‘XCEHENCEIPJEMBEDDH)APPHCAHONB

Send in the Clown Fish:

Implementing Video Analysis
in Xilinx FPGAS

High-level design methods combine with Xilinx Video Starter Kif to impule Accelerted Technoogies
: eﬂ(]ble mpid pro’roiyping Of an FPGA'bﬂsed ObieCT'J' nanitinn < i tem. david.pellerin@ImpulseAccelerated.com

As more electronic devices in an increasing

c O e

= number of application areas employ video
cameras, system designers are moving to the
ext evolutionary step in video system tech-
nology by adding intelligence or analysis
apabilities to help identify objects and
people. Advanced production machinery in
a factory, for example, may use multiple
video analysis systems to monitor machine
parts and instantly identify failing compo-
nents. In such applications, video systems
may monitor materials as they move
through an assembly line, identifying those
that don’t meet standards. Surveillance sys-

t'llxi/‘l 5

T1 T |
AT

tems may also use advanced video analysis

to tag suspicious objects or persons, track-
ing their movements in concert with a net-

) work of other cameras.

Companies and organizations are
deploying the first generation of these
video analysis systems today in inspection
'systems, manned or unmanned vehicles,
video monitoring devices and automotive
safety systems. Designers of these first-
generation systems typically implement
video-processing algorithms in software
using DSP devices, microprocessors or
multicore processors. But as designers
move to next-generation video applica-
tions that are much more fluid and intelli-
gent, they are finding that DSP and
standard processors can’t accommodate
new requirements for video resolutions,

frame rates and algorithm complexity.

Q- mn———

{1k
J'JI,‘IJJ ¥



Digital signal processors certainly do have
benefits for video applications, including
software programmability using the C lan-
guage, relatively high clock rates and opti-
mized libraries that allow for quick
development and testing. But DSPs are lim-
ited in the number of instructions they can
perform in parallel. They also have a fixed
number of multiply/accumulators, fixed
instruction word sizes and limited I/O.

FPGAs, on the other hand, benefit from
an arbitrary number of data paths and
operations, up to the limit of the device
capacity. Larger FPGA devices are capable
of performing hundreds or even thousands
of multiply operations simultaneously, on
data of varying widths.

Because of their advantages in compute-
intensive video processing, FPGAs—or
combinations of FPGAs and DSPs—have
become the favored choice for designers of
the most advanced video systems.

At one time, FPGAs were intimidating
for algorithm developers untrained in hard-
ware design methods. Programming an
FPGA to implement a complex video algo-
rithm required that designers have hard-
ware design skills and a grasp of hardware
description languages. But over the last sev-
eral years, Xilinx and a number of third-
party software providers have created
higher-level flows that allow algorithm
developers to use FPGAs for even the most
complex designs, without requiring sub-
stantial hardware design skills.

Thanks to new tools and methods that
make it possible to easily use FPGAs for
advanced  video  analysis, Impulse
Accelerated Technologies designed a moder-
ately complex, high-definition video-pro-
cessing application in a matter of days. We
used a combination of higher-level design
tools, Xilinx video development hardware
and Xilinx video reference design examples.
This demonstration project, which we called
Find the Clown Fish, serves as a model for
other, more-complex projects requiring fast
bring-up with minimal design risk.

Advanced Video Analysis Requires FPGAs
Complex video-processing applications are
often purpose-built. For example, a

machine vision technology used in an auto-

April 2009

XCELLENCE IN EMBEDDED APPLICATIONS |

mated inspection system may require a very
specific sequence of video filtering and con-
trol logic to identify objects moving down
an assembly line. Such a system might
determine whether a specific item in a pro-
duction process, be it a potato chip or asil-
icon wafer, should be rejected and diverted
off the line. In an automotive application, it
might be necessary to identify and analyze
specific types of objects—road signs, for

example—in near real-time.

ular software programming languages and
environments, while the third makes it eas-
ier to manage the increased complexity of
FPGA-based systems.

Library-Based Tools Speed Development

MATLAB® and Simulink®, produced by
the Mathworks, are popular tools for the
development of complex algorithms in
many domains. For DSP and video-pro-
cessing algorithms in particular, they pro-

Because of their advantages in compute-intensive

video processing, FPGAs—or combinations of
FPGAs and D5Ps—have become the favored choice

for designers of the most advanced video systems.

In the past there have been significant
barriers for software programmers tasked
with moving such algorithms out of tradi-

FPGAs.

Hardware design methods and languages are

tional processors and into
very different from those used in software.
The level of abstraction for FPGAs, using
hardware description languages, is much
lower than in software design. FPGA devel-
opment tools have matured in recent years,
however, providing software algorithm
designers with more-productive methods of
prototyping, deploying and maintaining
complex FPGA-based algorithms.

