
Impulse Tutorial: Generating HDL from C-Language 1

© 2003-2009 Impulse Accelerated Technologies, Inc.

1 Impulse Tutorial: Generating HDL from C-Language

Overview

This Getting Started tutorial demonstrates how to compile a simple digital signal processing (DSP) filter
written in C into HDL, ready for FPGA synthesis. The goal of this application will be to generate a 16-
bit, 12-tap FIR filter as hardware in the form of either VHDL or Verilog. Although this is a relatively
simple example in terms of the required lines of C code, it does illustrate some key concepts of
Impulse C including the use of streaming and pipelining for high performance.

This tutorial covers the basics of C-to-HDL compilation, using a single C-language process. Additional
tutorials extend the concepts described in this tutorial and cover desktop simulation and debugging, as
well as advanced optimization techniques for increased performance.

This tutorial will require approximately 20 minutes to complete, including software run times.

Steps

Loading the FIR12 Filter Application
Understanding the FIR12 Application
Compiling the C Code to Create HDL
Examining the Generated HDL

For additional information about Impulse CoDeveloper, including detailed tutorials describing more
advanced design techniques, please visit the Tutorials page at the following location:

www.ImpulseAccelerated.com/Tutorials

1.1 Loading the FIR12 Filter Application

FIR Filter Tutorial, Step 1

To begin, start the CoDeveloper Application Manager:

 Start -> Programs -> Impulse Accelerated Technologies -> CoDeveloper -> CoDeveloper
Application Manager

Open the FIR51 sample project by selecting Open Project from the File menu, or by clicking the Open
Project toolbar button. Navigate to the .\Examples\DSP\Fir12\ directory within your CoDeveloper
installation. (You may wish to copy this example to an alternate directory before beginning.)

The project file is also available from the CoDeveloper Start Page, in the Help and Support tab.

After loading the project, you will see a Readme file with a block diagram, and a Project Explorer
window as shown below:

Impulse Tutorial: Generating HDL from C-Language2

© 2003-2009 Impulse Accelerated Technologies, Inc.

Source files included in the Fir12 project include:

· Fir_hw.c - This source file includes the C-language description of the 16-bit, 12-tap FIR filter,
including its I/O.

· Fir_sw.c - This source file includes a set of software testing routines including a main() function,
and consumer and producer software processes as illustrated in the block diagram.

· fir.h - This source file includes common declarations used in both the FIR filter description, and in
the test routines.

You can open any of these three files by simply double-clicking on the file name in the Project Explorer
window. In the next step, we will describe in detail how this example works.

Next Step

Understanding the FIR12 Application

Impulse Tutorial: Generating HDL from C-Language 3

© 2003-2009 Impulse Accelerated Technologies, Inc.

1.2 Understanding the FIR12 Application

FIR Filter Tutorial, Step 2

Before compiling the FIR application to create hardware, let's first take a moment to understand its
basic operation.

The FIR Filter C-Language Process

The specific process that we will be compiling to hardware is represented by the following function,
which is located in Fir_hw.c:

void fir(co_stream filter_in, co_stream filter_out)

This C-language subroutine represents an Impulse C process. A process in Impulse C is a module of
code, expressed as a void subroutine, that describes a hardware or software component.

If you are an experienced hardware designer, you can simply think of a process as being analogous
to a VHDL entity, or to a Verilog module.

If you are a software programmer, you can think of a process as being a subroutine that will loop
forever, in a seperate thread of execution from other processes.

Our fir function has no return value, and has two interfaces that have been defined using Impulse C
co_stream data types. These two streams are used to:

· Read in a set of 12 filter coefficients, and then a stream of sample data on the filter_in stream.

· Write out the filter values on the filter_out stream.

If you are a hardware designer, you can think of a co_stream as being a representation of a first-in,
first-out (FIFO) buffer.

If you are a software programmer, you can think of a co_stream is being roughly analogous to a
FILE type in C. Rather than reading and writing files on a disk, however, we will use the co_stream
type to transfer data between multiple parallel processes.

Scroll down in the source code to view the algorithm and its nested loops:

Notice that the subroutine includes an outer do-while(1) loop, indicating that the subroutine will
execute endlessly. This subroutine describes a persistent, always-running process.

