
XAPP901 (v1.0) December 16, 2005 www.xilinx.com 1

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Summary Platform-FPGA software applications are significantly faster when critical functions are moved
to the hardware domain and a high bandwidth data transfer mechanism is used to exchange
data between the hardware and software. This application note describes how C-to-HDL tools
can easily create a hardware coprocessor from a critical function in the software system. These
tools enable software engineers with cursory hardware knowledge to leverage the advantages
of hardware-software co-design. The Auxiliary Processor Unit (APU) controller closely couples
the embedded PowerPC™ processor and the Fabric Coprocessor Module (FCM), and provides
a low-latency, high-bandwidth communication path. This application note demonstrates an
accelerated Mandelbrot image generation application by moving computation-intensive
functions to the hardware domain and attaching it to the PowerPC processor using the
Virtex™-4 FX APU controller.

Introduction The Mandelbrot image, a classic example of fractal geometry, is widely used in the scientific
and engineering community to simulate chaotic events such as weather. Fractals are also used
to generate textures and imaging in video rendering applications. Mandelbrot images are
described as self-similar; on magnifying a portion of the image, another image similar to the
whole is obtained.

The Mandelbrot image is an ideal candidate for hardware-software co-design because it has a
single computation-intensive function. Making this critical function faster by moving it to the
hardware domain, significantly increases the speed of the whole system. The Mandelbrot
application also lends itself nicely to clear divisions between hardware and software processes,
making it easy to implement using C-to-HDL tools. In this application note the CoDeveloper™
toolset, provided by Impulse Accelerated Technologies, is used as the C-to-HDL toolset.

A software-only Mandelbrot C program is modified to make it compatible with the C-to-HDL
tools. These changes include: division of the software project into distinct processes
(independent units of sequential execution), conversion of function interfaces (hardware to
software) into streams, and adding of compiler directives to optimize the generated hardware.
The CoDeveloper toolset subsequently creates Pcores that are easy to import into the Xilinx
Platform Studio™ (XPS) tool.

The generated Pcore is attached to the APU controller interface and tested. The PowerPC APU
controller interface is an excellent solution for the required hardware-software data exchange
interface due to its low overhead and high bandwidth capability.

Overview of Key
Concepts

CoDeveloper Software

The steep learning curve associated with hardware design prevents many software engineers
from taking advantage of hardware-software co-design in embedded systems. The
CoDeveloper toolset, developed by Impulse Accelerated Technologies, makes the process
easier by converting untimed C functions into HDL code. CoDeveloper software includes the
Impulse C™ function library (for individual hardware platforms and for desktop simulations) and
compiler (software to hardware conversion). The CoDeveloper toolset forms a development
environment around the Impulse C library and compiler that includes debugging tools. DSP,
image processing, encryption/decryption, bioinformatics, and high-performance embedded
systems fall within the CoDeveloper toolset application domain.

Application Note: Virtex-4 FX FPGAs

XAPP901 (v1.0) December 16, 2005

Accelerating Software Applications Using
the APU Controller and C-to-HDL Tools
Author: Kunal Shenoy

R

http://www.xilinx.com

2 www.xilinx.com XAPP901 (v1.0) December 16, 2005

Overview of Key Concepts
R

Once a critical software function is identified, the CoDeveloper toolset converts it to hardware
and stores it in a format easily imported into XPS. The CoDeveloper toolset provides additional
capabilities including desktop simulations for logical verification and the Stage Master
Explorer™ tool to optimize C code and generated hardware. More information can be obtained
at http://www.impulsec.com.

Impulse C software is based on the Communicating Sequential Processes (CSP) programming
model. CSP consists of well-defined, individual, and distinct units of sequential execution called
processes. These processes communicate with each other through synchronization buffers
called streams. In CoDeveloper systems, each process is classified as a hardware or software
process, communicating through these streams. Function calls to the Impulse C library are
used to create the processes and to perform reads and writes to streams. These abstract
streams are mapped to the target platform technologies via additional library calls during the
implementation phase. The platform support package assigned to the project determines the
technology on the target platform. The APU controller interface on a Virtex-4 device is the
target platform in this application note.

Impulse C software is not expected to outperform hand-optimized HDL in terms of performance
or size. The CoDeveloper toolset is positioned for engineers lacking the time or educational
resources for conversion, and are not concerned about a slight performance or size penalty
associated with an automated process performing the conversion. Figure 1 is a flow diagram of
the CoDeveloper toolset.

Figure 1: CoDeveloper Toolset Developed by Impulse Accelerated Technologies

Generate
FPGA

Hardware

Generate
Hardware
Interfaces

Generate
Software
Interfaces

C Language
Applications

HDL
Files

C Software
Libraries

Virtex-4
FPGA

X901_01_101305

F
P

G
A

 F
ab

ric

P
ow

er
P

C
 P

ro
ce

ss
or

http://www.xilinx.com
http://www.impulsec.com

Overview of Key Concepts

XAPP901 (v1.0) December 16, 2005 www.xilinx.com 3

R

CoDeveloper Toolset to XPS Tool Flow

Figure 2 shows the CoDeveloper toolset integrated with the XPS tool flow. The tool flow
primarily involves finding critical functions in a legacy project, converting them to a Pcore using
the CoDeveloper toolset, and using that Pcore in the FPGA system to speed it up.

The steps in the initial Xilinx Platform Studio (XPS) flow are:

1. A basic hardware system in Base System Builder (BSB) is created and tested.

2. A software project within the XPS project is created, and the user algorithm is coded and
tested. If the project does not meet performance specifications, the flow continues to
Step 3.

