
Robo-Creator2 : ATX2 controller board activity book 1

ATX2
The ultimate controller board

Activity book

2Robo-Creator2 : ATX2 controller board activity book

ATX2 : The ultimate controller board activity book

All rights reserved under the Copyrights Act B.E. 2537

Do not copy any part of this book without our permission

Who should use this handbook?

1. Students and other people who are interested in applying to microcontrollers for

testing working process of automatic system or people who are fascinated in learning

and examining the microcontrollers in new approaches such as using an autonomous

robot as a form of an interactive media.

2. Academic institutes such as schools, colleges and universities, where provide

electronic subjects or electronic and computing engineering departments.

3. Lecturers and teachers who would l ike to study and prepare lesson plans for

microcontroller courses, including applied science which focuses on integrating

electronics, microcontrollers, computer programming and scientific examination in high

school education, vocational education, and bachelor’s degree.

Published and distributed by

Innovative Experiment Co.,Ltd.

108 Soi Sukumvit 101/2 Sukumvit Road, Bangna, Bangkok 10260 THAILAND

www.inex.co.th/www.inexglobal.com

Details and illustrations used in this handbook are thoroughly and carefully to provide

the most accurate and comprehensive information under the conditions and time we

have before publishing. Innovative Experiment Co.,Ltd. shall not be responsible for

any damages whatsoever resulting from the information of this book as constant

revisions and updates will be published after this edition.

Robo-Creator2 : ATX2 controller board activity book 3

All Illustrations and Technical information found in this handbook are in our best

interest to simplify working processes and equipment principles so that it could be easily

understood by any user interested in robotics.

Therefore, The translation from THAI language to English and the usage of technical

terms may not follow the provision of the Royal Academy where they are many words

not described officially. Our team would be allowed to produce new technical terms.

The main reason of this explanation comes from data collection of equipment in

embedded computer system and robotic technology. Thai language is quite hard to

translate into English and thus our writer team gathered the required data and

investigated to make sure that the understanding in working processes has the limited

error.

When we compose the information in Thai, many technical terms have

compl icated meanings. Definition of vocabulary occurred from the practice

coordinated with linguistic meaning. If there are any errors or mistakes shown, the team

of writer will accept and if we get explanation or suggestion from any expert, we will

clarify and improve those errors as soon as possible.

In order to develop the academic media especially with new technological

knowledge, it will be able to proceed continually under the participation of experts in

all fields.

 Innovative Experiment Co.,Ltd.

Clarification from writer/
complier team

4Robo-Creator2 : ATX2 controller board activity book

Chapter 1 ATX2 controller board overview............………..................................…....……5

Chapter 2 Development tools : Arduino IDE..…………...….9

Chapter 3 Arduino programming...…………….21

Chapter 4 ATX2 Library..……………..53

Chapter 5 ATX2 with GLCD activity..……………..75

Chapter 6 Hardware experiment of the ATX2 board………………….....…..97

Table of contents

Robo-Creator2 : ATX2 controller board activity book 5

Chapter 1

ATX2 controller board overview

ATX2 is one important part of the Robo-Creator2 robot kit. This chapter introduces

about technical information of the ATX2 controller board. It is base knowledge for using to

make the autonomous robot such as Sumo-BOT, Fire fighting robot, Line tracking robot, All-

terrain robot. By connecting with wireless communication module such as RF module,

Bluetooth module and WiFi module we can adapt to control robot wirelessly by using

smartphone, tablet and computer.

Moreover this ATX2 controller board is recommended for making the robot for World

Robot Games competition.

 Programming development of the ATX2 controller board uses C/C++ language in

the open source software are named Arduino (www.arduino.cc). Free download the

customize Arduino software for the ATX2 and Robo-Creator2 at www.inexglobal.com.

ATX2 controller boad is next generation of INEX’s ATX board that have developed

since 2012. The new version ATX2 board is able to drive 6 of DC motors and 8 of Servo

motors together. It has many ports for interfacing with both digital and analog sensors,

basic digital outpuit port and using the data communication via 2 lined bus system called

I2C bus and the standard UART serial bus. The improved feature of new version is the

Color Graphic LCD (GLCD). It helps user to monitor the status, shows text and simple graphic

in color.

6Robo-Creator2 : ATX2 controller board activity book

1.1 ATX2 controller board features
In the figure 1-1, it is shown components of the ATX2 controller board and there are

significant technical features as follows:

 Main microcontroller is Atmel’s ATmeg644. It features 8-ch 10-bit Analog to

Digial Converter, 128-KByte Flash memory , 4-KByte EEPROM, 4-KByte RAM. Operated with

16MHz clock from external crystal

Define all ports compatible with Arduino I/O standard hardware. The number

of port are 0 to 31. All ports available with 3-pin of 2.00mm. header. (+5V, Signal and GND)

 13 programmable port in JST connector type. Includes Digital I/O port (2, 3, 8,

9, 18, 24 to 31), A/D port (8 : port 24/A0 to 31/A7), Two-wire interface or TWI (8/SCL and 9/

SDA) and UART serial port communication (2/RxD1 and 3/TxD1). Both TWI and UART ports

can config to digital input/output port for more I/O applications.

 Extension analog input (A8 to A12) and One variable resistor is labeled KNOB

and OK button for ADC experiments. Only these inputs are analog input only.

 All analog supports 0 to +5Vdc input. The converter resolution is 10-bit. The

result value is 0 to 1,023 range.

 One of button switch “OK” for simple digital input experiment.