Within this loop, observe how the co_stream_open, co_stream_read, co_stream_write and

Impulse Tutorial: Generating HDL from C-Language4

© 2003-2009 Impulse Accelerated Technologies, Inc.

co_stream_close functions are used to manage the movement of data through the filter. These
functions provide you, the C programmer, with a concise and platform-portable way to express
streaming data. Impulse C supports a number of similar functions that can be used to describe the
movement and management of process-to-process data.

The fir function begins by reading 12 coefficients from the filter_in stream and storing the resulting
data into a local array (coef). The function then reads and begins processing the data inputs, one
sample at a time. Results of filtering are written to the output stream filter_out.

If you scroll down further in the algorithm description, you will find a while loop that describes the
actual filtering operation, which is an iterative multiply-accumulate operation as shown below:

// Read values from the stream
while (co_stream_read(filter_in, &nSample, sizeof(int16)) == co_err_none) {
#pragma CO PIPELINE
#pragma CO SET StageDelay 100

IF_SIM(samplesread++;)
firbuffer[TAPS-1] = nSample;

accum = 0;
for (tap = 0; tap < TAPS; tap++) {
#pragma CO UNROLL

accum += firbuffer[tap] * coef[tap];
}
nFiltered = accum >> 2;
co_stream_write(filter_out, &nFiltered, sizeof(int16));
IF_SIM(sampleswritten++;)

for (tap = 1; tap < TAPS; tap++) {
#pragma CO UNROLL

firbuffer[tap-1] = firbuffer[tap];
}

}

This loop includes two inner loops and a simple set of calculations to iterate over every 12-sample
segment of the incoming data to perform the filtering operation. In each iteration of the while loop,
filtered data is written to the output stream using co_stream_write.

The above loop illustrates a very common pattern for describing filters using Impulse C: a C-language
loop iterates on the incoming data, some processing occurs on that data, and results are written to the
outputs using streaming (as shown here) or other methods.

You probably noticed the use of three pragmas in the code (PIPELINE, UNROLL and SET
StageDelay). These pragmas are the subject of a more detailed tutorial on optimization techniques,
but to summarize (in the order these pragmas are used in the above code):

· The CO PIPELINE pragma indicates that we want the while loop to be implemented as a hardware
pipeline for high throughput. If the hardware compiler is able to generate a perfect pipeline with a
rate of 1, then we can expect this loop to iterate in hardware as fast as one sample per clock cycle,
even if the computations within the loop require more than one cycle.

· The CO SET pragma allows us to specify certain characteristics for the generated hardware. In this
case we are setting a StageDelay constraint that instructs the optimizer to limit the combinational
logic depth of any pipeline stage. If any generated pipeline stage exceeds this constraint, the
optimizer will add additional pipeline stages to better balance the pipeline and allow the hardware to
operate at a high clock rate.

· The UNROLL pragma instructs the optimizer to remove (by unrolling) a loop so that all iterations of
that loop operate in parallel. Unrolling requires that the loop obey certain rules (such as having a
fixed number of loop iterations) but can have dramatic impacts on performance, at the expense of

Impulse Tutorial: Generating HDL from C-Language 5

© 2003-2009 Impulse Accelerated Technologies, Inc.

additional FPGA logic being generated.

The FIR Filter Configuration Subroutine

The fir subroutine described above represents the algorithm to be implemented as hardware in the
FPGA. To complete the application, however, we need to include one additional routine that describes
the I/O connections and other compile-time characteristics for this application. This configuration
routine serves three important purposes, allowing us to:

1. define I/O characteristics such as FIFO depths and the sizes of shared memories.
2. instantiate and interconnect one or more copies of our Impulse C process.
3. optionally assign physical, chip-level names and/or locations to specific I/O ports.

