPGA vendors as reference designs.

Backprojection, on the other hand, brings up some interesting issues related to

data flow, memory bandwidth and access patterns, making it a better choice for

studying the performance of the Impulse C hardware generation process. As

mentioned in section 2.1.3, there is additional motivation to focus on the

acceleration of backprojection because of its utility in iterative reconstruction

techniques. Based on these factors, we decided to offload only the backprojection

25

to the FPGA coprocessor and have the rest of the application run on the Opteron

processor. This required us to build an FPGA version of the backprojector, which

we undertook with Impulse C. It also required the creation of Impulse C software

processes to interface the computations running on the CPU with processes

running on the FPGA.

It is worth clarifying why backprojection takes only 2.5 times longer when the

number of projections is doubled (table 3.2), even though it is an O(n3) operation.

The reason for this is that we reconstruct the same number of image pixels

(512x512) in each case. As we move from 512 to 1024 projections, we increase

the number of detector channels per projection from 512 to 1024 but this does

not affect the number of computations performed as we are reconstructing pixel-

by-pixel. In the base case (512 projections) shown in table 3.2 we perform

(512x512x512) computations; in the other we perform (512x512x1024)

operations. If we were to reconstruct a 1024x1024 image from 512 and 1024

projections, the backprojection stage would take 4 and 8 times longer

respectively.

One of the important advantages of C-to-FPGA tools is the ability to reuse existing

C codebases. The non-critical steps that are not targets for acceleration continue

to run unmodified on the host. Only the functions that are targeted for

acceleration need to be modified or rewritten to achieve an efficient

implementation. We will use the term “refactoring” to refer to the process of

modifying and reordering statements in a function in order to obtain an efficient

hardware implementation. The next section describes the process of porting the

above benchmark to the Impulse C framework. After that we discuss steps to

refactor the backprojection function.

26

3.1.2. Porting to Impulse C

The first step in porting a C application to Impulse C is to compile and run the

existing code within the Impulse C framework. This is done by importing the code

base and designating all source files as targets for desktop simulation. Desktop

simulation simply compiles the application using a standard C compiler (gcc by

default or a standard third-party compiler of the user’s choice) into a native

Windows executable that may be run directly or executed with a standard third-

party debugger. Any ANSI compliant C code base should work in this framework.

Once the existing code is in the framework, it is easy to add Impulse C processes

to accelerate the desired functions.

The next step is to define the system level architecture (using a configuration

function - see figure 3.2) and entry points for Impulse C processes. As mentioned

earlier, based on the profiling data, we decided to implement the backprojection

function as a hardware process on the FPGA. A software process is required on

the host to interface with the hardware. The natural entry point for these

processes is the function in the existing code that performs backprojection. That

function can simply be replaced by a call to the Impulse C run-function. The run-

function executes the software and hardware processes in the Impulse C

application.

The software process serves as the bridge between the functions in the

application and the computation executing on the FPGA. To the software process,

we can pass both data structures from the C application and also the

communication objects that enable CPU – FPGA interaction. Further, any global

data structures or functions in the application are visible inside the software

process. Once the hardware process has finished processing the data, the

software process reads the results from the FPGA and presents it back to

functions in the application that perform post processing and file output.

27

In the FPGA there are opportunities to overlap execution with memory accesses.

With this in mind, the backprojector design is divided into two hardware

processes. The “Memory Engine” performs memory accesses. The other, named

“Processing Engine” performs the computations. This serves as a logical

partitioning between the stages of execution.

Every Impulse C application running on a platform has one or more software

processes running on the host and one or more hardware processes running on

the FPGA. The system architecture that governs how they communicate among

each other and synchronize their operations is largely determined by the

architecture of the platform. It is also governed by the relative efficiency of

different communication links on the platform. As mentioned in chapter 2, the

most efficient dataflow model that Impulse C implements on the XD1000

platform is shared memory through the on-board SRAM. Based on this, we

decided to go with the shared memory model for our application. Figure 3.1

shows the data transfer rates to the SRAM.

Figure 3.1: Data rates to Shared Memory

Comparing the transfer speed in figure 3.1 to the execution times in table 3.2, we

see that the time it takes to move data to and from the shared memory is

negligible compared to the time taken carry out backprojection in software.

28

Therefore, any acceleration that can be achieved by the FPGA implementation

should speed up the overall execution. This is in contrast to situations where data

transfer is slower than the execution time. In such cases, the decision to move the

computation off-chip should be revisited.

Figure 3.2 shows the configuration function used to declare the various

processes, signals, and shared memories in the design. As mentioned in section

2.3.1, the configuration function defines the architecture of the application.

Figure 3.2 Configuration Function code snippet

Creating efficient code bindings for the hardware processes is crucial. It is this

code that the compiler maps to HDL and is synthesized to run on the FPGA; its

efficacy largely determines the achieved acceleration. The remainder of this

chapter discusses issues pertinent to this task.

It is useful to clarify the following terms. In this thesis, we refer to the

architecture of the entire system, including the CPU-SRAM-FPGA communication

29

interfaces, by the term “system architecture”, and the architecture of the

hardware design implemented on the FPGA as “design architecture”.

3.2. Refactoring Code for Hardware Generation

Figure 3.3 shows a code snippet (from the software source code) that performs

backprojection. Pre-computed sine and cosine values are stored in arrays. The

triple nested loop structure traverses the image pixel by pixel. The inner loop

cycles through the angles and determines the index of the projections that

contributes to the pixel for each angle. The values are then interpolated and

added to the pixel.

Figure 3.3 Backprojection code from SW benchmark

30

C code written to run on a processor does not automatically convert into an

efficient FPGA implementation if passed without modification through the

Impulse C hardware generation process. When hardware was generated from the

code in figure 3.3 (after adding support for shared memory to enable

communication), the resulting design was significantly slower than simply

executing the code on the host processor. The code that eventually produces a

good FPGA version must use the "special" resources (Distributed memories, DSP

blocks etc) that enable parallelism on the FPGA. Obviously, if there is little or no

parallelism, the FPGA cannot be faster at the task.

Loops in the C code are natural targets for parallel computation. A loop

repeatedly performs the same computation on different pieces of data. If the

hardware performing the loop computation is replicated as many times as the

loop runs, the entire loop could theoretically be executed in the time it takes to

perform a single iteration. This process is called loop unrolling. There might be

dependencies that prevent parallel execution and care must be taken to avoid or

work around these. Memory accesses inside the loop need to be streamlined

because operations running in parallel cannot access the same memory at the

same time. The memory either needs to broken up or replicated.

Loop unrolling in the context of hardware generation is not the same as the

traditional software engineering loop unroll optimization where loops are

unrolled to avoid loop overhead and gain limited execution overlap. In software

execution there is no replication of the computing resources, whereas in

hardware generation the data-path is replicated. In the hardware generation

process, a loop with n iterations requires n times the resources when unrolled,

but can be up to n times faster.

Loop unrolling is performed in Impulse C using the CO UNROLL pragma.