3. The gprof application or any other code-profiling application is run to find the critical
function in the XPS software project.

Figure 2: CoDeveloper to XPS Tool Flow

Create Basic Hardware System
Using Base System Builder
(BSB) and Test

Create Software Project, Test
Algorithm and Run gprof to
Profile Code

Move XPS Software Project to
the CoDeveloper Toolset, Make
Modifications and Assign Critical
Function to Hardware

Perform Desktop
Simulations to Verify Logic and
Structure of Modified Code

Choose Platform Support
Package, Generate HDL, and
Export Hardware and Software to
Previous XPS Project

Reopen XPS Project and
Import Created Pcore.
Connect Pcore to the FPGA
System.

Create a New Software Project
in XPS and Add All Files From
the Code Directory Generated
by the CoDeveloper Toolset.

Rebuild the Entire Project.
Download the Bitstream
and Test.

X
P

S

X
P

S

C
oD

ev
el

op
er

C
oD

ev
el

op
er

X
P

S

X
P

S

X901_03_110705

http://www.xilinx.com

4 www.xilinx.com XAPP901 (v1.0) December 16, 2005

Overview of Key Concepts
R

The steps in the CoDeveloper flow are:

4. The software project is copied from XPS, and the code is modified to make it compatible
with the Impulse C software. Critical functions found from profiling the code are assigned to
hardware.

5. Desktop simulations are performed to verify the program structure is properly
implemented.

6. A platform support package is chosen, HDL is generated, and is exported to the XPS
project together with the software.

The steps in the final XPS flow are:

7. The created hardware is imported as a Pcore and connected to the FPGA system.

8. A new software project is created in XPS and the software application files generated by
the CoDeveloper toolset are included.

9. The entire project is rebuilt and the bitstream is downloaded to the target to test.

APU Controller

The APU controller provides a flexible and high-bandwidth data transfer mechanism between
FCMs and the embedded PowerPC processor on Virtex-4 FX FPGAs. The APU interface is
connected directly to the instruction pipeline and to one or more FCMs. The typical latency
associated with arbitration on a peripheral bus (PLB or OPB) is absent. This interface is ideal
for FCMs in the critical path where the transfer of data can create a system performance
bottleneck. Figure 3 shows a block diagram of the APU controller.

Figure 3: APU Controller Processing Operative Block Diagram

Fetch Stage

Decode Stage

Load WB Stage

WB Stage

Decode

Exec. Units

EXE Stage

PPC405

Instructions from
Cache or Memory

Decode
Control

Decode
Registers

APU Decode

Pipeline
Control

Buffers and
Synchronization

Processor Block

Instruction

Control

Load Data
APU

Controller

Optional Decode

Operands

Reset

Register File

Execution
Units

Fabric Coprocessor
Module (FCM)

X901_02_110405

http://www.xilinx.com

Mandelbrot Image Calculation

XAPP901 (v1.0) December 16, 2005 www.xilinx.com 5

R

The APU controller performs two main functions:

• It provides a synchronization mechanism between the PowerPC processor and the FCM
running at a lower clock rate.

• It decodes instructions or allows the FCM to decode instructions. Execution, however, is
always carried out by the FCM.

When the instruction is due for decoding, it is presented to both the PowerPC processor and
APU controller. If the instruction is not recognized as a CPU instruction, the PowerPC
processor looks for a response from the APU controller to signal a valid instruction. If valid, the
required operands are fetched and passed to the APU for processing. Instructions directed
towards the FCM can be either predefined in the Instruction Set Architecture (ISA), such as
floating-point instructions, or can be user-defined instructions.

The CoDeveloper toolset creates hardware cores designed to interface with the APU interface
for easy integration into FPGA systems using XPS. Impulse C software currently uses the
load/store instructions, predefined by the ISA, to transfer data between the PowerPC data
memory system and the FCM.

This application note uses the APU interface available on the Virtex-4 FX FPGA. With a few
changes, as described in the CoDeveloper documentation, the application can easily be ported
to other hardware technologies, such as the MicroBlaze™ processor with its Fast Simplex Link
(FSL) or the PowerPC processor with its Processor Local Bus (PLB). Though the
implementation details are transparent to the user, the user needs to be aware of options
available for hardware-software data interfaces.

Mandelbrot
Image
Calculation

Mandelbrot images are created by calculating the color of each pixel of the image using the
iterative computation of a formula with the previous results used in the present calculation. The
Mandelbrot image is formed by repeatedly squaring a complex number and adding another
complex number. The complex number added to the equation is constant for a particular pixel
and is changed by a fixed amount for each pixel.

To generate a Mandelbrot image, the image corners are first given complex number constants.
The difference between the same axis corner values is divided by the number of pixels needed.
This number is then added to the complex number constant (c) whenever traversing pixels.
Equation 1 provides the initial value of Z. In Equation 2, c is the constant, complex number.

Equation 1

Equation 2

Equation 2 is computed repeatedly for each pixel until a maximum iteration count is reached or
the value of ZN diverges towards infinity. A pixel’s color in the image depends on whether that
pixel is in the Mandelbrot set and the number of iterations it takes to determine that it is in the
set. Specifying a larger maximum iteration count provides a better quality image but also
increases the associated computation time.

Software-Only
Implementation
of Mandelbrot
Function

Software-Only Algorithm

Figure 4 lists the software-only algorithm of the Mandelbrot generation function. The code
implementation of Algorithm 1 is available in the reference design in the mand_sw_only.c file.