This example only includes one hardware process (the FIR filter) but it also includes the two testing
routines that we described earlier, producer and consumer. Our configuration routine therefore
includes statements that describe how the producer, fir and consumer processes are connected
together. The complete configuration routine is shown below:

void config_fir(void *arg)
{
co_stream waveform_in;
co_stream waveform_out;
co_process fir_process;
co_process producer_process;
co_process consumer_process;
IF_SIM(cosim_logwindow_init();)

waveform_in = co_stream_create("waveform_in", INT_TYPE(16), BUFSIZE);
waveform_out = co_stream_create("waveform_out", INT_TYPE(16), BUFSIZE);

producer_process = co_process_create("producer_process",
 (co_function)test_producer,
 1, waveform_in);
fir_process = co_process_create("filter_process", (co_function)fir,

 2, waveform_in, waveform_out);
consumer_process = co_process_create("consumer_process",

 (co_function)test_consumer,
 1, waveform_out);
// Assign fir process to hardware elements
co_process_config(fir_process, co_loc, "PE0");

}

To summarize, the fir subroutine describes the algorithm to be generated as FPGA hardware, while
the producer and consumer subroutines (described elsewhere, in fir_sw.c) are used for testing
purposes. The configuration routine is used to describe how these three processes communicate, and
to describe other characteristics of the process I/O.

Next Step

Compiling the C Code to Create HDL

1.3 Compiling the C Code to Create HDL

FIR Filter Tutorial, Step 3

Now that you have examined the FIR filter sample code, the next step is to create FPGA hardware and

Impulse Tutorial: Generating HDL from C-Language6

© 2003-2009 Impulse Accelerated Technologies, Inc.

related files from the C code found in the Fir_hw.c source file. This requires that we select a platform
target, specify any needed options, and initiate the hardware compilation process.

Specifying the Platform Support Package

To specify a platform target, select Project -> Options, the select the Generate tab to open the
Generate Options dialog as shown below:

This dialog allows you to set various options for hardware generation, and to select a target platform.
Notice that the Platform Support Package setting indicates we want to generate "Generic (VHDL)" for
our output. This indicates that we have not selected a specific FPGA platform. You can click on the
drop-down Platform Support Package selection list to see what kind of platform support packages are
installed on your system. We will use the default setting for this sample hardware generation.

Note: if you would prefer to generate Verilog, you can change the setting to "Generic (Verilog)" before
continuing.

Impulse Tutorial: Generating HDL from C-Language 7

© 2003-2009 Impulse Accelerated Technologies, Inc.

Other options on this dialog allow you to set the target directory for generating and exporting your HDL,
and set options related to the clock and reset hardware, and include optional hardware libraries.

Click OK to save the options and exit the dialog.

Generating HDL for the Hardware Process

To generate hardware in the form of HDL files, select Project -> Generate HDL. A series of
processing steps will run in the Build console window as shown below (you can use your mouse to
expand the Build window as shown):

The messages generated by the hardware compiler include estimates of loop latencies and pipeline
rates as well as estimates of the number of required hardware operations, as shown above. These
messages can help you to quickly evaluate the effectiveness of your C-language coding methods,
allowing you to iteratively refactor and improve your algorithms before going through a potentially long
process of FPGA synthesis.

Impulse Tutorial: Generating HDL from C-Language8

© 2003-2009 Impulse Accelerated Technologies, Inc.

When the optimization and C-to-HDL processing has completed you will have two resulting HDL files
(either VHDL or Verilog) created in the hw subdirectory of your project directory, including a lib
subdirectory, as shown below:

Next Step

Examining the Generated HDL

1.4 Examining the Generated HDL

FIR Filter Tutorial, Step 4

You have successfully generated HDL from a C-language description. Let's take a moment to examine
the generated HDL and see how it relates to the original C code. We will examine the generated
hardware in the form of VHDL; if you generated Verilog, the syntax will be different but the generated
hardware will be similar.

Top-Level HDL Entity (Module)

Recall that in our original C code, the I/O interfaces for the fir process were described using
co_stream data, and using stream-related functions such as co_stream_read and co_stream_write.