Selecting the “Scalarize array variables” option during hardware generation

31

replaces arrays (memories) by registers so that they can be accessed

simultaneously. This works in simple cases. However, we might need the

memories to be broken up into smaller memories instead of being converted into

registers. In such cases, the CO UNROLL pragma may not be able to automatically

generate the segmented memories required. Further, there may not be enough

resources to completely unroll the loop. In such situations, we could partially

unroll the loops. This might complicate the logic and memory structure. If there is

a nested loop structure that needs to be partially unrolled with memory

segmentation, CO UNROLL cannot be efficiently used. In such cases, we still have

the option of manually defining separate smaller memories and manually

performing a partial unroll of the loops. In our implementation the triple nested

for-loop structure seen in figure 3.3 was partially unrolled by hand. This is

described in more detail in the context of the design architecture in section 3.3.2.

Refactoring C code to implement parallelism generally involves unrolling loops

and breaking up the memories (arrays in C code) such that they do not block each

other. Another important optimization target is the inner loop computation itself.

It is this computation that gets replicated in the process of unrolling, and so

refactoring the code to produce the most efficient version of it is desirable. For

example, in a system that is 128-way parallel, one adder saved in the inner loop

computation saves 128 adders in the overall design. The inner loop computation

can also be pipelined to increase the number of computations running in parallel.

This is different from the parallelism execution achieved through loop unrolling.

Unrolling creates identical copies of the data path that works simultaneously on

independent data. On the other hand, pipelining allows different stages of the

same data path to work simultaneously. Thus, pipelining and unrolling used

together can provide higher speedup than using one or the other. The added

advantage of pipelining the data path is that it increases the maximum frequency

of operation of the design by breaking up the critical path.

32

There are performance gains to be had if computations are performed in fixed

point instead of floating point. Going to specific bit-widths for each operand can

save resources. Other refactoring steps might include performing computations

differently to save scarce resources. For example, if multipliers are a scarce

resource in the system, any opportunities to save multipliers must be explored.

3.2.1. Index Generation through Offsets

Consider the code in figure 3.3. In the inner loop, the index of the projection

(findex) that needs to be accumulated is determined. The fractional part of findex

is used to perform Bi-linear interpolation, which requires 2 multipliers and an

adder. In the code, determining findex requires two multipliers to find t and one

constant denominator division operation to find findex (which can be

implemented as a multiply). These three multipliers are used to generate each

findex value. If we have n parallel computations, 3n multipliers get utilized in just

determining the index of the projection that we need to interpolate. To avoid

using these multipliers in computing findex, we generate findex values for each

pixel through stored offsets instead of computing it.

One of the things to notice about the findex computations in figure 3.3 is that the

variables x, and y are incremented by fixed amounts in the loop structure. Also,

t_0 and sino->projSpacing are constant values. Only the sine and cosine values

change with the changing angles in the inner loop. However, if we reorder the

loops such that the outermost loop traverses the projections, and the inner loops

traverse the pixels, the angles remain constant in the inner loop. This reordering

of the loops in figure 3.2 is shown in figure 3.4. Now, findex changes by a fixed

amount in successive iterations of the inner loop.

33

 Figure 3.4 Reordering loops from figure 3.2 Figure 3.5 Offset-based index generation

Instead of computing findex from scratch in each iteration, we can compute it by

storing the initial value of findex and the fixed offsets for each angle. This

provides a tradeoff between memory required to store the offsets and multipliers

needed for findex generation. In our system multipliers in the form of DSP blocks

were a scarcer resource than the small memories that would be needed to store

the offsets, and hence we implemented the offset method of computing findex.

Figure 3.5 shows the code that implements offset-based computing of findex. It is

identical to the computation in figure 3.4. The initial value of findex for each

angle is stored in the array INIT_VALUE_FINDEX. The arrays SIN_X and COS_Y

store the horizontal and vertical offsets respectively. findex is computed by

making appropriate offsets from the initial value.

To gain some intuition for why the offset method works, consider what the inner

loops do. For a given angle, the loops walk through the image pixels, figuring out

where on the detector the x-ray through that pixel strikes. Figure 3.6 shows how

for a given angle, the impact point on the detector varies for different pixels on

the image. As we move horizontally across the image through a distance

xPixelSize, the x-ray through the pixel strikes at a point h away on the detector

34

bar. A vertical movement through a distance yPixelSize causes the x-ray to strike v

away. h and v are related to xPixelSize and yPixelSize respectively through the

simple trigonometric relationship

 h = xPixelSize*cos(theta),

 v = yPixelSize*sin(theta)

Figure 3.6 Detector offsets when walking through image

Thus, for each projection angle, if we know the position that the x-ray through the

first pixel strikes the detector, and the value of hand v for that angle, we can

determine where x-rays through neighboring pixels strike the detector. These

positions are the values that index into projection data array, and are known as

findex in the code snippets. For 512 projections we need to store 512 initial

values, 512 v values and 512 h values. The memory required to store these values

is less than 1% the total memory required by the design while the number of

DSPs saved by this method is 50% of the total DSPs required by the design,

35

making it a very attractive tradeoff. Leeser et al. [3] use this index generation

mechanism in their FPGA implementation.

3.2.2. Fixed Point Representation

The advantage of floating point numbers over fixed point is the wide range of

values they can represent. This advantage comes at the cost of complex logic

required to implement floating point arithmetic. In applications where the range

of values is not large, fixed point representation can be an equally accurate

alternative to floating point. Standard C has no native data type to represent fixed

point fractional data. One could implement fractional fixed point using ints by

manually keeping track of where the decimal point is, but this is rarely done.

Hence, in many C applications, floating point representations are used even when

the data does not have the dynamic range to justify it.

The sinogram values that the FPGA operates on can be pre scaled to the range -1

to +1. In the backprojection stage, the sinogram values only get accumulated.

Because we know the number of values that are added, we can determine a priori

exactly what the theoretical maximum value of the accumulation will be. Based

on this we can design the data path with fixed point arithmetic. Leeser et al. [3]

performed a detailed study of the effects of quantization introduced through

fixed point implementation of backprojection. They demonstrated that a 9-bit

representation of the sinogram and 3-bit for the interpolation factor provided a

good tradeoff between reconstruction quality and efficient implementation. In

our implementation, we employed a more conservative approach using 16-bits to

represent the sinogram and 16 bits for the interpolation factor. The internal

arithmetic gives rise to 32 bit results (due to multiplying 16 bit numbers), and is

scaled back to 16 bits by discarding the less significant bits.

We instrumented our floating point code to track the range and precision at

different points of the data path. Table 3.3 shows bit width that was chosen for

36

different variables in the data path. A note about the notation (SsI.F) used. This

implies there are S (1 or 0) sign bits, I integer bits and F fraction bits. The fixed

point format for the sinogram data is 1s1.14. This means that there is one sign

bit, one integer bit and 14 fraction bits. The variable floor is used to generate

memory indices from findex. We selected different bit depths and visually

assessed the influence on reconstructed images. We choose wide enough bit-

widths to generate images with no discernable visual difference compared to the

floating point implementation.