Figure 1-1 : ATX2 controller board layout

Robo-Creator2 : ATX2 controller board activity book 7

 One piezo speaker

 UART port (RxD1 and TxD1) for interfacing serial module device such as Pixy

camera module, servo controller board (Parallax servo controller, ZX-SERVO16i), Real-time

clock (ZX-17 : serial real-time clock module)

 128x160 dots color GLCD. It only supports line-art , color background and text

with 21 characters 16 lines (no support the image file).

 6-ch of DC motor driver with LED indicator. Support 4.5 to 9V motor 1.2A (max)

 8-ch of Servo motor outputs

 Upload with computer via USB port

 2 of power inputs ; DC adaptor jack and 2-pin terminal block for battery

 Power switch and RESET switch available

 Requires +6 to 9V 500mA supply voltage in normal operation (no motor driving)

and/or at least 1500mA for robotics application.

 +5V switching regualator on-board with polarity protection circuit

1.2 ATX2 cable information
For using the ATX2 controller board requires 2 kinds of cable. One is miniB-USB cable

for interfacing with computer and JST3AA-8 cable for connecting with any sensor board

and input/output devices.

1.2.1 JST3AA-8 cable

This is an INEX standard cable, 3-wires combined with 2mm. The JST connector is at

each end. 8 inches (20cm.) in length. The wire assignment is shown in the diagram below.

2mm. pitch

GND
S

+5V

2mm. pitch
GND

S/Data

+5V

1.2.2 Standard USB-miniB cable

This is used to connect between the computer’s USB

port and the ATX2 controller board. Its length is 1.5 metres

approximation.

8Robo-Creator2 : ATX2 controller board activity book

1.3 How to develop program with ATX2 controller
board

The programming development for the ATX2 controller board and Robo-Creator2

robot kit is the process by outlining the diagram in figure 1-2. The suitable software tools

are Arduino IDE1.0.7 (customize version for Robo-Creator2 robot kit and ATX2 board). Free

download from www.inexglobal.com.

Preparation for programming

1. Open the Wiring or Arduino IDE 1.0 and created
the new sketch
2. Choose the hardware by selected menu Tools >
Board > ATX2 > ATmega644@16MHz
3. Choose the serial port at menus Tools > Serial
port > COMx

Create the C/C++ code and save as the sketch file.

Compile the sketch

Software installation
- Wiring 1.0 or Arduino IDE 1.0

- USB driver for the ATX2 board

- -

Check the interface port of computer

- Connect the miniB-USB cable between
computer's USB port and the ATX2 board

- Open Control panel > System > Hardware >
Device Manager > Ports. See the USB serial
port (COMx)

- Record the USB serial port (COMx) and use
this port number for interfacing with the ATX2
board

Upload the sketch

The ATX2 board starts to run

Figure 1-2 : Programming development diagram of ATX2
controller board and All robot activities of Robo-Creator2 robot kit

Robo-Creator2 : ATX2 controller board activity book 9

Robo-Creator2 robot kit and ATX2 controller board support the operation

controller program which can be developed from Assembly, BASIC or C programming

languages. For here, we will use C/C++ programming language with the open-source

software called Arduino, which is the name of a development project of a small control

system in order to apply the software and hardware together.

We focus on concrete utilization as well as the connection of devices with

electronic system so that the system can work according to the statement written

correctly, collectively, Physical computing or the computer system which concentrates

on physical signal connection, connecting external sensor devices or controlling display

of LEDs, light, and sound, etc.

2.1 Arduino introduction
The official website of Arduino here is www.arduino.cc. At this website, there is

data of both hardware and software allowed to download with free of charge. Also, it

is the open-source project to give an opportunity to developers who will be able to join

the project and expand the project freely.

Arduino started in 2005 as a project for students at the Interaction Design Institute

Ivrea in Ivrea, Italy. The founder is Massimo Banzi. The name "Arduino" comes from a bar

in Ivrea, where some of the founders of the project used to meet. The bar itself was

named after Arduino, Margrave of Ivrea and King of Italy from 1002 to 1014.

A hardware thesis was contributed for a wiring design by Colombian student

Hernando Barragan. After the Wiring platform was complete, researchers worked to

make it lighter, less expensive, and available to the open source community. The school

eventually closed, but the researchers, including David Cuartielles, promoted the idea.

However for Robo-Creator2 robot kit and ATX2 controller board program

developent will be use customized version of Arduino IDE that developed by Innovative

Experiment Co.,Ltd. (INEX - www.inexglobal.com). It is Arduino 1.0.7. This version includes

the ATX2 library that suitable for ATX2 controller board and Robo-Creator2 robot kit

activities. Free download at www.inexglobal.com.

Chapter 2

Development tools : Arduino IDE

10Robo-Creator2 : ATX2 controller board activity book

2.2 Supported operating system
The software for the program development is Arduino Development Environment

or sometimes called Arduino IDE and it can work with these operating systems or

platforms.

 Mac OS X 10.4 or higher (both models using Powerpc and Intel CPU)

 Windows XP, Windows Vista, 7 and 8/8.1 or higher

 Linux, both Fedora Core and Debian (including Ubuntu as well)

 Other platforms which support the operation of Java 1.4 up

2.3 Introduction to Arduino 1.0.7 IDE
Arduino 1.0.7 is the software for developing C/C++ programming language in

order to create a program controlling ATmega644 microcontroller on ATX2 controller

board and then use the program in Robo-Creator2 kit as well.

In the kit, tools used in development of the program are contained completely in

the format of IDE (Integrated Development Environment), either the text editor for coding

or C complier. Uploading the sketch and the window of serial monitor for receiving

and sending serial information to ATX2 controller board and robot kit. Arduino is designed

to use easily and the C/C++ language is for programming which can work on the

operating system of Windows XP up, Linux and MAC OSX and installation files for each

platform are separated.