Z0 0 j0+=

ZN 1+ ZN
2 c+=

http://www.xilinx.com

6 www.xilinx.com XAPP901 (v1.0) December 16, 2005

Making Legacy Mandelbrot Code Impulse C Compatible
R

Implementation Details

The implementation is a fixed-point version of the Mandelbrot set generator. Hardware is
inefficient at implementing floating-point calculations, and the CoDeveloper toolset currently
does not support it. Thus to maintain fairness between the comparison of the software-only and
hardware projects, the software version uses a fixed-point version, too.

At several places, the preprocessor directive of #ifndef IMPULSE_C_TARGET is used to
perform certain functions if the program is run in desktop simulation mode in the CoDeveloper
system. This directive allows users to perform additional analyses of the application and
functionally verify the system while desktop simulations are taking place.

Parameters are passed to the mand_sw_only() function as arguments from the calling
function. These parameters greatly affect the image generated on the screen.

The calculation of the Mandelbrot image is done using three nested loops. The outermost loop
traverses through horizontal lines. The next inner loop traverses all pixels across a horizontal
line of the image before moving to the next line. In the innermost loop, the test number is
repeatedly squared and added to the complex constant. This loop is terminated when the
number of iterations reaches a maximum count or the number starts diverging towards infinity.

If the point diverges towards infinity, it is assigned a color proportional to the number of
iterations taken to reach the conclusion. If the point does not diverge by the time the maximum
number of iterations is reached, then it is assigned black. The pixels are then displayed on the
LCD display via an external function.

Because pixel calculation is the major component of the critical path of the system, this function
is moved to hardware using the CoDeveloper toolset and connected to the APU controller. For
applications where the critical function is not clear, a simple analysis using the gprof tool is
sufficient.

Making Legacy
Mandelbrot
Code Impulse C
Compatible

Defining Processes and Streams in the System

Processes, which are fundamental units of computation in the Impulse C software, execute
sequentially. This model of parallel programming is different from the usual software model of a
monolithic main function which calls lower hierarchy subroutines as required. In Impulse C
software, processes are clearly demarcated and communicate between themselves only
through communication channels called streams. The processes only depend on one another
via calls to blocking stream read or stream write functions.

For the Mandelbrot application, the processes are divided as shown in Figure 5. The pixel
calculation function is assigned to hardware, which reduces its computation time. With the
assistance of the high-bandwidth APU controller, the speed of the critical path of the system is
increased.

Figure 4: Algorithm 1: Software-only Algorithm of the Mandelbrot Generation Function

For each horizontal line
For each pixel of the horizontal line
Z = 0
Number of iterations = 0
Do
Square the complex number Z from the previous iteration
Add the complex constant number to Z
Increment number of iterations by one

While number of iterations has not exceeded max count or convergence condition
of Z fails
If number of iterations is equal to max count then
Pixel color = black

Else
Pixel color is proportional to number of iterations taken

Plot the pixel on the screen through the VGA port

http://www.xilinx.com

Making Legacy Mandelbrot Code Impulse C Compatible

XAPP901 (v1.0) December 16, 2005 www.xilinx.com 7

R

Once implemented in hardware, software functions can communicate with the hardware via
function calls to streams, including the co_stream_read and co_stream_write functions.
Because streams are unidirectional, two streams are used for this application: one to send the
configuration data to the hardware and the second to read the pixel values back into the
PowerPC processor. These streams also provide the buffering and synchronization required
between the hardware and software domains.

Important Impulse C Functions

There are four key Impulse C Stream functions:

co_stream_open
co_error co_stream_open(co_stream <stream>, mode_t <mode>, co_type <type>);

This function, which is called from within a process, initializes a stream to a known state.

co_stream_write
co_error co_stream_write(co_stream <stream_name>, const void *<buffer>, size_t
<buffer_size>);

Processes use this function to write to an opened stream from *buffer. Streams are the
mechanism through which processes communicate.

co_stream_read
co_error co_stream_read(co_stream <stream_name>, void *<buffer>, size_t
<buffer_size>);

Processes use this function to read in data into *buffer from open streams.

co_stream_close
co_error co_stream_close(co_stream <stream_name>);

This function closes the calling process’s side of the stream by sending a end-of-stream
signal to the other process.

Adding a Configuration Function

Every Impulse C project requires a configuration function that specifies the processes in the
system and whether the process is implemented in hardware or software. The configuration
function also declares the streams created and how they are used to interconnect the
processes. Streams and processes are created via impulse C function calls in the configuration
function.

a

Figure 5: Basic Structure of the Mandelbrot Application with Processes and Streams

Send Image Parameters
to the Fabric Coprocessor Module
(FCM) over the config_stream
Stream
Read Pixel Values from
the Fabric Coprocessor Bus (FCB)
over pixel_stream
and Plot on Screen

Store Image Parameters
from Software over
config_stream

Calculate Pixel Values
and Send to Software over
pixel_stream

mand_accel_hw:
Hardware Accelerator Process

mand_accel_sw:
Software Producer and Consumer Process

X901_05_120605

pixel_stream

config_stream

http://www.xilinx.com

8 www.xilinx.com XAPP901 (v1.0) December 16, 2005

Making Legacy Mandelbrot Code Impulse C Compatible
R

Process Functions

• co_process_create

co_process co_process_create(const char *<name>, co_function <function_name>, int

argc,….);

This function, called from within the system’s configuration function, creates a process out
of <function_name>.

• co_process_config

co_error co_process_config(co_process <process_name>, co_attribute <attribute>,
const char *<value>);

This function, called from within the system’s configuration function, changes attributes of
a created process. As of this printing, only the co_loc attribute is supported, which specifies
the FPGA on which the process is to be implemented in a multi-FPGA system.