Table 3.3: Fixed point format employed

Variable Format
Sinogram data 1s1.14
Interpolation factor 1s7.8
Findex 1s10.8
Floor 0s11.0
Offsets 1s10.8
Image data 1s8.7

By converting the sinogram data from 32 bit floating point to 16 bit fixed point,

we need only half the number of DSPs to perform the interpolation step. This

allows us to use the saved DSPs to accommodate more parallel operations, thus

resulting in faster execution. The Stratix DSP block can multiply 16 bit fixed point

numbers every cycle with no latency, whereas, floating point multiplication has

11 cycles of latency. Further, the fact that the fixed point representation of the

sinogram and image are only half the size of their floating point counterparts

makes the process of transferring them between the CPU and FPGA twice as fast.

The result is that converting the design to fixed point results in at least a 2x

speedup.

Impulse C supports fixed point via data types to represent data and macros to

perform arithmetic on them. The data types are co_intx/co_uintx, where x

represents the number of bits and int/uint represents signed and unsigned

37

numbers respectively. Impulse C also provides an efficient way to extract and

insert bits into any position of a 32-bit number through the co_bit_extract

and co_bit_insert functions. The macros only work on data types of certain

bit-widths. In our implementation we extensively used the data types but

preferred not to use the macros, choosing instead to manually track the number

of fraction bits along the data path. Bits can be dropped using the standard C right

shit operator “>>”. In Impulse C, when making assignments of unequal bit-widths,

bits of the same weight are preserved (i.e. if we assign a 32-bit variable to a 16 bit

variable, the bottom 16 bits of the 32 bit number are copied to the 16 bit

number). Using a combination of shifts and assignments, we can manually

maintain data in the appropriate bit-width. Figure 3.8 shows the various fixed

point operations used inside the computing loop.

The integer portion of the variable findex is the array index, and the fractional

portion of it is the interpolation factor. All legal values of findex are positive. We

however keep the sign bit because findex does come out negative for certain

pixels that lie outside the field of view. In those cases, floor is an undefined index

into the array (memory address). The image pixel is updated with some unknown

value. This is not a problem because the pixels that lie outside the field of view

are masked in a post processing step performed on the CPU. The compute

pipeline (described next) is more efficient if the computation is performed on all

image pixels; adding logic to the pipeline to avoid these corner cases reduces the

achieved rate.

Figure 3.7 shows the field of view in the image. Only pixels lying in the inscribed

circle lie in the field of view. This is because during reconstruction we assume

that both the detector and the image are centered at the origin. When we rotate

the detector through various angles, a circle is described. The points lying inside

the circle are the valid pixels.

38

Figure 3.7 Detectors describe a circle in the image space (left).
Valid pixels in the image (right).

3.2.3. Pipelined Data Path

We have discussed two optimizations of the inner loop computation (fixed point

conversion and incremental computation of findex) and the benefit they provide.

The next step is to pipeline the computation. Pipelining is the process of breaking

up a complex computation into multiple stages so that the individual stages can

run simultaneously. If each stage of the pipeline executes in 1 clock cycle and

there are n pipeline stages, the first result from the pipeline is produced after n

cycles. The time it takes for the first result to appear is called the latency of the

pipeline. Every subsequent value from the pipeline is available in successive

clock cycles (if there are no dependencies in the pipeline). For computations that

are carried out many times in succession, the latency of the pipeline is negligible

when compared to the time taken to produce all the results. Pipelining is

accomplished in Impulse C using the CO Pipeline pragma.

The Impulse C Stage Master Explorer tool is used to analyze the performance of

pipelines in the design. It uses the following terms in the context of pipelining:

39

 Latency: The number of cycles for inputs to reach the output of the

pipeline. It is equal to the number of stages in the pipeline.

 Stage Delay: The combinational delay or levels of logic in a single pipeline

stage.

 Rate: The number of cycles after which the pipeline accepts new inputs. A

rate of 1 means the pipeline accepts a new input every cycle. A Rate of r

implies the pipeline accepts an input ever r cycles.

The Impulse C compiler groups all statements that can execute in parallel into a

stage. All statements within a stage execute in one cycle. If there are many

statements executing in a single stage, it results in a higher stage delay and

lowers the maximum frequency of operation. If high frequency operation is

desired, the stage delay of the pipeline can be constrained to equal a certain

amount by using the CO SET stageDelay pragma. The compiler now only

groups together those computations that can be performed within the specified

stage delay. Another way to control how the stages are generated is using the

co_par_break statement. This statement can be used to manually control

which statements are grouped into a pipeline stage.

Figure 3.8 shows the backprojection loop with the pipeline pragma. This loop

finds the contribution to every pixel in the image from one projection. The

function call to interpolate() seen in figure 3.3-3.5, has been replaced by

the actual interpolation code because Impulse C hardware generation has limited

support for function calls. Further, it is easier to exercise control over the

pipeline if all operations are visible in the loop. Interpolation requires 2 values to

be fetched from memory, 2 multiplies and 1 add.

40

Figure 3.8 Pipelining the backprojection code

Impulse C Stage Master Explorer provides graphical views of the pipeline

generated from the code. The block summary displays the latency, the maximum

stage delay, and the achieved rate of the pipeline. Stage Master has a source code

view showing which statements in the code were grouped into a stage. The

statements are annotated with numbers to show to which stage they belong.

Figure 3.9 shows the source code view generated by Stage Master from the code

in figure 3.8.

41

Figure 3.9 Impulse C Stage Master Explorer

The inner loop operation executes 5122 times, and so the latency of the pipeline

is irrelevant. Our goal is to achieve a rate of 1 while keeping the stage delay as

low as possible to maximize the frequency of operation. One of the restrictions

imposed by the Impulse C platform support package for the XD1000 was that the

user logic had to be clocked at 100MHz. This made it even more crucial to keep

the stage delay as low as possible. The stage delay is calculated as the sum of the

unit delays of the individual operations in a stage. Bitwise operations, such as

shifts, have a stage delay of 1. Arithmetic operations have a stage delay equal to

the bit-width of the widest operand. In our pipeline, the interpolation step has

the longest stage delay of 32 because a 32-bit result is generated in that step.

Considering that we have a delay of at least 32, the idea is to try to divide the

42

stages such that each stage has a delay of no more than 32. Hence we use the CO

SET pragma to constrain the stage delay to 32, as seen in figure 3.6.

Once the stage delay is determined, we try to achieve a rate of 1 so that the

pipeline is accepting inputs and producing results every cycle. However, the

pipeline could only achieve a rate of 2 as seen in figure 3.7. Operations within a

stage do not have dependencies and so do not affect the rate. The message

“Multiple access to sinorow reduces minimum rate to 2” in Stage Master Explorer

provides insight about the issue affecting the rate. In the interpolation step, we

need to read 2 values form the array sinorow in the same cycle. This makes the

rate 2 because only one value can be read from the memory at a time.

There are some ways to work around this and achieve the desired rate of 1. The

first is to maintain two memories with the same values - sinorow1 and sinorow2.

These two distinct memories can be accessed in the same cycle. The disadvantage

of this method is that it doubles the memory required to implement the pipeline.