2.3.1 Software installation

 (1) Insert the CD Rom, come with Robo-Creator2 robot kit. Click the file named

Arduino1.0.7.1070_ReleaseSetup150123.exe (the number of the installation file may be

changeable) and then the window of welcoming to the Arduino setup will appear.

Robo-Creator2 : ATX2 controller board activity book 11

(2) Next, click to agree in each step of the setup as installation of other applications

of Windows until completion.

(3) Installing the Arduino 1.0.7 software by using the CD rom is bundled with Robo-

Creator2 robot kit is the setup of both Arduino software and USB driver to connect with

ATX2 controller board in the same time. After Arduino IDE is installed, the driver installation

window will appear. Click on Next button to install the first USB driver. Wait until installation

finish. Click on Finish button following the picture below.

(4) Next, the second USB driver will be install. Click on the Install button to start

the driver installation. Wait until the installation is completed and finished.

12Robo-Creator2 : ATX2 controller board activity book

(4) The hardware console window is appeared. This window will help programmer

to prepare suitable library to support the chosen hardware. Select the ATX2 for ATX2

controller board and Robo-Creator2 robot kit and Click on the OK button again to

confirmation.

(5) The Arduino IDE will be start.

Robo-Creator2 : ATX2 controller board activity book 13

(6) The main window of Arduino IDE will appeared. The default template will be

loaded. User can start easy and reduce the error from missing the main library.

(6.1) See the first line of sketch. Default setting will include ATX2.h the main

library at the first line

(6.2) The name of chosen hardware wil l show at the bottom of IDE;

ATX2.ATmega644@20MHz on COMx (x is any COM port or USB serial port number).

14Robo-Creator2 : ATX2 controller board activity book

2.3.2 Checking the USB Serial port of the ATX2 controller board

(1) Plug the USB cable connecting ATX2 controller board with the USB port of the

computer. Turn on and wait for the blue LED at the position of USB on the circuit board

is on.

(2) Click the START button and go to the Control Panel.

 (3) Then double-click the System

(4) Go to the tab of Hardware and click on the Device Manager button

(5) Check the hardware listing at Port. You should see USB Serial port . Check the

position. Normally it is COM3 or higher (for example; COM10). You must use this COM

port with the Wiring IDE software.

Robo-Creator2 : ATX2 controller board activity book 15

2.3.3 ATX2 with Arduino IDE interface

(1) Open Arduino IDE. Wait for a while. The main window of Arduino will appear.

(2) Choose the suitable hardware by select menu Tools > Board > ATX2;

ATmega644 @16MHz

(3) Select menu Tools > Serial Port to choose the USB serial port of ATX2 board. It

is COM3 (for example).

Must do this step for every new connection of the ATX2 board with Arduino IDE

1.0.7

Now the ATX2 controller board is ready for interfacing and code development

with the Arduino IDE 1.0.7 (ATX2 customized version)

(4) Type this code below and save as atx2_hello.ino

#include <ATX2.h>
void setup()
{

OK(); // Wait for OK button
glcdClear(); // Clear screen

}
void loop()
{

glcd(1,0,"Hello World"); // Show message
}

16Robo-Creator2 : ATX2 controller board activity book

(5) Upload this sketch to the ATX2 board and run it.

The ATX2 board displays the welcome menu and wait for pressing the OK button.

After press the OK button. ATX2’s screen will display message Hello World at the

first line of screen.

 After upload and run. Wait for pressing

 OK button

 After pressing the OK button

2.4 Arduino environment
After starting Arduino IDE 1.0.7, the main window will appear as shwon in the

figure 2-1. The Arduino includes the environments as follows.

Figure 2-1
Arduino 1.0 IDE
environment

Message area

Serial Monitor
Click to open the
other window for
transmitting and
receiving the serial
data between
Aruino hardware
and computer

Tab

Menu

Tools bar

Text Editor

Robo-Creator2 : ATX2 controller board activity book 17

 Menu : Select the operation command

 Toolbar : Includes all most command button

 Tabs : Allows you to manage sketches with more than one file (each of

which appears in its own tab).

 Text editor : Text editor area for creating the sketch.

 Message area : Shows the program operation status such as compiling result.

 Text area : The space demonstrates compiling information and Serial data

Terminal window if enable.

 Serial Monitor This button is on the top right corner. Click this button to open

the serial communications and display information. Requires the Arduino hardware must

connect with the COM port always.

Serial Monitor is a important for displaying the serial data on the computer.

Arduino has this command ; Serial.print to display data. For sending data from computer

to Arduino is very easy. Only type the data on the text box and click on the Send button

at the top right corner of Serial monitor window. For using Mcintosh computer or Linux

computer; the Arduinoi hardware will need be reset when the Serial monitor is opened

every time.

18Robo-Creator2 : ATX2 controller board activity book

2.4.1 Menu bar

2.4.1.1 File

The Arduino calls the code as Sketch. This menu contains many commands like

open, save and close the sketch as follows :

 New : Creates a new sketch, named is the current date format "sketch_

YYMMDDa".

Open : Open the exist sketch.

Sketchbook : Opne the latest sketch file

 Example : Open the example sketch.

 Save : Save the current sketch

 Save as : Save the current sketch as another name.

 Upload to I/O board : Uploads your code to the Arduino I/O board (POP-XT).

Make sure to save or verify your sketch before uploading it.

 Page setup : Set up the page layout for the current sketch

 Print : Print the current sketch code to the printer

 Preference : Set some preference of Arduino environment

 Quit : Exit the Arduino IDE

2.4.1.2 Edit

The Edit menu provides a series of commands for editing the Arduino files.

 Undo : Reverses the last command or the last entry typed.

 Redo : Reverses the action of the last Undo command. This option is only

available, if there has already been an Undo action.

 Cut : Removes and copies selected text to the clipboard.