Stream Functions

• co_stream_create

co_stream co_stream_create(const char *<stream_name>);

Called from within the system’s configuration function, this function creates a stream called
<stream_name>.

System Functions

• co_architecture_create

(co_architecture) <architecture_name> = co_architecture_create(const char*
<name_for_simulations>, const char* <architecture>, co_function
<configuration_function>, void* <arguments>);

This function associates the user’s application with a specific architecture definition.

• co_execute

co_execute((co_architecture) <architecture_to_execute>);

This function starts execution of an Impulse C system.

• co_initialize

(co_architecture) <architecture_name> = co_initialize(void* <arguments>);

This function defines the relation between the application’s main function and its
configuration function.

Adding #pragmas

Pragmas are compiler-specific directives, which guide the software-to-hardware compiler in
Impulse C software. Currently, Impulse C software allows pipelining and unrolling of loops to
optimize the logic created either for performance or space. Maximum logic delays of pipeline
stages can also be specified, determining the maximum frequency at which the created
peripheral can be clocked when implemented in the FPGA fabric. Clock boundaries can be
introduced into the untimed C application.

Fixed-Point Conversion

Real numbers are frequently converted to fixed-point representations in hardware because
they are quicker to process and use fewer resources. Fixed-point numbers have fixed bit
lengths used to represent the sign, integer, and decimal portions of the value. The exact
division of space is up to the user and is a trade-off between the size of the variable, its range,
and its precision. Any operation performed on fixed-point variables can potentially cause errors
if care is not taken to maintain the correct format.

http://www.xilinx.com

Making Legacy Mandelbrot Code Impulse C Compatible

XAPP901 (v1.0) December 16, 2005 www.xilinx.com 9

R

If a hardware function utilizes floating-point variables, they have to be modified to fixed-point
versions. The Impulse C software provides a number of fixed-point data types and macros to
perform calculations with fixed-point numbers. [Ref 7] is an application note on floating-point to
fixed-point conversion.

Desktop Simulations

Desktop simulations allow users to verify the functionality of their mixed mode systems before
implementation in the FPGA. Using simulations, logical errors can be caught early in the design
cycle and corrected. Impulse C libraries for desktop simulations can be used in any popular
development environment, such as Visual C or GCC. Users can utilize familiar tools, such as
GDB, to debug their designs.

To simulate interfaces, the CoDeveloper toolset includes the CoMonitor Application Monitor.
The CoMonitor application is started prior to running the simulation. It allows users to capture
messaging, the streamed data values and other instrumenting information. Each process in the
user project can open a log window using the cosim_logwindow_create() function to
monitor the execution of that process.

http://www.xilinx.com

10 www.xilinx.com XAPP901 (v1.0) December 16, 2005

Hardware-Software Implementation of the Mandelbrot Function
R

Hardware-
Software
Implementation
of the
Mandelbrot
Function

Figure 6 shows how the Mandelbrot image generator function, which is Impulse C compatible,
is implemented in hardware and software.

Figure 6: Flowchart of Impulse C Compatible Mandelbrot Image Generation Application

Convert Real Parameters
to Fixed Point

Write Fixed-Point
Parameters to
config_stream

Software Hardware

Read in Pixel Value

Close Stream

Stop

Pixel Value = =
End of Stream?

B
lo

ck
in

g
st

re
am

_w
rit

e
(

)

B
lo

ck
in

g
st

re
am

_r
ea

d
(

)

Pixel Value
Diverging or Max

Iterations Reached?

All Pixels
of Current Horizontal

Line Calculated?

All Horizontal
Lines Calculated?

Close Stream

Stop

Write Pixel Color to
pixel_stream

B
lo

ck
in

g
st

re
am

_w
rit

e
(

)

Compute Pixel Color

Perform Complex
Squaring and Summing

Operation

Read in Parameters Over
config_stream

B
lo

ck
in

g
st

re
am

_r
ea

d
(

)

No

Yes

Yes

Yes

1

config_stream

Buffer Size = 10

X901_04_110105

Yes
No

No

Plot Pixel
on Screen

1

No

pixel_stream

Buffer Size = 250

http://www.xilinx.com

Hardware-Software Implementation of the Mandelbrot Function

XAPP901 (v1.0) December 16, 2005 www.xilinx.com 11

R

Converting C Code to a Pcore

Figure 7 lists the algorithm of the Impulse C compatible Mandelbrot function. The algorithm
shown in Figure 4 has been changed in Figure 7, and the changes are in bold type.The
implementation of this algorithm is available in the reference design in the mand_accel_hw.c
file.

Implementation Details

The following code shows an implementation of the Impulse C compatible Mandelbrot function.