Video system designers can develop and
deploy their applications in FPGAs by
combining multiple high-level methods of
design, using a range of available tools and
intellectual-property (IP) blocks. Since no
one tool or design method is ideal for all
aspects of a complex video application, it is
best to select the most productive methods
for creating different parts of a given video-
processing product.

The development hardware is also an
important consideration. Well-tested hard-
ware platforms and reference designs will
greatly accelerate the design and debugging
of complex FPGA-based systems.

Three categories of tools in particular
have helped to speed software-to-hardware

conversion. Two of them are based on pop-

vide a robust set of library elements that
designers can arrange and interconnect to
form a simulation model.

Tools such as Xilinx System Generator™
extend this capability. System Generator
allows designers to take a subset of these
elements and use the tool to automatical-
ly convert the elements into efficient
FPGA hardware.

For example, the developer of a machine
vision application could use Simulink in
combination with System Generator to
quickly design and simulate a pipeline of
predefined filters, then deploy the resulting
algorithm into the FPGA along with other
components for I/O and control.

Xilinx System Generator is a highly pro-
ductive method for creating such applica-
tions, because it includes a wide variety of
preoptimized components for such things
as FIR filters and two-dimensional kernel
convolutions. There are limits, however, to
what designers can accomplish using
libraries of predefined and only nominally
configurable filters.

C-to-FPGA Accelerates Software Conversion
For increased design flexibility, designers
can also use C-to-hardware tools such as
Impulse CoDeveloper to describe, debug
and deploy filters of almost unlimited com-
plexity. Such design methods are particu-

Embedded magazine 00



| XCELLENCE IN EMBEDDED APPLICATIONS

larly useful for filtering applications and
algorithms that don' fit into existing, pre-
defined blocks. These applications include
optical-flow algorithms for face recognition
or object detection, inspection systems and
image-classification algorithms such as
smart vector machine, among others.

C-to-FPGA methods are particularly
appealing for software algorithm developers,
who are accustomed to using source-level
debuggers and other C-language tools for
rapid, iterative design of complex systems.
Designers can use C not only to express the
functionality of the application itself, but
also to create a simulated application, for
example by tapping into open-source user
interface components and widely available
image-processing software libraries.

A secondary benefit is that C-language
methods enable designers to employ
embedded processors within the FPGA
itself for iterative hardware/software parti-
tioning and in-system debugging. When
designers introduce embedded processors
into the application, they can use the C
language for both the software running on
the processor as well as to describe proces-

sor-attached hardware accelerators.

Platform Studio Enables System Integration
The Xilinx ISE®, or Integrated Software
Environment, includes Platform Studio, a
tool that allows users to assemble and inter-
connect Xilinx-provided, third-party and
custom IP to form a complete system on
their target FPGA device. Xilinx and its
development-board partners provide board
support packages that extend Platform
Studio and greatly simplify the creation of
complex systems. Reference designs for
specific boards such as the Xilinx Video
Starter Kit also speed development.

The Platform Studio integrated develop-
ment environment contains a wide variety
of embedded programming tools, IP cores,
software libraries, wizards and design gener-
ators to enable fast creation and bring-up of
custom FPGA-based embedded platforms.
These tools represent a unified embedded
development environment supporting
PowerPC®  hard-processor cores and

MicroBlaze™ soft-processor applications.

00 Embedded magazine

Finding the Clown Fish in HD Video Streams
To demonstrate how to use these tools and
methods effectively in an advanced video
application, we decided to create an image-
filtering design with a highly constrained
schedule, of just two weeks, for showing at
the Consumer Electronics Show in Las
Vegas. The requirements of our demonstra-
tion were somewhat flexible, but we wanted
it to perform a moderately complex image
analysis, such as object detection, and sup-
port multiple resolutions up to and includ-
ing 720p and 1080i. The system should
process either DVI or HDMI source inputs,
and support pixel-rate processing of video
data at 60 frames per second.

After considering more-common algo-
rithms such as real-time edge detection and
filtering, we decided to try something a bit
more eye-catching and fun. We decided to
“Find the Clown Fish.”

More specifically, what we set out to do
was monitor a video stream and look for
particular patterns of orange, black and

For expediency, we decided to start
with an existing DVI pass-through filter
reference design provided by Xilinx with
the Video Starter Kit. This reference
design includes a few relatively simple fil-
ters including gamma in, gamma out and
a software-configurable 2-D FIR filter.
An excellent starting point for any
streaming-video application, this refer-
ence design also demonstrates the use of
Xilinx tools including Platform Studio
and System Generator.