 Copy : Copies selected text to the clipboard.

 Paste : Inserts the contents of the clipboard at the location of the cursor,

and replaces any selected text.

 Select All : Selects all of the text in the file which is currently open in the text

editor.

 Find : Finds an occurance of a text string within the file open in the text

editor and gives the option to replace it with a different text.

 Find Next : Finds the next occurance of a text string within the file open in

the text editor.

Robo-Creator2 : ATX2 controller board activity book 19

2.4.1.3 Sketch

This menu provides a series of commands for compile the code and manage

library.

 Verify/Compile : Verify and compiles the code

 Stop : Stops current activity.

 Add file : Opens a file navigator. Select a code files to add it to the sketches

"data" directory.

 Import Library : Import the addition library.

 Show Sketch folder : Opens the directory for the current sketch.

2.4.1.4 Tools

This menu provides commands about tools for developing the Arduino sketch

and setting up the Arduino hardware.

 Auto Format : Attempts to format the code into a more human-readable

layout. Auto Format was previously called Beautify.

 Archive Sketch : Compress the current sketch to the zip file.

 Export Folder : Open the folder that contain the curretn sketch.

 Board : Choose the Arduino hardware. For POP-BOT XT, choose POP-XT

 Serial Port :Allows to select which serial port to use as default for uploading

code to the Arduino I/O Board or monitor data coming from it. The data coming from

the Arduino I/O Board is printed in character format in the text area region of the console.

2.4.1.5 Help

This menu contains many information in HTML format for supporting the Arduino

user.

 Getting Start : Opens the How to start Arduino.

 Troubleshooting : Suggest the solution when meet the problem in Arduino.

 Environment : Describe about Arduino environments

 Reference : Opens the reference in the default Web browser. Includes

reference for the language, programming environment, libraries, and a language

comparison.

 Frequently Asked Question : See the popular question and answer

 Visit www.arduino.cc : Opens the web browser to the Arduino homepage.

 About Arduino : Opens a concise information panel about the software.

20Robo-Creator2 : ATX2 controller board activity book

2.4.2 Tools bar

 Verify/Compile : Checks your code for errors.

 Upload to I/O Board : Uploads your code to the Arduino I/O board

(POP-168 module). Make sure to save or verify your sketch before uploading it.

 New : Creates a new sketch.

 Open : Presents a menu of all the sketches in your sketchbook.

 Save : Saves your sketch.

 Serial Monitor : Open the Serial Monitor window to get and show data

via USB port of Arduino hardware.

Robo-Creator2 : ATX2 controller board activity book 21

Programming for ATX2 controller board and Robo-Creator2 robot kit are done by

using the Arduino programming language (based on C++) with version 1.0 or higher, in

which the language of Arduino itself is developed from the open-source project framework

for microcontrollers called Wiring and the language of Arduino is grouped into two parts

as follows:

1. Language structure, variables, and constants

2. Functions

Arduino language is based on the C/C++ languages so that when programming

for Arduino (including ATX2 controller board) one can use the functions and libraries which

already exist for the C language. This makes it convenient for those who do not understand

the intricacies of microcontrollers to write command programs for them.

This chapter will mainly describe the structure of Arduino. For a complete text written

about the function of the C programming language behind Arduino, see details in help

menu of Arduino IDE or their website; www. arduino.cc

3.1 Program structure of Arduino
An Arduino program is composed of two sections including

void setup ()

and

void loop ()

The function of setup () : when a program runs, it will make a statement for this

function only once to define a default value for operation.

The function of loop () is a procedure in the program that contains statements

which are repeated.

Normally, this procedure is performed to specify working modes of the various pins

in the serial communication bus, and so on. The loop contains the program code which is

executed, such as reading input values, processing, displaying output etc. Any

configuration of default values, or components such as variables, need to be declared at

the beginning of the program before reaching the function part. In addition, you should

consider whether to use small letters or capital letters for variables, and name the functions

meaningfully.

Chapter 3

Arduino programming

22Robo-Creator2 : ATX2 controller board activity book

3.1.1 setup () function description

This function is written at the beginning of a program and executes just once

when the program starts. It is used to declare variables, operating modes of various

pins, or the initialization of libraries, etc.

Example 3-1

int buttonPin = 3;
void setup()
{

beginSerial(9600);
pinMode(buttonPin, INPUT);

}
void loop()
{

if (digitalRead(buttonPin) == HIGH)
serialWrite('H');

else
serialWrite('L');

delay(1000);
}

While the standard C programming language is written on AVR GCC (a kind of C

programming language using the GCC compiler for the AVR microcontroller) will be coded

as follows.

int main(void)

{

init();

setup();

for (;;)

loop();

return ;

}

compliance with void setup()

compliance with void loop()

Robo-Creator2 : ATX2 controller board activity book 23

3.1.2 loop () function description

After coding the function of setup (), which has already defined the default values

and initial state of the program, the next part is the loop() function. The program will

repeatedly execute this function until otherwise instructed to do so. Inside this function,

there are user programs which read values from ports, perform compilations, and control

output through various pins in order to control the performance of board.

Example 3-2

int buttonPin = 3; // Declare pin 3 to buttonPin variable
void setup()
{

beginSerial(9600);
pinMode(buttonPin, INPUT);

}

// A loop which detects the pressing of a switch
// that declared with buttonPin variable.

void loop()
{

if (digitalRead(buttonPin) == HIGH)
serialWrite('H');

else
serialWrite('L');

delay(1000);
}

24Robo-Creator2 : ATX2 controller board activity book

3.2 Operational control statements

3.2.1 If

Used to test for evaluating conditions during program operation, for example, if

an input value is greater than a certain value, what should be done in that case. The

syntax is shown as follows.

if (someVariable > 50)

{

// do something here

}

The program will check whether the value of someVariable is greater than

50 or not. If so, what will have to do but if it is not, just skip to the function of this section.