//mand_accel_hw() is the mandelbrot generation function to be converted to a HW process.
//config_stream = stream over which mand_accel_hw() reads in parameters from mand_accel_sw().
//pixel_stream = stream over which mand_accel_hw() sends pixel values to mand_accel_sw().
//mand_accel_hw takes in image parameters from mand_accel_sw, calculates pixel values
//and sends it back to mand_accel_sw.
void mand_accel_hw(co_stream config_stream, co_stream pixel_stream)
{

co_int32 xmax, xmin, ymax, ymin, dx, dy;//image parameters
co_uint24 B, G, R, BGR; //pixel color variables
co_int32 i, j, k; //loop variables
co_int32 c_imag, c_real; //complex constant number added to product of squaring
co_int32 two, four; //used to hold integer constants in fixed-point format
co_int32 result, tmp; //calculation variables
co_int32 z_real, z_imag; //complex number used in calculation

//constant integers assigned in fixed point format
//#define FXCONST(a) FXCONST32(a,FRACBITS)\
//#define FXCONST32(a,DW) ((uint32)((a)<<DW))
two = FXCONST(2);
four = FXCONST(4);

//co_stream_open() resets the internal state of the stream
//Usage: co_stream_open(stream_name, O_RDONLY/O_WRONLY, size_of_stream_element);
//Streams are unidirectional and hence they have to be opened to be read
//or written to exclusively
co_stream_open(config_stream, O_RDONLY, INT_TYPE(32));

//Read in parameters of Mandelbrot image from sw function over the config_stream stream.
//Function will return error code and loop will exit, if SW process on other end writes
//an end-of-stream token.

Figure 7: Algorithm 2: Impulse C Compatible Mandelbrot Function

Open the parameter input stream to read in image parameters
Read in the image parameters from the stream
Open the pixel output stream to write out pixel colors
For each horizontal line
For each pixel of that horizontal line
Z = 0
Number of iterations = 0
Do
Square the complex number Z from the previous iteration
Add the complex constant number to Z
Increment number of iterations by one

While number of iterations has not exceeded max count or convergence condition
of Z fails
If number of iterations is equal to max count then
Pixel color = black

Else
Pixel color is proportional to number of iterations taken

Write the pixel value to the pixel output stream
Close pixel output stream
Close parameter input stream

http://www.xilinx.com

12 www.xilinx.com XAPP901 (v1.0) December 16, 2005

Hardware-Software Implementation of the Mandelbrot Function
R

//co_stream_read() reads data from a non-empty stream or else it blocks.
//Usage: co_stream_read(stream_name, variable_address, data_read_size);
//xmax and ymin are not used in this function. The parameters are included for completeness.
while (co_stream_read(config_stream, &xmax, sizeof(co_int32)) == co_err_none)
{

 co_stream_read(config_stream, &xmin, sizeof(co_int32));
 co_stream_read(config_stream, &ymax, sizeof(co_int32));
 co_stream_read(config_stream, &ymin, sizeof(co_int32));
 co_stream_read(config_stream, &dx, sizeof(co_int32));
 co_stream_read(config_stream, &dy, sizeof(co_int32));

//co_stream_open() resets the internal state of the stream
//Usage: co_stream_open(stream_name, O_RDONLY/O_WRONLY, size_of_stream_element);
co_stream_open(pixel_stream, O_WRONLY, UINT_TYPE(24));
c_imag = ymax;
for (j = 0; j < YSIZE; j++) //For each horizontal line
{
c_real=xmin;
for (i=0; i<XSIZE; i++) //For each pixel of each horizontal line
{

 z_real = z_imag = 0;
 k = 0;

//Calculate pixel color
do
{

//Hardware optimization pragmas
//See Impulse C documentation for more information
#pragma CO pipeline //pipeline the following code to increase throughput
#pragma CO set stageDelay 200//set max-stage-delay to 200 units.

//Units roughly correspond to gate delays of target technology.
//Max stage delay determines the maximum
//frequency the logic can be clocked.

//Square complex number, add complex constant and check magnitude
tmp = z_real;
z_real = FXMUL(z_real, z_real);
z_real = FXSUB(z_real, FXMUL(z_imag, z_imag));
z_real = FXADD(z_real, c_real);
z_imag = FXMUL(tmp, z_imag);
//change *2 to <<1, which is more efficiently implemented in HW
//z_imag = FXMUL(two,z_imag);
z_imag = z_imag << 1;
z_imag = FXADD(z_imag, c_imag);
tmp=FXMUL(z_real, z_real);
result = FXADD(tmp, FXMUL(z_imag, z_imag));
co_par_break();//cycle boundary added to make logic fit within 10ns clock cycle.

//If removed timing will fail during implementation.
k++;

} while ((result < four) && (k < MAX_ITERATIONS));
//loop will exit if complex number diverges or max iterations is reached
//Calculate pixel color
//If number diverged then color assigned depends on number of iterations
if (k != MAX_ITERATIONS)
{

G = (k > 255) ? 255 : k;
B = R = 0;

}
else //Else pixel is colored black
{

B = G = R = 0;
}

http://www.xilinx.com

Hardware-Software Implementation of the Mandelbrot Function

XAPP901 (v1.0) December 16, 2005 www.xilinx.com 13

R

//Assign color in Blue(8 bit)-Green(8 bit)-Red(8 bit) format for storage in video memory.
BGR = ((B << 16) & BLUEMASK) | ((G << 8) & GREENMASK) | (R & REDMASK);

//Write pixel value to stream, which will be read by the SW process on other end of stream.
//co_stream_write() writes a data value to a stream.
//Usage: co_stream_write(stream_name, variable_address, size_of_stream_element);
co_stream_write(pixel_stream, &BGR, sizeof(co_uint24));
c_real = FXADD(c_real, dx);

}
c_imag = FXSUB(c_imag, dy);

}
//co_stream_close() writes a end-of-stream(EOS) token to the selected stream
//When the process on the other end of the stream reads the EOS, it can close its side of the
//stream
//Usage: co_stream_close(stream_name);
//Close pixel_stream after writing all pixel values to it.
co_stream_close(pixel_stream);

}
//End-of-stream token has been read on config_stream, hence close HW side of config_stream
co_stream_close(config_stream);

}

The co_stream_read function reads in data placed by another process on the opposite end
of the stream. It is used in the hardware function to read in the parameters of the Mandelbrot
image. The function then iterates over all the pixels of the image and calculates each color to be
plotted on the screen.

co_stream_read(config_stream, &xmin, sizeof(co_int32));

The CO pipeline pragma instructs the compiler to pipeline the generated hardware to speed up
execution. Because the amount of logic in each stage of the pipeline directly affects the
maximum clock frequency of the fabric, it can be controlled using the stageDelay pragma. The
specific stageDelay was chosen after analysis done using the Stage Master Explorer for
maximum performance. A unit in the stageDelay parameter represents a unit logic delay in the
target FPGA.