As mentioned earlier, when the loop is unrolled, any increase in the resources

required to perform the inner loop computation implies a very large increase in

the overall design. Memories were a resource bottleneck in our design and so this

was not a viable solution. A more efficient method is to implement sinorow as a

true dual port memory. This enables reading two values from the memory at the

same time. The Stratix II M4k RAM block is capable of implementing true dual

port. In Impulse C, an array can be explicitly implemented using a particular

memory type using the co_array_config() function. The declaration of the

array is followed by the configuration statement designating it as true dual port

co_int16 sinorow[SINO_SIZE];
co_array_config(sinorow, co_kind, “dualsync”);

However, the Impulse C compiler does not allow memories accessed in more than

one process to be explicitly configured. All operations with a particular memory

43

(that needs explicit configuration) should be performed within the process that

declares it. However, in our application we chose to keep the memory read

operations in a separate process and the compute operations in another. Though

we had initially conceived this partitioning simply as a logical way to break up

the tasks to be performed, we found that it had implications for the ability of the

synthesized design to meet the timing constraints. When we attempted to

perform the memory read operations in the same process as the compute, the

design would fail timing. We believe that the partitioning might have helped

improve the placement of the design, thus enabling it to meet timing. Hence we

decided to keep the memories in the default configuration and maintain the

partitioning.

3.3. Design Architecture

The inner loop of the computation represents the task carried out by a single

complete data path in the design. The optimization strategy is to create the most

efficient hardware implementation of the inner loop possible and then replicate it

as many times as the resources on the chip will allow. The previous section

discussed all the optimization made to the inner loop. We now discuss replication

of the data path and then present a system-level view of how the entire design

operates.

3.3.1. Parallel Design Architecture

The loops in figure 3.8 find the contribution to every image pixel from one

projection. If we replicate the computation inside the inner loop, we can

simultaneously find the contribution to every image pixel from multiple

projections. Based on resource availability, we decided to build a 128-way

parallel system.

44

3.3.1.1. Loop Unrolling

The process of replicating the inner loop computation was achieved by manually

unrolling the computation by duplicating each statement inside the compute loop

128 times with different variable names. Some of the statements could have been

more elegantly unrolled using the CO Unroll pragma. However, the memory

access patterns inside the inner loop require the compiler to infer that memories

need to be broken into smaller distributed units, which the current version of the

Impulse C tools is not capable of doing. This computation was simple enough that

the manual unrolling process was not too painstaking, and was achieved rather

easily using a standard text editor.

With 128 operations running in parallel the last stage of the pipeline generates

128 values which need to be summed. We use a simple 7-stage adder

compression tree. The first stage add produces 64 results, the second 32, and so

on until the last stage produces the final result. This adder tree adds 7 cycles of

latency to the pipeline, but maintains the rate of 1, producing an image pixel

every cycle. With 128 projections being reconstructed in parallel, it takes 4 and 8

runs to reconstruct from 512 and 1024 projections respectively. Figure 3.10

shows the pipelined and parallel data path of the design. Leeser et al. [3]

implemented a 16-way projection parallel version and predicted that with the

advent of new high capacity FPGAs the architecture could scale to achieve more

parallelism. Our design confirms this.

45

Figure 3.10 Pipelined and Parallel Data Path

As mentioned earlier, we decided to build a 128-way parallel system based on

resource availability. The number of projections that can be processed in parallel

is constrained by two resources. The first is the availability of memories to store

the projections (sinorow). The second is the availability of DPS’s to perform the

multiplications in the interpolation step. Table 3.4 shows a summary of the

resources available on the Stratix II EP2S180 chip present in the XD1000.

Table 3.4 Resources on Stratix II EP2S180 FPGA

Logic Resources

Combinational ALUTs 143,520

Dedicated logic registers 143,520

RAM

M512 (576 bits) 930

M4k (4.5 Kbits) 768

M-RAM (576 Kbits) 9

Total RAM bits 9,383,040

DSP

9-bit DSP elements 768

Simple Multipliers (18-bit) 384

46

3.3.1.2. Memory Utilization

The memory requirements in the design are data dependent. The image memory

does not have to be distributed because only one image pixel is computed every

clock cycle and the memory is written to only once a cycle. We would however

like to store as much of the image as possible so that we do not have to pause the

computation to send parts of the reconstructed image off chip. We can store the

entire image on chip using the large MRAM blocks. The image requires 4 Mbits of

storage. There is a little over 5 Mbits of M-RAM on the chip. Hence we can store

the image using the M-RAM blocks.

The sinogram memories have different requirements. Each row of the sinogram

needs to be in a separate memory so that computations from multiple rows can

proceed in parallel. Hence we need to allocate sinogram memories using the

distributed M4k blocks. One row of the sinogram needs 16Kbits of memory.

Hence one row of the sinogram takes up 4 M4k blocks. We can store at most 192

rows of the sinogram using up all the M4k blocks. The backprojector design

cannot use up all the M4k blocks because some are used by the Impulse C

wrapper functions that implement the communication interfaces. These

functions take up around 5% of the memory and logic resources on the chip.

Having a system that is n-way parallel, where n is exactly divisible by the number

of iterations of the outer loop has its advantages. Consider the case where we are

reconstructing from 512 projections. A system that is 128-way parallel will

reconstruct the image from 128 projections in each run and will have 4 execution

runs to complete the process. Even if it were 150 way parallel, it still needs to run

4 times. In order to reduce the number of runs, the system needs to be at least

171-way parallel. This way it needs to run only 3 times.

The other memories in the design are the small memories needed to hold the

offsets to compute findex. In the 128-way parallel system, each of these memories

47

holds 4 or 8 values depending on whether the reconstruction is from 512 or 1024

projections. They easily fit in the M512 blocks.

One of the challenges of building a design that uses most of the memories on chip

is that as more resources get utilized, the routability is diminished, and achieving

timing closure becomes harder. Again, the timing target of 100MHz introduced by

the Impulse C platform support package made this an important consideration.

In Impulse C the memories are not explicitly declared as M4k, M512 or M-RAM

blocks. They are simply declared as arrays. Based on the array size the compiler,

in conjunction with the Quartus tools, automatically generates the appropriate

memory. Any memory configuration (dual port/single port) preferences imposed

through the co_array_config function are passed on by the compiler to

Quartus.

3.3.1.3. DSP Utilization

There are 96 DSP blocks in the Stratix II EP2S180. These can each be configured

as eight 9-bit multipliers, four 18 bit multipliers or a single 36-bit multiplier. In

the interpolation step, we perform 16-bit multiplication, and these are

implemented using 18-bit multipliers in the DSP block. Since each interpolation

operation needs two multipliers, we need 256 18-bit multipliers for a 128-way

parallel system. These are available in the DSP blocks. It should be noted that if a

design needed more multipliers than are available in the DSP blocks, it can still be

implemented because the FPGA compiler will simply build the multipliers out of

LUTs, if available. The observation about high memory utilization affecting

routability also applies to the DSP and logic. We concluded that a 128-way

parallel design would comfortably fit on our chip, and offered a good tradeoff

between high performance and improved feasibility of achieving timing closure.

48

3.3.2. System Level View

In the previous sections we have discussed some of the individual elements of the

design and how they were created. We now discuss from a system level how the

backprojector operates.

Figure 3.11 System Architecture

Figure 3.11 shows the system level block diagram. The numbers indicate the

sequence of operations. The operations are outlined below.