Within a few hours of receiving the
Video Starter Kit from Xilinx, we had a
baseline Platform Studio project, the DVI
pass-through example, built and verified
through the complete tool flow. This refer-
ence design served to verify that we had
good, reliable setup for video input and
display, in this case a laptop computer
with a DVI output interface and an HD-
compatible video monitor. We then began
coding additional video-filtering compo-
nents using C and the streaming functions

Microslaze

SPARTAN-3A
V4 Xilinx
MicroBlaze
el Processor

2D FIR

Filter

Object
Detection

Platform Studio”

s -
#2 s impulse

Figure 1 — Impulse Accelerated Technologies implemented this complete video-filtering
and object-detection design in a single Spartan-3A FPGA device.

gray—the distinctive stripes of a clown
fish-and then create a spotlight effect that
would follow the fish around as it moved
through the scene, thereby emulating the
type of object tracking that a machine
vision system might perform. The goal was
to have a demonstration that would work
well with the source video, a clip featuring
a clown fish, or perhaps even with a live
camera aimed at a fish tank.

provided with our Impulse CoDeveloper
and Impulse C compiler.

As seen in the block diagram of the
complete video-processing system (Figure
1), a MicroBlaze processor serves as an
embedded controller. We inserted the
Impulse C detection filter into the DVI
video data stream using video signal bus
wrappers automatically generated by the
Impulse tools.

April 2009



Using C for prototyping dramatically
sped up the development process. Over the
course of a few days, we employed and
debugged many image-filtering techniques
involving a variety of algorithm-partition-
ing strategies. For software debugging pur-
poses, we used sequences of still images
(scenes from a video that has an animated
clown fish) as test inputs. We interspersed
compile and debug sessions using Microsoft
Visual Studio with occasional runs through
the C-to-hardware compiler in order to
evaluate the likely resource usage and deter-
mine the pipeline throughput of the various
filtering strategies. Only on rare occasions
did we synthesize the resulting RTL and
route the design to create hardware. The
ability to work at a higher level while itera-
tively improving the detection algorithm
dramatically accelerated the design process.

In fact, we performed all of the algorithm
debugging using software-based methods,
either through examination of the generated
BMP format test image files or using the
Visual Studio source-level debugger. At no
point did we use an HDL simulator to vali-
date the generated HDL. We used the Xilinx
ChipScope™ debugger at one point to
observe the video stream inputs and deter-
mine the correct handling of vertical and
horizontal sync, but otherwise we found no
need to perform hardware-level debugging.

Optimizing for Pipeline Performance

A critical aspect of this application, and oth-
ers like it, is the need for the algorithm to
operate on the streaming-video data at pixel
rate, meaning the design must process and
generate pixels as quickly they arrive in the
input video stream. For our demonstration
example, the required steps and computa-
tions for each pixel included:

e Unpacking the pixels to obtain the R, G
and B values as well as the vertical and
horizontal sync and data-enable signals.

* Doing 5 x 5 prefiltering to perform
smoothing and other operations.

e Storing and shifting incoming pixel values
for subsequent pattern recognition.

e Performing a series of comparisons of
saved pixels against specific ranges

April 2009

XCELLENCE IN EMBEDDED APPLICATIONS |

Tips, Techniques and Tricks for Programmers

If you are a C programmer experienced with traditional processors, you will need to
learn a few new concepts and employ certain coding techniques to obtain the best
results when targeting an FPGA.

First, you should use fixed-width, reduced-size integers when possible. For exam-
ple, when counting scan lines in a frame, there is no benefit to using a standard 16-
bit or 32-bit C-language integer data type. Instead, select a data type with just
enough bits to represent the maximum value for the counter. C-to-FPGA tools
include additional, nonstandard data types for exactly this purpose, as shown below
when calculating how far to move the spotlight and adjust its size:

co uintl2 diffx; // Offset of the current pixel

co uintl2 diffy; // Offset of the current pixel

co_int24 diffx sq, diffy sq, diffsum;

// Calculate if this pixel is in the spotlight
diffx
diffy

ABS(x_position - spotlight x);

ABS(y_position - spotlight y);
diffx sq = diffx * diffx;
diffy sq = diffy * diffy;
diffsum = diffx sq + diffy sq;
if (de_out) { // de_out indicates visible pixels
if (spotlight on != 0 && X position != 0
&& diffsum < spotlight size) {

r out = r in; // Pass through
g out = g_in;
b out = b_in;
}
else {
r out = (r_in >> 1); // Dim
g out = (g_in >> 1);
b out = (b_in >> 1);
}

}

You should also consider refactoring the use of variables and arrays to allow effi-
cient pipelining. Modern C-to-FPGA compilers can schedule parallel operations effi-
ciently, and can take advantage of such FPGA features as dual-port RAM. But there
are many cases in which the actual requirements of a given algorithm—the range of
input values expected, or input combinations that are known to be impossible—may
allow for alternative coding methods that can deliver higher performance.