#pragma CO pipeline
#pragma CO set stageDelay 200

These lines of code in the hardware function do the actual calculation and are looped over all
the pixels to be generated. Here the complex number is first squared up and then a constant is
added to the result.

tmp = z_real;
z_real = FXMUL(z_real,z_real);
z_real = FXSUB(z_real,FXMUL(z_imag,z_imag));
z_real = FXADD(z_real,c_real);
z_imag = FXMUL(tmp,z_imag);
//z_imag = FXMUL(two,z_imag);
z_imag = z_imag << 1;
z_imag = FXADD(z_imag,c_imag);
tmp=FXMUL(z_real,z_real);
result = FXADD(tmp,FXMUL(z_imag,z_imag));
k++;

The color of the pixel is then calculated and written out to the pixel_stream. The consumer
process at the other end of the pixel_stream reads in and plots the data on the screen.

B = G = R = 0;
if (k != MAX_ITERATIONS)
{

G = k > 255 ? 255 : k;
}
BGR=((B<<16)&BLUEMASK)|((G<<8)&GREENMASK)|(R&REDMASK);

http://www.xilinx.com

14 www.xilinx.com XAPP901 (v1.0) December 16, 2005

Hardware-Software Implementation of the Mandelbrot Function
R

co_stream_write(pixel_stream,&BGR,sizeof(co_uint24));

The end of the function closes the stream. Closing the stream, by the process that writes to it,
causes an end–of-stream token to be transmitted down the stream. When the consuming
process reads an end-of-stream token, it interprets it as an error and the reading function
returns a non-zero value. Closing the stream is important to ensure all data in the stream has
been read by the consumer function and that the consumer function does not close the stream
before all present data is read.

co_stream_close(config_stream);

The configuration function defines the system in terms of processes and their interconnection
via streams. This system has two processes and two created streams. The stream names are
passed as arguments to the co_process_create() calls to form the connection. Lastly, the
co_process_config() function specifies which of the processes previously created are to
be implemented as hardware processes.

//Configuration function of CoDeveloper project
//Every CoDeveloper project must contain a single configuration function, which
//declares processes, streams and connectivity in the system
void config_mand(void *arg)
{
co_process mand_hw_proc, mand_sw_proc;//system processes
co_stream pixel_stream, config_stream;//system streams

//Declaration of streams
/*Usage : (co_stream)stream_name = co_stream_create("stream_name_for_sims", size_of_stream_element,
no_of_elements_in_stream);*/

//STREAM_BUFSIZE = 250. Large enough to hold data for one horizontal line.
pixel_stream = co_stream_create("pixel_stream", UINT_TYPE(24), STREAM_BUFSIZE);
//CONFIG_BUFSIZE = 10. Large enough to hold all the image parameters
config_stream = co_stream_create("config_stream", INT_TYPE(32), CONFIG_BUFSIZE);

//Declaration of processes
/*Usage : (co_process)process_names = co_process_create("process_name_for_sims", (co_function)function_name,
number_of_arguments, arg1, arg2,....); */

mand_hw_proc = co_process_create("mand_proc", (co_function)mand_accel_hw, 2, config_stream, pixel_stream);
mand_sw_proc = co_process_create("test_proc", (co_function)mand_accel_sw, 2, config_stream, pixel_stream);

//mand_hw_proc to be moved to hardware
//Usage: co_process_config(process, attribute_to_change, attribute_value);
//currently only attribute_to_change = co_loc and attribute_value = PE0 are
//supported
co_process_config(mand_hw_proc, co_loc, "PE0");

}

Generated Pcore Characteristics

The Pcore generated by the CoDeveloper toolset has the necessary interface to connect it to
the Fabric Coprocessor Bus (FCB). The Pcore is placed in the pcores/ directory, while the
associated drivers are placed in the drivers/ directory. The Pcore, written in VHDL,
maintains the variable names used in the original C function as far as possible. Engineers
experienced with HDLs can, if desired, hand-tune the generated HDL to improve performance.

Table 1 shows that significant system improvement is obtained utilizing just 606 slices or 11%
of a Virtex-4 FX12 device.

Table 1: Logic Utilization of Pcore Accelerator

Resource Type Used Available Percent Utilization

Slices 606 5472 11

Slice Flip-Flops 670 10944 6

http://www.xilinx.com

Hardware-Software Implementation of the Mandelbrot Function

XAPP901 (v1.0) December 16, 2005 www.xilinx.com 15

R

The DSP slices perform the numerous multiplications and additions required in the algorithm.
Xilinx supplies larger devices such as the XC4VFX140, which contains 192 DSP48 slices, if
multiple accelerators are to be implemented.

The block RAMs are used as FIFOs to implement the streams interface to the hardware and
software processes. The generated Pcore uses one FIFO16 for the configuration stream and
another for the pixel stream.

Connecting the Pcore to the APU Bus

Figure 8 shows the system implementation that connects the Pcore to the APU bus.