The function of this command is to test certain conditions, which are written in

brackets. If the condition is true, follow an instruction in braces but if the condition is false,

leave out the function of this section.

The conditional test which is in brackets will have to use these comparison operators

as follows.

x == y (x equal to y)

x != y (x not equal to y)

x < y (x less than y)

x > y (x greater than y)

x <= y (x less than or equal to y)

x >= y (x greater than or equal to y)

Techniques for programming

In the comparison of variables, you should use the operator ==, e.g. if (x==10). Do

not use =, such as if (x=10), because a statement like this assigns a value of ten(10) to the

variable x.

Moreover, If statements can be applied to control intersection of the program and

the If...else statements can be used as well.

Robo-Creator2 : ATX2 controller board activity book 25

3.2.2 If…else

Applied to test for determining conditions of the program operation and they

are better than normal if statements. The process is that if a condition is true, what to

do but if it is false, what to do so. For example, If a readable value of analog input is

greater than 500, what to do but if the value is greater than or equal to 500, do another

one else. Writing statements as follows:

Example 3-3

if (pinFiveInput < 500)

{

// A statement for a kind of operation if a value of pinFiveInput
//is less than 500

}

else

{

// A statement for another type of operation if a value of pinFiveInput
// is greater than or equal to 500

}

After the if…else statement, able to be followed by the if command. Therefore,

syntax becomes if…else...if. This is the test of conditions. When it is true, meet the

demand as the following example.

Example 3-4

if (pinFiveInput < 500)

{

// The statement for run a function, since pinFivelnput is less than 500

}

else if (pinFiveInput >= 1000)

{

// The statement for run another function
// because pinFivelnput is greater than or equal to 1000

}

else

{

// The statement to set the next step in case that

// pinFiveInput is not less than 500 and greater than or equal to
// 1000 (that is there will be response of the statement in this
// subprogram when a variable has a value between 501 to 999

}

After the else statement, able to be followed by unlimited if statements (or capable

of putting the switch case statement instead of if...else...if statement for testing

a lot of conditions)

When the if...else...statement has been made, it is important to determine

that if the examination does not match with any condition, what to do by specifying at

the last else statement.

26Robo-Creator2 : ATX2 controller board activity book

3.2.3 For ()

For () is used to instruct a statement in braces in order to repeat operation

following number of cycles required. This statement is very useful for any function that

needs to repeat and know the exact number of repetition round. It is often applied

with Array variables in collection of readable values from many analog input pins that

have pin numbers in sequence.

The syntax of For () command is divided into three parts as follows :

for (initialization; condition; increment)

{

//statement(s);

}

Beginning with initialization used to assign a default value of loop control

variables. In each work cycle, a condition is checked. If the condition is true, a statement

in braces is responded and a variable value is increased or decreased according to the

order in increment. Repeating the test until the condition is false.

Example 3-5

for (int i=1; i <= 8; i++)

{

// The statement for function by using a value of variable i and
// repeating the function until the value of variable i is

// greather than 8 ;

}

For statement of C language is more flexible than whose other computer languages

are. It can ignore some parts or all three parts of the for statement. However, semicolon is

still necessary.

Robo-Creator2 : ATX2 controller board activity book 27

3.2.4 Switch-case

The statement is used to examine conditions in the determination of program

operation. If a tested variable matches with a condition, the run will follow the determined

process.

Syntax

switch (var)

{

case 1:

// The statement for operation when the variable value is equal to 1

break;

case 2:

// The statement for operation when the variable value is equal to 2

break;

default:

// If the value of variable is neither 1 nor 2, comply with this order.

}

Parameters

var - a variable which requires to test matching with which condition.

default - make a statement follow the end if it does not match with any condition,

break - a statement to stop running and it should be written appended cases.

If it is not written, the program will perform repeatedly according to a condition.

28Robo-Creator2 : ATX2 controller board activity book

3.2.5 While

It is a kind of loop statements in order to follow the instruction written in braces

continually until a while() statement is false. A loop statement has to change a value of

a variable, such as to increasing variable value, or has external conditions, such as ability

to start and stop reading values from a sensor, respectively. Otherwise, the condition in

the braces of while () is always true, it causes the loop statement works endlessly.

Syntax

while(expression)

{

// statement(s);

}

Parameters

expression is a conditional test statement (true or false)

 Example 3-6

var = 0;

while(var < 200)

{

// The statement for operation by repeating the operation in

// total of 200 rounds

var++;

}

Robo-Creator2 : ATX2 controller board activity book 29

3.3 Arithmetic Operators
 There are 5 operators consisted of + (addition), - (substraction), * (multiplicaiton),

and % (modulo reduction, remainder from integer division).

3.3.1 Arithmetic Operators, addition, substraction,
multiplication, and division

They are used to calculate the sum, difference, the product, and quotient of binary

operators to give answers that include the same type as both binary operatands, such as

9/4, which shows the answer as 2 because both 9 and 4 are integer variables (int).

Moreover, arithmetic operators may cause overflow if a result is larger than storing

in that type of variables. If operands are different in types, a result will be as large as the

type of biggest variable (such as 9/4 =2 or 9/4.0 = 2.25).

Syntax

result = value1 + value2;

result = value1 - value2;

result = value1 * value2;

result = value1 / value2;

Parameters

value1 - the value of any variables or constant

value2 - the value of any variable or any constant

Example 3-7

y = y + 3;

x = x - 7;

i = j * 6;

r = r / 5;

Techniques for programming

You should :

 Choose the size of variables that is large enough to store the most result

value of calculation.