1. The FBP software application parses the command line arguments and reads

the specified sinogram input file. It then filters the sinogram with the

specified filter and passes control to the Impulse C software process. The

process converts the filtered sinogram into the 16-bit fixed point format.

2. The software process then transfers the sinogram data to the shared memory

and signals the memory engine (using the start_comp signal) that it is done

transferring data. The process of data transfer and signaling is performed

easily in Impulse C using the functions shown below.

co_memory_writeblock(datamem, OFFSET , &sinogram, SINO_SIZE);

co_signal_post(start_comp,0);

49

“datamem” is the name given to the shared memory. OFFSET indicates the

starting location in the shared memory. The function also takes in the address

of the data to send to the shared memory and the number of bytes to transfer.

3. The memory engine reads 128 rows of the sinogram from the SRAM into the

FPGA block RAM. Once it is done it signals the processing engine through the

proc_start signal.

4. The processing engine then reconstructs the entire image from 128

projections and places the partially processed image in the FPGA block RAM.

5. At this point we have two versions of the design that deal with the partially

processed image differently. The first version sends every row of the partially

processed image to the SRAM as it is computed. It is then read by the CPU.

Steps 1-4 are repeated. The final image is the sum of the partial images

generated in each step. The CPU performs the summation as it retrieves

partial images from the SRAM. The disadvantage of the CPU accumulation

method is that the processing is stalled when transmitting the image to the

SRAM. To avoid this, the second version of the design accumulates the image

in the FPGA block RAM itself. In this version only one transfer at the end of

the complete processing is required.

Chapter 4 presents the system timing, resource usage and relative performance

of all the versions of the design.

50

4. Results

The previous chapter described how the Impulse C C-to-FPGA tool flow was

employed to design an FPGA implementation of backprojection. The PSP

capabilities were leveraged to create a software process to fit within the existing

source code framework, seamlessly hand off the computation to the FPGA, and

recover the results from shared memory. As the design evolved, various

optimizations were made to both the design architecture and the system

architecture. In this chapter we quantify and compare the effectiveness of those

optimizations by presenting the performance and resource utilization of the

designs. We also compare how the Impulse C backprojector design performs

versus the software backprojector running on the host.

To facilitate a head-to-head comparison between Impulse C and traditional FPGA

design methods, a HDL version of the backprojector was created in a related

work [23]. The hand coded version was written with a combination of VHDL code

and a schematic created using the schematic design tool in Altera Quartus. The

hand coded version implements the same algorithm to perform backprojection.

In this chapter we compare the performance of the HDL design with that of the

Impulse C design.

We present both performance of the designs and the resource utilization for

reconstruction from 512 and 1024 projections. The reconstructed image size is

512x512 pixels. In our system we assume the number of detector channels is

equal to the number of projections, thereby keeping the sinogram a square

matrix. Performance is measured as execution time. Resource utilization is

measured as the logic, block RAM, and DSPs used.

51

4.1. Performance and Resource Utilization

We consider two versions of the design. The first version performs the

accumulation of the image in the CPU, and the second performs the accumulation

in the FPGA itself, as mentioned in section 3.3.2. The disadvantage of having the

CPU perform the accumulation is that the processing is stalled to transmit the

image to the SRAM as it is being computed. Figure 4.1 shows the system timing

diagram for the CPU accumulation version. The timing annotations are for

reconstruction from 512 projections. The grey sections indicate the resource is

free at a given time and white indicates it is busy. It can be seen that during the

processing step, the PROC_ENGINE writes to the SRAM when it computes a row

of the image. The CPU then reads the data from the SRAM.

Figure 4.1 System timing for CPU accumulation. Reconstruction from 512 projections

Figure 4.2 shows the system timing of the FPGA accumulation version. It shows

how the design can process data without being interrupted by SRAM write and

CPU read operations.

52

Figure 4.2 System timing for FPGA accumulation. Reconstruction from 512 projections

Table 4.1 and 4.2 gives the break-up of the execution time for the CPU and FPGA

accumulation versions of the design. In table 4.1, we see that transferring the

partially computed images from the FPGA to CPU (through the shared memory

implemented on the SRAM) takes 15.2ms and 30.4ms when reconstructing from

512 and 1024 projections respectively. In the FPGA accumulation (table 4.2)

there is only one transfer from the FPGA to CPU at the end of the computation,

which takes 3.8ms irrespective of the number of projections, making the overall

execution 30% faster than CPU accumulation. The miscellaneous CPU operations

include fixed point to floating point transformations, and also the masking

operation described in section 3.2.2.

Table 4.1 Break-up of execution time for CPU summation design

Execution Stage 512 Projections 1024 Projections
Transfer Sinogram from CPU->SRAM 1.05 ms 4.20 ms
Read Sinogram SRAM->FPGA 2.78 ms 11.12 ms
FPGA Computation 21.20 ms 42.40 ms
Transfer image from FPGA->SRAM 10.00 ms 20.00 ms
Transfer image from SRAM->CPU 5.20 ms 10.40 ms
Misc CPU operations 3 ms 3 ms
Total 43.25 ms 83.92 ms

53

Table 4.2 Break-up of execution time for FPGA accumulation version

Execution Stage 512 Projections 1024 Projections
Transfer Sinogram from CPU->SRAM 1.05 ms 4.20 ms
Read Sinogram SRAM->FPGA 2.78 ms 11.12 ms
FPGA Computation 21.20 ms 42.40 ms
Transfer image from FPGA->SRAM 2.50 ms 2.50 ms
Transfer image from SRAM->CPU 1.30 ms 1.30 ms
Misc CPU operations 3 ms 3 ms
Total 31.83 ms 64.52 ms

The main advantage of CPU accumulation is its reduced on-chip memory

requirement. The CPU accumulation approach needs to store only one row of the

image on-chip, whereas the FPGA accumulation approach needs to cache the

entire image on-chip. Table 4.3 and 4.4 shows the resource utilization of the two

designs. Caching the image takes up 90% of the M-RAM on-chip. Hence we cannot

use this method for images that are much larger than 512x512. The CPU

accumulation version can scale to support the reconstruction of much larger

images. The other advantage of CPU accumulation is that it is a completely feed-

forward design. FPGA accumulation has a feedback loop as we need to update

previously cached values of the image when processing a new set of projections.

This makes achieving timing closure in the FPGA accumulation design more

challenging.

It is seen from table 4.3 that the distributed M4k blocks are the bottleneck in both

designs. There are plenty of logic resources left over. To achieve further

parallelism, we need more distributed memories.