The CoDeveloper toolset automatically generates all signals that connect the Pcore to the APU
controller or the FCB. These connections are transparent to the user, requiring no manual
intervention. Decisions regarding the clock signals have to be made. The generated Pcore has
dual-clock streams, which allows the two ends of the stream to be clocked at different rates.
Two clocks are useful in this application because the APU controller side (100 MHz) runs faster
than the FCM side (50 MHz).

The maximum frequency at which the fabric can be clocked is determined by the stage delay
parameter used in the CoDeveloper project. A smaller stage delay allows a higher frequency
but increases the number of pipeline stages. The Stage Master Explorer tool within the
CoDeveloper toolset performs a parametric analysis of the various pipeline rates that result for
various values of stage delay. It also provides a graphical display of the basic blocks identified
in the code.

4-input LUTs 1044 10944 9

Bonded IOBs 217 320 67

FIFO16s/RAMB16s 2 36 5

DSP48s 20 32 62

Table 1: Logic Utilization of Pcore Accelerator

Resource Type Used Available Percent Utilization

http://www.xilinx.com

16 www.xilinx.com XAPP901 (v1.0) December 16, 2005

Reference Design
R

Reference
Design

Required Hardware and Software Tools

The required tools for this reference design are:

• Xilinx ML403 Virtex-4 Evaluation Platform or Avnet Virtex-4 FX12 Evaluation Platform with
Audio/Visual Daughter card

• Programming cable and board power supply

• VGA Monitor

• ISE v7.1.04i (Service Pack 4) or later

• Xilinx Platform Studio 7.1.02i (Service Pack 2) tool or later

• CoDeveloper v2.01.b.20 toolset (optional)

The reference design carries a Pcore previously generated by the CoDeveloper toolset and
can be used in cases where access to the CoDeveloper toolset is unavailable. Evaluation
versions of the CoDeveloper toolset are available at http://www.impulsec.com.

Figure 8: System Implementation on the Virtex-4 FPGA

PPC405 Core

[SoftwareExecution]

A
P

U
 C

on
tr

ol
le

r

100 MHz

IN

FX DV
(1/2)

CLK0

DCM
Module

PLB

In
te

rf
ac

e
Lo

gi
c

In
te

rf
ac

e
Lo

gi
c

In
te

rf
ac

e
Lo

gi
c

In
te

rf
ac

e
Lo

gi
cFIFO16

/Block
RAM

FIFO16
/Block
RAM

FIFO16
/Block
RAM

Logic
Implementing

mand_accel_hw
in FPGA

Using
Slices and
DSP Slices

[Hardware Execution]

Block RAM

Software
Code

Storage

10
0

M
H

z
F

C
B

Impulse C Stream

30
0

M
H

z

Virtex-4 FX
Power PC405 Block

x901_06_110705

50 MHz

http://www.xilinx.com
http://www.impulsec.com

Reference Design

XAPP901 (v1.0) December 16, 2005 www.xilinx.com 17

R

Full-Design Device Utilization Summary

Table 2 summarizes the utilization of devices in the Mandelbrot reference design.

The single PowerPC processor on the Virtex-4 FX12 device runs the software side of the
Impulse C application. Wide multiplications and additions are implemented in the DSP48
blocks in the created Pcore. Program and data are stored in 32 of the 35 used block RAMs, and
two block RAMs are used in the Pcore as streams. The final stream is used in the VGA
controller Pcore to buffer display line information.

Project Files

The reference design contains multiple project directories for both the Xilinx ML403 and Avnet
boards (Table 3). These directories are implementations of the Mandelbrot generation project
in incremental states of completion. This structure allows users to incrementally test designs
and use fully configured projects as references. The readme.txt file in the reference design
ZIP file contains more information on running the reference design. As well, UG096:
Implementing a Virtex-4 FX PowerPC System with a C-to-HDL Hardware Coprocessor
Accelerator is a step-by-step tutorial.

Table 2: Full-Design Device Utilization Summary

Resource Type Used Available Percent Utilization

BUFGs 7 32 21

DCM_ADVs 2 4 50

DSP48 20 32 62

JTAGPPCs 1 1 100

PPC405_ADVs 1 1 100

RAMB16/FIFO16 35 36 97

Slices 2829 5472 51

4-input LUTs 3017 10944 24

Table 3: Important Files and Directories in the Reference Design ZIP File

File Name Description

readme.txt Text file that explains the reference design and how to run it

Xilinx_Design\V4FX_Labs\C2HDL_BitFiles\Mandelbrot_
Xilinx.bit

Download-ready Mandelbrot bit file (Xilinx Version)

Xilinx_Design\V4FX_Labs\C2HDL_BitFiles\Mandelbrot_
Avnet.bit

Download-ready Mandelbrot bit file (Avnet Version)

Xilinx_Design\V4FXLabs\C2HDL_Lab_Xilinx\ Contains TFT and Mandelbrot pcore files. Contains application
code (Xilinx Version)

Xilinx_Design\V4FXLabs\C2HDL_Lab_Xilinx_Part2\ Contains prebuilt basic system (Xilinx Version)

Xilinx_Design\V4FXLabs\C2HDL_Lab_Xilinx_Part3\ Contains prebuilt nearly complete system (Xilinx Version)

V4FX12_xbd.zip Contains Xilinx and Avnet board configuration (XBD) files.
These are required to insert the TFT controller in the system
through base system builder. The file should be unzipped to
your EDK installation directory to be visible to XPS.