 Know that what value of variables will return the value back and how it

back, for example, (0 to 1) or (0 to -32768)

 Use float variables in the calculation of fraction but the difference should

be concerned. For example, large variables can cause slow calculation.

 Change types of temporary variables by cast operators, such as (int)-

myfloat, while a program is running

30Robo-Creator2 : ATX2 controller board activity book

3.3.2 Modulus operator : %

The operator is able to compute remainder of 2 integers but not to apply for

floating-point variables (float).

Syntax

result = value1 % value2;

Parameters

value1 - a variable of byte, char, int or long type

 value2 - a variable of byte, char, int or long type

Result

Remainder from performing integer division is integer data.

Example 3-8

x = 7 % 5; // x now contains 2

x = 9 % 5; // x now contains 4

x = 5 % 5; // x now contains 0

x = 4 % 5; // x now contains 4

This modulus operator is applied for operation which demands events

occurring at regular intervals or causes the memory, which stores array variables, to

roll over.

Example 3-9

// Examine the value of a detector for 10 times per a operating cycle

void loop()

{

i++;

if ((i % 10) == 0)

// Divide a value of i by 10 and then check

// if the remainder of division is 0 or not

{

x = analogRead(sensPin); // Read from the detector for 10 times

}

}

In this example, the % statement is used to assign the cycle of operation in

which the program repeats performing to read value till the result of modulo division

of the i % 10 statement is equal to 0 and this occurs when i = 10 only.

Robo-Creator2 : ATX2 controller board activity book 31

3.4 Comparison operators
Comparison operators go with the if () statement to test conditions or compare

variable values by writing expression inside the mark of ().

x == y (x equal to y)

x != y (x not equal to y)

x < y (x less than y)

x > y (x greater than y)

x <= y (x less than or equal to y)

x >= y (x greater than or equal to y)

3.5 Logical operators
Performed a for comparison of if () statements and there are 3 types; &&, ||, and !.

3.5.1 && (logic and)

Let a value is true when the comparison result of both sides is true.

Example 3-10

if (x > 0 && x < 5)

{

// ...

}

The value is true when x is greater than 0 and less than 5 (a value of 1 to 4).

3.5.2 && (logic or)

The value is true when the comparison result shows that one of variables is true or

both variables are true.

Example 3-11

if (x > 0 || y > 0)

{

// ...

}

It shows the result is true when the value of x or y is greater than 0.

3.5.3 ! (used to convert the result to be contrary)

The value is true when the comparison result is false.

Example 3-12

if (!x)
{

// ...
}

The result is true if x is false (such as x = 0, the result is true)

32Robo-Creator2 : ATX2 controller board activity book

3.5.4 Caution

Be careful for programming. If you want to use logical operators, you have to write

the mark of &&. If you write a mark of &, Bitwise AND operators and variables will show

different results.

As well in application of logic or writing the sign of || (two vertical bars next to

each other), if write the sign of | (one vertical bar) this means Bitwise OR operators and

variables.

A bitwise NOT operator is different from a conversion operator (!) so you should

choose the right one to apply.

Example 3-13

if (a >= 10 && a <= 20){}

// The result of performance is true when the value of a is between 10
// to 20.

3.6 Bitwise operators
Level operators will bring bit of variables to process and they are useful to solve

problems of programming widely.

There are 6 level operators of C language (including Arduino) consisted of & (bitwise

AND), | (OR), ^ (Exclusive OR), ~ (NOT), << (shift bits to the left) and >> (shift bits to the

right)

3.6.1 Bitwise AND operators (&)

AND in bitwise statements of C programming language can be represented by

using the mark of & in and you must write between expressions or integer variables. The

work will take data of each bit of both variables to operate with AND logic. The rules are

as follows.

0 0 1 1 Operand1

0 1 0 1 Operand2

——————————

0 0 0 1 Returned result

If both inputs are ‘1’, both outputs are ‘1’. Other cases, outputs are ‘0’ as the following

example. In checking, a pair of operators should be in the vertical.

In Arduino, int variables have the size of 16 bits so when using AND bitwise operators,

there is logical action in conjunction with all 16- bit data as the example in the following

program.

Robo-Creator2 : ATX2 controller board activity book 33

Example 3-14

int a = 92; // equal to 0000000001011100 binary

int b = 101; // equal to 0000000001100101 binary

int c = a & b; // result is 0000000001000100 binary or 68 demical

In this example, all 16-bit data of variable a and b are performed by AND

logic and then the result of all 16 bits will be stored at variable c, which the value is

01000100 in binary number or 68 in decimal number.

It is popular to use bitwise AND operators to select desired bit-data (maybe one

bit or many bits) from int variables in which this selection of some bits is called masking.

3.6.2 Bitwise OR operator (l)

A bitwise OR statement of C language is able to be written by using one mark of |

by writing between expressions or integer variables. The process is to bring data of each

bit of both variables to operate with OR logic. The rules are as follows.

If any input or both are ‘1’, so the output is ‘1’. In case that both input are ‘0’ so the

output is ‘0’ as following example.

0 0 1 1 Operand1

0 1 0 1 Operand2

——————————

0 1 1 1 Returned result

Example 3-15

The program shows application of bitwise OR operators.

int a = 92; // equal to 0000000001011100 binary

int b = 101; // equal to 0000000001100101 binary

int c = a | b; // The result is 0000000001111101 binary or 125 decimal

Example 3-16

 The program demonstrates application of bitwise AND and OR operators.

The example of a program, which uses bitwise AND and OR operators, are

called by programmers as Read-Modify-Write on a port. For 8-bit microcontroller, values

of reading or writing to the port have the size of 8 bits and show input at all 8 pins.