54

Table 4.3 Resource utilization for CPU accumulation design

Resources
Available
on chip

512 Projections 1024 Projections
No. Used % Used No. Used % Used

Logic

Combinational ALUTs 143,520 32,909 23% 33,319 23%
Dedicated logic

registers
143,520 37,301 26% 37,712 26%

RAM

M512 (576 bits) 930 72 8% 256 28%
M4k (4.5 Kbits) 768 595 77% 768 100%

M-RAM (576 Kbits) 9 0 0% 0 0%
DSP

9-bit DSP elements 768 512 67% 512 67%

Table 4.4 Resource utilization for FPGA accumulation design

Resources
Available
on Chip

512 Projections 1024 Projections
No. Used % Used No. Used % Used

Logic

Combinational ALUTs 143,520 39,748 28% 40,564 28%
Dedicated logic

registers
143,520 52,744 37% 53,640 37%

RAM

M512 (576 bits) 930 72 8% 256 28%
M4k (4.5 Kbits) 768 593 77% 768 100%

M-RAM (576 Kbits) 9 8 89% 8 89%
DSP

9-bit DSP elements 768 512 67% 512 67%

4.2. Impulse C Vs Software

We compare the performance of the backprojector created with Impulse C to the

performance achieved by simply executing the backprojection source code on the

host. The Impulse C version of the backprojector performs two orders of

magnitude better. When reconstructing 1024 projections with FPGA

accumulation, we obtain a 155x speedup.

55

Table 4.5 Impulse C Vs Software execution time

Design
512

Projections
1024

Projections
Unmodified Source code on host 3.6s 10s
Impulse C design with CPU accumulation 43.25 ms 90.92 ms
Impulse C design with FPGA accumulation 31.83 ms 64.52 ms

Table 4.6 Impulse C Vs Software speedup

Design
512

Projections
1024

Projections
Unmodified Source code on host 1x 1x
Impulse C design with CPU accumulation 83x 110x
Impulse C design with FPGA accumulation 113x 155x

One reason why the software source code is slower than the optimized FPGA

design is that the software was created to be flexible enough to support

sinograms and images of arbitrary dimensions at run time. The FPGA design, on

the other hand, can only support a fixed sinogram and image size at run time.

When reconstructing from 1024 instead of 512 projections, the FPGA design has

to be recompiled. The advantage we derived by fixing the image and sinogram

dimensions is that we could generate address indices as offsets (section 3.2.1).

Similar optimizations can be made to the software version. Hand optimization of

the software source code was outside the scope of this work.

However, the major reason for the Impulse C design being faster is pipelining and

loop unrolling which allows us to process 128 projections in parallel. The high

bandwidth to the distributed memory and the availability of logic resources and

DSPs to build multiple parallel data paths is not present in the processor. As a

result, those optimizations cannot be replicated in the software version running

on the processor. We believe that even with significant hand optimization, the

Impulse C version of the design will still be much faster than the software.

56

The FPGA acceleration of backprojection makes the execution time of this stage

negligible compared to the filter stage in FBP software benchmark. As mentioned

in 3.1.1, backprojection accounts for 70-80% of the execution time in the

benchmark. Thus, our partitioned implementation speeds up the overall FBP

execution by 4x-5x. In section 3.1.1, we discussed why we chose to perform the

filtering operation on the CPU and the backprojection on the FPGA. Nevertheless,

the filter can be efficiently implemented on the FPGA and can achieve the same

level of acceleration as the backprojection stage. Thus, performing FBP on the

FPGA can be up to 155x faster than running FBP on a processor.

4.3. Impulse C Vs HDL

To contrast the performance of Impulse C designs with designs created by

traditional methods, a hand coded version of the backprojector was developed in

a related work [23]. It uses many design techniques that are unique to the level of

detail allowed by hand coding VHDL. It employed the same algorithm as the

Impulse C version to perform backprojection from 1024 projections. In addition,

it used a separate parallel algorithm to implement the reconstruction from 512

projections which was designed to capitalize on the advantages of the given

hardware, and the flexibility of the implementation method. Table 4.7 and 4.8

shows the performance of Impulse C when compared to the hand coded version

of the design.

Table 4.7 Impulse C Vs HDL execution time

Design
512

Projections
1024

Projections
HDL version of design 21.68 ms 38.02 ms
Impulse C design with CPU accumulation 43.25 ms 90.92 ms
Impulse C design with FPGA accumulation 31.83 ms 64.52 ms

57

Table 4.8 Impulse C Vs HDL speedup

Design
512

Projections
1024

Projections
HDL version of design 1x 1x
Impulse C design with CPU accumulation .50x .41x
Impulse C design with FPGA accumulation .68x .59x

Table 4.9 provides a breakdown of the execution time of the various steps in the

backprojection implementation for the Impulse C as well as hand coded version.

The HDL version is ~1.7x faster than the Impulse C version.

Table 4.9 Breakup of execution time. Reconstruction from 1024 projections.

Execution Stage Impulse C HDL
Transfer Sinogram from CPU->SRAM 4.20 ms 6.05 ms
Read Sinogram SRAM->FPGA 11.12 ms 5.40 ms
FPGA Computation 42.40 ms 20.97 ms
Transfer image from FPGA->SRAM 2.50 ms

2.60 ms
Transfer image from SRAM->CPU 1.30 ms
Post Processing 3.00 ms 3.00 ms
Total 64.52 ms 38.02 ms

There are few reasons for the better performance of the HDL design. First, the

compute pipeline in the HDL version produces a result every cycle, whereas the

Impulse C version produces a result only once every two cycles. This makes the

hand coded compute pipeline 2x faster. Furthermore, in the hand coded version,

the final image is streamed directly to the CPU instead of using the shared

memory, making that process 30% faster. Lastly, the hand coded version has a

custom SRAM controller that achieves 2x faster data access to the onboard SRAM

than the Impulse C version.

As mentioned in section 3.2.3, we were not able to implement the sinogram

memories as true dual port because of limitations in the Impulse C compiler. Also,

the Impulse C scheduler makes conservative assumptions about the memory

accesses to the image cache. These two factors result in the reduced rate of the

58

compute pipeline. We believe that this is a limitation of the compiler that can be

resolved in future versions of the Impulse C design tools.

As mentioned earlier, the Impulse C PSP for the XD1000 supports efficient data

transfer only through shared memory, and streaming from the FPGA to the CPU is

slow. Further, the SRAM controller on the PSP can achieve maximum throughput

for FPGA-SRAM communication only for specific data widths (64-bit). The image

and sinogram data in our application was 16-bit, and as a result, we took a 2x

performance penalty on the SRAM-FPGA throughput. We attempted to

circumvent this limitation by trying to pack our 16-bit data into 64-bit words

before writing them to FPGA block RAM and unpack them as we used them in the

pipeline. However, the overhead imposed by this modification, caused our design

to fail the required 100MHz timing requirement.

These limitations can be resolved by enhancing support in the PSP for efficient

data transfers of different bit-widths. It is seen from table 4.9 that the Impulse C

PSP performs a very efficient data transfer from the CPU to the SRAM. This shows

that it should be possible to match HDL performance on the FPGA–SRAM

communication as well. By making these improvements to the compiler and PSP,

the performance of Impulse C can match that achieved through hand coded HDL

for our implementation of backprojection (table 4.10).

Table 4.10 Estimated impact on runtime and speedup by optimizing the compiler and PSP.