In the generated hardware, the HDL file with the _top file name suffix (in this case Fir12_top.vhd)
represents the top-level I/O implementing these streaming interfaces, as shown below:

Impulse Tutorial: Generating HDL from C-Language 9

© 2003-2009 Impulse Accelerated Technologies, Inc.

entity fir_arch is
 port (
 reset : in std_ulogic;
 sclk : in std_ulogic;
 clk : in std_ulogic;
 p_producer_process_waveform_in_en : in std_ulogic;
 p_producer_process_waveform_in_eos : in std_ulogic;
 p_producer_process_waveform_in_data : in std_ulogic_vector (15 downto 0);
 p_producer_process_waveform_in_rdy : out std_ulogic;
 p_consumer_process_waveform_out_en : in std_ulogic;
 p_consumer_process_waveform_out_data : out std_ulogic_vector (15 downto 0);
 p_consumer_process_waveform_out_eos : out std_ulogic;
 p_consumer_process_waveform_out_rdy : out std_ulogic);
end;

For each of the two streams, notice that there are data and flow control signals with the suffix _data,
_en, _rdy and _eos. These flow control hardware signals are documented in the Impulse User's Guide
and can be used to connect other streaming hardware (as as analog-to-digital inputs, video inputs and
other streaming hardware) directly to an Impulse-generated streaming hardware process.

Also notice the names used when generating the I/O signals. Because we did not specify actual port
names for our input and output streams, the compiler has assigned names to the hardware streams
based on their source and destination, in this case the producer and consumer processes. In a real-
world application we might choose to assign specific names to these streams, using a co_port_create
function, or choose a platform support package that automatically generates appropriately named I/O
wrappers for our target platform.

Moving down in the Fir12_top.vhd file, we can find the following component instantiations (port maps
have been removed for brevity):

 filter_process: fir
 port map (
);

 inst0: stream_dc
 generic map (
 datawidth => 16,
 addrwidth => 1
)
 port map (
);

 inst1: stream_dc
 generic map (
 datawidth => 16,
 addrwidth => 1
)
 port map (
);

The filter_process component is an instantiation of our fir subroutine, as specified in our C-code
using the co_process_create function. The inst0 and inst1 components are instantiations of Impulse
stream components (FIFO elements), as specified using the co_stream_create function.

Component-Level HDL Entity (Module)

To view the lower-level HDL code for the fir subroutine, open the Fir12_comp.vhd file as shown
below:

Impulse Tutorial: Generating HDL from C-Language10

© 2003-2009 Impulse Accelerated Technologies, Inc.

This HDL file includes the state machines and other logic that implements the parellized and pipelined
operations described in C. This example includes a pipelined inner code loop with an unrolled loop,
which results in a substantial amount of HDL code being generated:

Impulse Tutorial: Generating HDL from C-Language 11

© 2003-2009 Impulse Accelerated Technologies, Inc.

When you examine this generated HDL code, keep in mind that the number of lines of HDL code is not
directly related to the size of the FPGA resources. In this case, because of the loop unrolling and
pipelining, a large number of intermediate signals are generated by the compiler. These intermediate
signals are optimized away by the FPGA synthesis tool, resulting far less logic than the lines of HDL
code might indicate.

Note: the amount of FPGA resources and final performance for such a filter will depend on the selected
FPGA platform, on the synthesis settings, and on what other hardware elements are being combined
with this filter in the complete system. In the case of this algorithm (a 16-bit, fully pipelined and
parallelized 12-tap filter), you can expect to use approximately 12 DSP slices in a typical FPGA device.

Viewing the Results Graphically

To see a graphical representation of the generated hardware, invoke the Stage Master Explorer tool by
selecting PTools -> State Master Explorer. When prompted, select the Fir51.xic compiler-
intermediate file. You can use Stage Master Explorer to view an expanded form of the original source
code, and to view a graph of the unrolled and pipelined inner loop as shown below:

Impulse Tutorial: Generating HDL from C-Language12

© 2003-2009 Impulse Accelerated Technologies, Inc.

Impulse Tutorial: Generating HDL from C-Language 13

© 2003-2009 Impulse Accelerated Technologies, Inc.

To view the graph as shown above, use your mouse to click and drag a section of the displayed
pipeline graph.

Next Steps

You have now completed this tutorial. At this point you may want to explore other examples provided
with CoDeveloper, or explore some of the more advanced, platform-specific tutorials to learn more
about how to use the generated HDL in actual hardware.

For additional information other detailed tutorials, please visit the Tutorials page at the following
location:

www.ImpulseAccelerated.com/Tutorials

	Impulse Tutorial: Generating HDL from C-Language
	Loading the FIR12 Filter Application
	Understanding the FIR12 Application
	Compiling the C Code to Create HDL
	Examining the Generated HDL