Writing values sending to a port is done only one time to cover all 8 bits.

The variable named PORTD is the value used instead of the status of digital pin

numbers 0, 1, 2, 3, 4, 5, 6, 7. If any bit has a value as 1, this makes that pin have logic value

as HIGH (don’t forget to specify that port pin to work as output with pinMode command

()) Therefore, if configuration of PORTD is determined = B00110001; this is to design pin 2, 3,

and 7 as HIGH. In this case, it doesn’t need to change the status values of pin 0 and 1.

Normally, hardware of Arduino is used in the serial communication. If you convert a value,

this will affect to the serial communication.

34Robo-Creator2 : ATX2 controller board activity book

Algorithm for the program is as follows

 Read a value from PORTD and then clean up the value at only the

controlled bit (using a bitwise AND operator).

 Take the modified PORTD value from above to add with the bit from above

(OR operators).

Write the program as follows :

int i; // counter variable

int j;

void setup()

{

DDRD = DDRD | B11111100; // determine the direction of the
// port pin 2 to 7 with the value of
// 11111100

Serial.begin(9600);

}

void loop()

{

for (i=0; i<64; i++)

{

PORTD = PORTD & B00000011; // determine data to pin 2 to 7

j = (i << 2);

PORTD = PORTD | j;

Serial.println(PORTD, BIN);

// show the value of PORTD at the serial monitor window

delay(100);

}

}

Robo-Creator2 : ATX2 controller board activity book 35

3.6.3 Bitwise Exclusive OR statement (^)

It is a special operator which is not usually used in C/C ++ language. The exclusive

OR operator (or XOR) is written by using the symbol of ^ and this operator has operation

resembled to a bitwise OR operator but they are different when both inputs are ‘1’, output

is ‘0’. The demonstration of work is as follows.

0 0 1 1 Operand1

0 1 0 1 Operand2

——————————

0 1 1 0 Returned result

Or it is also said that bitwise XOR operators give the output as ‘0’ when both inputs

are the same and give the output as ‘1’ when both inputs are different.

Example 3-17

int x = 12; // Binary number is 1100

int y = 10; // Binary number is 1010

int z = x ^ y; // Result is 0110 as binary or 6 as decimal

Bitwise XOR operators are much used in value swap of some bits of int variables,

such as changing from ‘0’ to be ‘1’ or from ‘1’ to ‘0’.

When using bitwise XOR operators, if a bit of mask is ‘1’ so this affects the swop of bit

value. Otherwise, if a value of mask is ‘1’ the bit value remains the same. The following

example is a program shown the instruction that logic of the digital pin 5 is switched all the

time.

Example 3-18

void setup()

{

DDRD = DDRD | B00100000; // Assign pin 5 as output

}

void loop()

{

PORTD = PORTD ^ B00100000; // Invert logic at pin 5

delay(100);

}

36Robo-Creator2 : ATX2 controller board activity book

3.6.4 Bitwise NOT operator (~)

Bitwise NOT will write by using symbol ~. This operator will be performed with only

one operand on the right by switching all bits to become opposite values, i.e. from ‘0’ to

be ‘1’ and from ‘1’ to be ‘0’ as the example.

0 1 Operand1

—————

1 0 ~ Operand1

int a = 103; // binary: 0000000001100111

int b = ~a; // binary: 1111111110011000

When operated already, this makes the value of variable be as -104 (decimal) in

which the answer is negative because of the most important bit (the bit on the far left) of

an int variable. An int variable is the bit which notifies whether the number is positive or

negative. The value is ‘1’, meant that this value is negative. A computer will store the

number value as both positive and negative according to 2’s complement system.

 Declaration of int variables, which has the same meaning as the signed int, should

be aware that the value of the variable may be negative.

3.6.5 Left shift (<<) and Right shift (>>)

In C/C++ programming language, there is an operator shifts bits to the left << and shifts

bits to the right >>. This operator will instruct to slide bits of operands written on the left to the

left or the right in accordance with the amount of bits stated on the right of the operator.

Syntax

variable << number_of_bits

variable >> number_of_bits

Parameter

variable - an integer variable which has the amount of bits less than or equal

to 32 bits (or a byte, int or long variable).

Example 3-19

int a = 5; //equal to 0000000000000101 binary

int b = a << 3; // the result is 0000000000101000 binary or 40

int c = b >> 3; // the result is 0000000000000101 binary or 5 decimal

Example 3-20

When instructing to slide variable x to the left following the amount of y bit (x

<< y), the bit data on the far left of x with the amount of y will be disappeared because

it is moved to the left hand.

int a = 5; //equal to 0000000000000101 binary

int b = a << 14; // the result is 0100000000000000 binary

Robo-Creator2 : ATX2 controller board activity book 37

Moving bits to the left will affect the value of the variable on the left of the

operator is multiplied by two and power the number of bits that shift to the left as follows.

When you instruct to slide variable x to the right with the amount of y bit (x >> y),

the difference depends on types of variables. If x is an int variable, the sum can appear

both positive and negative. Wherewith, the bit on the far left will be sign bit and if it is a

negative, the bit on the far left will be 1. After instructing to move a bit to the right, the

program will bring the value of sign bit to add up to the bit on the far left. This phenomenon

is called sign extension as the example below.

Example 3-21

int x = -16 // equal to 1111111111110000 binary

int y = x >> 3 // shift bits of x variable to the right for 3 times
// the result is 1111111111111110 binary

If you would like to slide the bit to the right and then put 0 at the bit on the far left

(which happens with a case that a variable is unsigned int), you can do by changing

types of temporary variables (typecast) in order to convert variable x to unsigned int

temporarily as the following example.