Xilinx_Design\V4FX_Labs\C2HDL_CoDeveloper_Project\
Mandelbrot.icProj

CoDeveloper toolset project file. Double-click this file to open it
in the CoDeveloper toolset (if installed)

Xilinx_Design\V4FX_Labs\C2HDL_CoDeveloper_Project\
mand_accel_hw.c

C function that was converted to a pcore using the CoDeveloper
C-to-HDL toolset.

http://www.xilinx.com
http://direct.xilinx.com/bvdocs/userguides/ug096.pdf

18 www.xilinx.com XAPP901 (v1.0) December 16, 2005

Reference Design
R

Figure 9 shows that the speed of the Mandelbrot application is increased by 10x to 17x. This
acceleration varies based on the nature of the application, if the application is computation-
intensive or data-intensive.

Xilinx_Design\V4FXLabs\C2HDL_Lab_Avnet\ Contains TFT and Mandelbrot pcore files. Contains application
code (Avnet Version)

Xilinx_Design\V4FXLabs\C2HDL_Lab_Avnet_Part2\ Contains prebuilt basic system (Avnet Version)

Xilinx_Design\V4FXLabs\C2HDL_Lab_Avnet_Part3\ Contains prebuilt nearly complete system (Avnet Version)

Table 3: Important Files and Directories in the Reference Design ZIP File (Continued)

File Name Description

Figure 9: Screen Shot of Reference Design Output

x901_09_110105

http://www.xilinx.com

Conclusion

XAPP901 (v1.0) December 16, 2005 www.xilinx.com 19

R

Conclusion Software applications can be significantly accelerated by implementing time-critical
computation loops in hardware and using the APU controller interface in a Virtex-4 FPGA to
exchange data between hardware and software. The CoDeveloper C-to-HDL toolset allows
critical functions in legacy software applications to be easily converted to FCMs, resulting in
faster computations and smaller logic sizes, because most of the other non-critical
computations are implemented on the embedded processor. An FCM attached to the PLB
provides significant acceleration. However, the PLB requires arbitration that can hinder the
potential increase in performance. In the Virtex-4 FPGA, the APU interface allows a
coprocessor to be tightly coupled to the processor pipeline, reducing overhead and further
improving mixed-mode system performance.

This application note demonstrates a Mandelbrot image generation application on the Xilinx
ML403 development board. Performance is compared between a software implementation and
a mixed-mode implementation using the APU interface, giving an acceleration of approximately
17x. Results are shown graphically on a VGA monitor connected to the VGA port of the ML403
board.

References These documents provide supplemental material useful to this application note:

1. Pellerin, David and Scott Thibault. 2005. Practical FPGA Programming in C. Prentice Hall.

http://www.impulsec.com/practical/index.html

2. UG070, Virtex-4 User Guide.

3. Ansari, Ahmad, Peter Ryser, and Dan Isaacs. Accelerated System Performance with APU-
Enhanced Processing.

http://www.xilinx.com/publications/xcellonline/xcell_52/xc_v4acu52.htm

4. UG018, PowerPC 405 Processor Block Reference Guide.

5. XAPP717, Accelerated System Performance with the APU Controller and XtremeDSP
Slices.

6. UG080, ML40x Evaluation Platform User Guide.

7. Bodenner, Ralph. Fixed-Point Arithmetic in Impulse C.

http://www.impulsec.com/IATAPP106_FIXEDPT.pdf

8. DeAlmo, Joe. Applications of Fractal Geometry.

http://hypatia.math.uri.edu/~kulenm/honprsp02/

9. Virtex-4 ML403 Embedded Platform.

http://www.xilinx.com/ml403

10. UG096, Implementing a Virtex-4 FX PowerPC System with a C-to-HDL Hardware
Coprocessor Accelerator.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

12/16/05 1.0 Initial Xilinx release to www.xilinx.com.

http://www.xilinx.com
http://www.impulsec.com/practical/index.html
http://www.xilinx.com/publications/xcellonline/xcell_52/xc_v4acu52.htm
http://www.xilinx.com/bvdocs/userguides/ug070.pdf
http://www.xilinx.com/bvdocs/userguides/ug080.pdf
http://www.xilinx.com/bvdocs/userguides/ug018.pdf
http://www.impulsec.com/IATAPP106_FIXEDPT.pdf
http://hypatia.math.uri.edu/~kulenm/honprsp02/
http://www.xilinx.com/bvdocs/appnotes/xapp717.pdf
http://www.xilinx.com/ml403
http://www.xilinx.com/bvdocs/userguides/ug096.pdf

	Accelerating Software Applications Using the APU Controller and C-to-HDL Tools
	Summary
	Introduction
	Overview of Key Concepts
	CoDeveloper Software
	CoDeveloper Toolset to XPS Tool Flow
	APU Controller

	Mandelbrot Image Calculation
	Software-Only Implementation of Mandelbrot Function
	Software-Only Algorithm
	Implementation Details

	Making Legacy Mandelbrot Code Impulse C Compatible
	Defining Processes and Streams in the System
	Important Impulse C Functions
	co_stream_open
	co_stream_write
	co_stream_read
	co_stream_close

	Adding a Configuration Function
	Process Functions
	Stream Functions
	System Functions

	Adding #pragmas
	Fixed-Point Conversion
	Desktop Simulations

	Hardware- Software Implementation of the Mandelbrot Function
	Converting C Code to a Pcore
	Implementation Details
	Generated Pcore Characteristics
	Connecting the Pcore to the APU Bus

	Reference Design
	Required Hardware and Software Tools
	Full-Design Device Utilization Summary
	Project Files

	Conclusion
	References
	Revision History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