Also, write or refactor your C code with parallel operations in mind. For exam-
ple, a common optimization technique in C programming is to reduce the total
number of calculations by placing certain operations within control statements, such
as if-then-else. In an FPGA, however, it may be more optimal to precalculate values
prior to such a control statement, because the FPGA can perform those precalcula-
tions in parallel with other statements.

Certain operations—such as very wide or complex comparisons using relational
operators—may be easy to code in C using macros, but may result in more logic than
expected due to data type promotion. Casts and other coding methods can help you
reduce the size of the generated logic and allow for faster clock speeds.

Software programmers can quickly learn these coding schemes, and others like
them, by using iterative methods and by paying attention to compiler messages. We
employed all of the above techniques when creating our clown fish video analysis
demonstration application. — David Pellerin

Embedded magazine

00



| XCELLENCE IN EMBEDDED APPLICATIONS

and patterns of colors to identify a
clown fish stripe.

* Calculating the current and new locations
of the spotlight, and moving the spotlight
location toward the identified target at a
visible rate.

¢ Calculating the diameter and shape of the
spotlight, using simple geometry and a
frame counter to create a smooth and
steady spotlight effect.

* Filtering pixels by increasing or decreasing
the color intensity according to whether a
given pixel is within the spotlight radius.

A sample image of the highlighted target
(the clown fish) is shown in Figure 2.

To meet the pixel-rate requirement, the
design must perform all of these operations
for each pixel in the HD video stream at a
rate of one pixel for every clock cycle. When
processing 720p video at 60 frames/s, this
means that the above functions, represent-
ing approximately 100 lines of C code in a
single automatically pipelined loop, must
be performed more than 55 million times
each second. We would combine this detec-
tion filter with the other filtering compo-
nents in the system to create the complete
application. If we sum up all of the funda-
mental operations required by all the com-
ponents (including the two gamma filters,
the 2-D FIR filter and the detection and
spotlight filter), the design must be able to
perform close to 2 billion integer operations
per second. This sounds like a lot, but in
fact, real-world video-processing algorithms
may require many times that much real-
time computing.

Creating an efficient pipelined imple-
mentation of a complex algorithm is never
trivial, but using preoptimized components
in combination with C-to-hardware pro-
gramming has obvious productivity benefits
over lower-level, HDL-based methods.
Because the algorithm remained expressed
in a cycle-independent manner, it took only
a small amount of effort to repipeline and
reoptimize it after making fundamental
changes to the code, for example after
adding an entirely new set of computations
to handle frame-to-frame behaviors such as
expanding and shrinking the spotlight when

00 Embedded magazine

the clown fish swam in and out of the
scenes. Because the C compiler is capable of
automatically scheduling operations within
a pipelined loop, C programmers are able to
focus their energy on higher, system-level
design decisions such as whether to create
multiple parallel FPGA processes to solve a
complex problem.

We brought up our demo project and got
it ready to go with less than 20 hours of
actual C coding and debugging. We later
spent additional time optimizing the algo-
rithm and adding features, such as a spot-
light fade-out effect and support for
arbitrary video resolutions.

The complete application includes multi-
ple pipelined filter modules as well as an
embedded MicroBlaze processor that we can
use to configure parts of the video process-
ing. For example, we can control these filter
modules at run-time to modify the bright-
ness levels or perform sharpening or smooth-

ing operations prior to the object-detection

and highlighting filter. This is an excellent
example of a hybrid hardware/software
application that you can implement in a sin-
gle Xilinx Spartan® FPGA device.

Opverall, we created our Find the Clown
Fish project in under two weeks, using a
combination of available development tools
and methods. The use of C language for
describing and implementing the detection
algorithm greatly reduced the time it took to
design and debug, allowing us to explore
many alternative approaches to the algo-
rithm, simulate using C-language test fix-
tures and ultimately try them out in real
hardware using the Xilinx Video Starter Kit.

While this example may be only a
demonstration, it does suggest a wide vari-
ety of other, more-complex video-process-
ing applications that you could develop
using the Video Starter Kit. It also shows
that software-oriented methods of design
can enable significantly faster deployment

. .. L
of machine vision systems. ®

Figure 2 — Test image shows the spotlight effect for a detected clown fish

April 2009