Reconstruction of 512x512 image from 1024 projections

Implementation Runtime Speedup
Actual HDL version 38.02 ms 1x
Actual current Impulse C version 64.52 ms 0.59x

Estimate of Impulse C with PSP optimization
to match HDL transfer speed to SRAM

57.60 ms 0.66x

Estimate of Impulse C with compiler
optimizations

43.32 ms 0.88x

Impulse C with both optimizations 33.40 ms 1.05x

59

Table 4.11 compares resource utilization of the Impulse C design with the HDL

design. We focus on the reconstruction from 1024 projections. It is seen that both

designs have very similar resource utilization. In the HDL version, the M512

RAMs are used to store the horizontal and vertical offsets. The Impulse C version

uses all the M4ks before using the M512s. The HDL version is more heavily

pipelined and hence uses more registers.

Table 4.11 Comparison of resource utilization

Resources
Available
on chip

Impulse C HDL
No. Used % Used No. Used % Used

Logic

Combinational ALUTs 143,520 40,564 28% 29,043 20%
Dedicated logic

registers 143,520 53,640 37% 65,089 45%

RAM

M512 (576 bits) 930 256 28% 687 74%
M4k (4.5 Kbits) 768 768 100% 611 80%

M-RAM (576 Kbits) 9 8 89% 9 100%
DSP

9-bit DSP elements 768 512 67% 512 67%

To compare the ease of use of Impulse C to HDL, we compare the design time and

lines of code in the design (table 4.12, 4.13). Both the Impulse C and HDL designs

were created by designers with similar hardware engineering background and

FPGA design experience. Creating the initial version of the design using Impulse C

took 25% less time than the HDL version. This includes the time it took us to get

acquainted to the Impulse C tools and understand the tool flow and design

methodology. Further, in the 9 weeks, we had created two Impulse C versions

(CPU and FPGA accumulation) of the design, whereas only one HDL version had

been created. The incremental time taken to design, test and debug the 1024

version of the design using Impulse C was much less when compared to HDL.

This is because on the second pass, we were better acquainted with the Impulse C

tools.

60

4.12 Comparison of design time

Design Version Time Time
512 Projections (Initial Design) 12 weeks 9 weeks
Incremental time to extend design to
support 1024 projections 1 week 1 day

The Impulse C design required ~3000 lines of code. As mentioned earlier, we

manually unrolled the loops instead of using the CO UNROLL pragma. The

manual unrolling was accomplished by replicating code statements with different

variables names. Of the 3000 lines only ~600 were unique lines of code. Parts of

the hand coded design were created with schematics. The equivalent lines of HDL

code presented in table 4.12 were estimated by the designer.

4.13 Impulse C versus HDL lines of code

Implementation Total lines of code
HDL ~10000
Impulse C ~3000

We have compared the performance, resource utilization, and ease of use of the

backprojection design created using HDL and Impulse C. There is however, an

important distinction between the two implementations. The streamlined

Impulse C design flow allowed us to seamlessly integrate the backprojector into

the existing codebase, resulting in 5x faster run time than the software

implementation. The HDL version, on the other hand, could not be integrated into

the existing code. The existing FBP code was first executed to generate the

sinogram data. A different code base had to be run to perform the backprojection

and collect the results. The FBP code was then re-run to post process the results.

In order to achieve a similar seamless integration of the HDL design into the

existing codebase, more design time and effort will be required.

The next chapter discusses some of the lessons learned and possible future

directions.

61

5. Conclusions

In the chapter we discuss the strengths and weaknesses of Impulse C, and

describe some basic requirements for creating efficient Impulse C designs. WE

present our conclusions from the results, and identify possible future research

directions.

5.1. Writing Efficient Impulse C

Traditional FPGA design in HDL is fundamentally different from Impulse C

design. A Hardware Description Language (HDL) is precisely that; a way to

describe the hardware that performs the computation. The designer defines the

logic blocks in the circuit, makes sure they are synchronized, and manually

defines how they interact. C, on the other hand, is a way to describe a

computation. Using Impulse C, we describe computations as one would in

traditional C programming and move the low level timing and synchronization

tasks to the compiler. We then use compiler optimizations to generate efficient

hardware.

An important caveat is that when designing with Impulse C, the designer needs to

have an idea of the design architecture that is suitable for the computation. The

designer has to consciously structure the C program to help the compiler do an

efficient job. For example, the sinogram memories have to be declared as

individual memories so that each processing engines can get access to one row of

the sinogram. If it is declared as one large memory, then the compiler will place it

in the M-RAM block, which does not have the bandwidth to feed all of the

computations in parallel.

When creating designs with Impulse C, one does not need to know how the

compiler works, but one must have a firm idea of what the compiler does.

Specifically, the designer must acquaint himself with the impact of specific

62

changes made to the C code on the design. To this end, analysis tools such as

Stage Master Explorer, pipeline graphs, etc., are useful in assessing the effects of

various optimization strategies.

The designer also needs to know what resources and how much of each are

available on the FPGA. Several design decisions are contingent on available

resources, and different implementation strategies offer different resource

versus performance tradeoffs.

5.2. The Strengths and Weaknesses of Impulse C

Impulse C is a great design methodology for targeting a hardware platform. The

ability to create applications entirely in C but have them easily partitioned across

the CPU and FPGA is very attractive. The ability to perform functional verification

on the complete design is greatly enhanced. If one were creating the FPGA design

separately by writing HDL and C to run on the host, the design verification is

much more complex. Further, because the design of the software and hardware is

so tightly coupled the eventual implementation is totally seamless. With

traditional methods it takes extra effort to seamlessly integrate the software and

hardware execution stages.

Impulse C is a big win over HDL when it comes to design effort. It affords rapid

prototyping and allows the designer try various strategies within a short span of

time. As the design evolves through various optimization strategies a designer

using Impulse C will find his task simpler and less time consuming than one using

HDL.

The Impulse C support for pipelining computations is excellent. The methods to

perform the optimization are intuitive and the tools to analyze pipeline

performance are full featured and informative. The unrolling optimization, on the

other hand, is not supported very well. We worked around this by manually

63

unrolling the code. Ideally there would be methods to perform partial unrolling of

loops and automatically break up memories to support parallel execution. Tools

to analyze the impact of unrolling would also be a welcome addition to the tool

set.

One of the drawbacks of Impulse C is the loss of fine grained control over the

resulting hardware. In certain situations we might want to make simple

modifications like adding registers to the input and output of a computation. For

example, we discovered that writing to the image cache was a step that failed

timing. A simple work around we wanted to implement was to postpone the

write to the next clock cycle by adding a register to the input and output of the

cache. These sorts of fine grained changes are not easily communicated to the

compiler. An upshot of the above drawback is that it is extremely difficult to

efficiently implement control logic in the pipeline.

Another disadvantage of Impulse C when targeting platforms is that there is a

fixed frequency at which the user logic is clocked. The ability to clock the logic at

a desired rate is one of the important features of FPGAs. If the frequency of

operation needs to be fixed to support reliable communication with off-chip

resources, it would be nice to have 2-3 different fixed clock speed settings. That

way the designer can choose the setting that best suits his needs.

5.3. Future Directions

Our work in benchmarking Impulse C provided some insight into how to

optimize C-to-FPGA designs and how the performance of Impulse C compares to

software and HDL. However, this work represents a single point in the design

space. It would be nice to undertake an investigation of the performance of

Impulse C versus HDL, over a diverse suite of benchmarks.

64

There is plenty of opportunity to extend the work on accelerating FBP. The filter

can be implemented on the FPGA to further accelerate FBP. This system can be

modified to support fan beam detector geometry. Further, the backprojector

architecture applies directly to the forward projection task. This work can be

extended to perform iterative reconstruction by implementing algorithms such

as maximum likelihood expectation minimization (ML-EM) [28, 29]. It will also be

interesting to perform a study on what it takes to port the existing design to a

different platform such as the XD2000 to assess the portability of Impulse C

designs.

5.4. Conclusion

A C-to-FPGA tool flow was employed to create an FPGA implementation of

backprojection. The backprojector designed with Impulse C was ~155x faster

than the software implementation, resulting in a 5x speedup of the FBP software.

Furthermore, the backprojector design is within 1.7x of the performance of hand

coded HDL, with significantly reduced design effort. This thesis concludes that C-

to-FPGA tools such as Impulse C can be a viable alternative to traditional HDL for

creating platform based FPGA designs.

65

References

[1] P. E. Kinahan, M. Defrise, and R. Clackdoyle. “Analytic Image Reconstruction
Methods.” Emission Tomography: The Fundamentals of PET and SPECT. Miles N.
Wernick and John N. Aarsvold. San Diego, CA, USA: Elsevier Academic Press,
2004. pp. 421–442.

[2] Nicolas GAC, Stéphane Mancini, Michel Desvignes, and Dominique Houzet.
“High Speed 3D Tomography on CPU, GPU, and FPGA.” EURASIP Journal on
Embedded Systems. Vol. 2008, Article ID 930250, 2008.

[3] M. Leeser, S. Coric, E. Miller, H. Yu, and M. Trepanier. “Parallel–beam
backprojection: An FPGA implementation optimized for Medical Imaging.” Proc.
of the Tenth Int. Symposium on FPGA. Monterey, CA, Feb. 2002. pp. 217–226.

[4] Agi, I., Hurst, P.J., and Current, K.W. “A VLSI architecture for high-speed image
reconstruction: considerations for a fixed-point architecture.” Proceedings of
SPIE, Parallel Architectures for Image Processing. Vol. 1246, 1990. pp. 11-24.

[5] Kachelrieb, M.; Knaup, M.; Bockenbach, O. "Hyperfast Parallel Beam
Backprojection." Nuclear Science Symposium Conference Record, 2006 IEEE. Vol.
5, Oct. 2006. pp. 3111-3114.

[6] Ambric. “Am2045 CT Backprojection Acceleration White Paper.” July 12,
2007. White Paper.

[7] X. Xue, A. Cheryauka, and D. Tubbs, “Acceleration of fluoro–CT reconstruction
for a mobile C–arm on GPU and FPGA hardware: A simulation study.” SPIE
Medical Imaging Proc. Vol. 6142, Feb. 2006. pp. 1494–1501.

[8] F. Xu and K. Mueller, "Accelerating popular tomographic reconstruction
algorithms on commodity pc graphics hardware." IEEE Transaction of Nuclear
Science. Vol. 52, Issue 3, Part 1, June 2005. pp. 654-663.

66

[9] F. Xu and K. Mueller. "Towards a Unified Framework for Rapid Computed
Tomography on Commodity GPUs." Nuclear Science Symposium Conference
Record, 2003 IEEE. Vol. 4, Oct. 2003. pp. 2757-2759.

[10] K. Mueller and F. Xu. "Practical considerations for GPU-accelerated CT." 3rd
IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006.
Apr. 2006. pp. 1184-1187.

[11] Jain, Anil K. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[12] Impulse Accelerated Technologies. Impulse C User Guide. Copyright © 2002-
2008, Impulse Accelerated Technologies.

[13] XtremeData Inc, "XD1000 Development System Product Flyer." XtremeData
Inc. 06/05/2009
<http://www.xtremedatainc.com/index.php?option=com_docman&task=doc_detail
s&gid=17&Itemid=129>.

[14] Sundar. "File:CTScan.jpg - Wikipedia, the free encyclopedia." Wikipedia, the
free encyclopedia. 06/05/2009 <http://en.wikipedia.org/wiki/File:CTScan.jpg>.

[15] Adam Alessio and Paul Kinahan. “PET Image Reconstruction.” (to appear)
Nuclear Medicine 2nd Ed. Henkin et al.

[16] Hutton, Brian F. “An Introduction to Iterative Reconstruction.” Alasbimn
Journal. Year 5, No. 18: October 2002. Article N° AJ18-6.

67

[17] Dr. Adam Alessio, Research Asst. Professor, Department of Radiology,
University of Washington. “University of Washington Emission Reconstruction
Demo (UWERD).” © Adam Alessio Feb. 2005

[18] Slideshare, "Ct2 History Process Scanners Dip." SlideShare Inc. 06/05/2009
<http://www.slideshare.net/lobelize/ct-2-history-process-scanners-dip>.

[19] Altera Corporation, "FPGA CPLD and ASIC from Altera." Altera Corporation.
06/05/2009 <http://www.altera.com/>.

[20] Dr. Adam Alessio, Research Asst. Professor, Department of Radiology,
University of Washington. “UW Emission Reconstruction.” © University of
Washington, Imaging Research Laboratory Jan 2004.

[21] Espasa, R. and Valero, M. “Exploiting Instruction- and Data-Level
Parallelism.” IEEE Micro. Vol. 17, Issue 5, Sep. 1997. pp. 20-27. DOI=
http://dx.doi.org/10.1109/40.621210

[22] Bushberg, Seibert, Leidholdt and Boone. The Essential Physics of Medical
Imaging. Second Edition, Lippincott Williams and Wilkins, 2002. ISBN 0-683-
30118-7

[23] Jimmy Xu, Department of Electrical Engineering, University of Washington.
FPGA Acceleration of Backprojection.* Master's Thesis, 2009. (*To be published).

[24] Agility Design Solutions Inc., "C Based Products :: Products :: Agility Design
Solutions :: Algorithm to Implementation. Fast." Agility Design Solutions Inc.
06/05/2009 <http://agilityds.com/products/c_based_products/default.aspx>.

[25] Mitronics, Inc., "Mitronics - Hybrid Computing." Mitronics, Inc.. 06/05/2009
<http://www.mitrionics.com/>.

68

[26] Mentor Graphics, "Generate Correct-by-Construction, High-Quality RTL, 10-
100x Faster - Mentor Graphics." Mentor Graphics. 06/05/2009
<http://www.mentor.com/products/esl/high_level_synthesis/catapult_synthesis/>.

[27] Impulse Acclerated Technologies, "Impulse Acclerated Technologies -
Software Tools for an Acclerated World." Impulse Acclerated Technologies.
06/05/2009 <http://www.impulseaccelerated.com/>.

[28] Dempster A, Laird N, and Rubin D. "Maximum likelihood from incomplete
data via the EM algorithm." Journal of the Royal Statistical Society, Vol. 39, 1977.
pp. 1-38.

[29] Shepp L and Vardi Y, "Maximum Likelihood Reconstruction for Emission
Tomography," IEEE Transactions on Medical Imaging, Vol. MI-1, 1982. pp. 113-
122.