Example 3-22

int x = -16 // Equal to 1111111111110000 binary

int y = unsigned (x) >> 3 // Shift bits of x variable (not concerned
// about the sign) to the right for 3 times

// The result is 0001111111111110 binary

After being aware of the sign extension, you will use the operator to move bits to

the right for dividing the variable value by 2 and power any number. For example

Example 3-23

int x = 1000;

int y = x >> 3; // Divide the value of 1000 by 8, from 23

// The result is y = 125

38Robo-Creator2 : ATX2 controller board activity book

3.7 Syntax of Arduino

3.7.1 ; (semicolon)

Used to end a statement

Example 3-24

int a = 13;

Forgetting to end a statement line in a semicolon will result in the complier error.

Wherewith, a complier may complain that it cannot find the semicolon or notify as other

mistakes. In case that a line which is noticed some mistakes but cannot be found any

mistake so you should check a previous line.

3.7.2 { } (Curly-braces)

Curly braces are a major part of C programming language and used to determine

operation in each period. An opening brace {must always be followed by a closing brace}

or it is said that parentheses must be balanced. In Arduino IDE software that is used for

programming will have an ability to check the balance of curly braces so users just click

at a parenthesis and its logical companion will be highlighted.

For beginning programmers and programmers coming to C language from BASIC

language might be confused with the application of brackets. In fact, curly braces can

be compared with the RETURN statement in subroutine (function) or replace the ENDIF

statement in comparison, and the NEXT statements in a FOR loop.

Because the use of the curly braces is so varied, it is good that you should type a

closing bracket immediately after typing the opening bracket. Next, press ENTER button in

between two braces to start a new line and write a desired statement. If you can follow

this suggestion, your braces will never become unbalanced.

Unbalanced braces can make mistakes while a programme is compiled. If a

programme is large, it is hard to track down any mistake. Location of each bracket

influences to the syntax of a program. Therefore, moving a brace one or two lines will

affect the meaning of a program.

The main use of curly braces

Functions

void myfunction(datatype argument)

{

statements(s)

}

Robo-Creator2 : ATX2 controller board activity book 39

Loops

while (boolean expression)

{

statement(s)

}

do

{

statement(s)

} while (boolean expression);

for (initialisation; termination condition; incrementing expr)

{

statement(s)

}

Conditional statements

if (boolean expression)

{

statement(s)

}

else if (boolean expression)

{

statement(s)

}

else

{

statement(s)

}

3.7.3 // (single line comment) and /*…* (multi-line comment)

Comments are part of a program and a programmer will write more information to

inform how the program operates. They are ignored by complier, and not exported to the

processor, so they are very useful to investigate the program later or inform colleagues or

others what this line is used for. There two kinds of comments in C lanague, including

(1) Single line comments write 2 slashes (//) in front of a line.

(2) Multi-line comments write a slash (/) paired with asterism to cover text of

comments, such as /*blabla*/.

40Robo-Creator2 : ATX2 controller board activity book

3.7.4 # define

This statement is used a lot in determination of constants for a program. Defined

constants don’t take up any memory space of microcontroller. When it is at the compile

time, the compiler will replace characters with the assigned value. Arduino will use the

same # define statement as C language does.

Syntax

#define constantName value (Note : the # is necessary)

Example 3-25

#define ledPin 3

// Determination to let variable ledPin equal to constant 3

There is no semicolon after the # define statement.

3.7.5 # include

It instructs to gather other files and our program file and then compile the program

later.

Syntax

#include <file>

#include “file”

Example 3-26

#include <stdio.h>

#include “ATX2.h”

The first line will take file stdio.th to fuse with a developing program by

searching the file from a location where stores the file system of Arduino. Normally, it

is a standard file come up with Arduino.

The second line instructs to gather file ATX2.h and a developing program by

looking for address of C language files. Generally, they are files users build.

Robo-Creator2 : ATX2 controller board activity book 41

3.8 Variables
 Variables are several characters determined in a program and used to store various

informative values, such as readable values from a sensor connected with analog port

pins of Arduino. There are many types of variables.

3.8.1 char : character type variable

The variable takes up 1 byte (8 bits) and it is provided for storing character values.

Characters in C language will be given inside single quotes, like this, ‘A’ (for text, which

composed of many characters together, will be written in double quotes, such as “ABD”).

You can do arithmetic on characters, in case that you will apply ASCII values of the

characters, e.g. ‘A’+1 has the value of 66 because the ASCII code value of character A is

equal to 65.

Syntax

char sign = ' ';

Example 3-27

char var = 'x';

var is a name of a character variable you desired.

x is a desired value to assign to that variable and here is one letter.

3.8.2 byte : a variable of numeric type 8 bit or 1 byte

A byte variable is used to store a numeric value with the size of 8 bits and the value

can be between 0 to 255.

Example 3-28

byte b = B10010;

// Show the value of b in the form of a binary number
// (equal to 18 of a decimal number)

3.8.3 int : a variable of integer type

It is abbreviated from integer, which means an integer number. The int is a basic

variable for preserving numbers. One variable has the size of 2 bytes and stores a value

from -32,768 to 32,767, from -215 (minimum value) and 215-1 (maximum value). In storage of

negative numbers uses a technique called 2’s complement and the maximum bit

sometimes called sign bit. If a value is ‘1’, it is shown the value is negative.

Syntax

int var = val;

42Robo-Creator2 : ATX2 controller board activity book

Parameters

var - a name of a desired variable of int type.

val - a desired value to define to a variable.

Example 3-29

int ledPin = 13; // Assign variable ledPin to have a value = 13

When a variable is greater than a maximum capacity, the value will roll over to a

minimum capacity, however, when a value is less than a minimum capacity, the value

will roll over to a maximum capacity as the following example.

Example 3-30

int x

x = -32,768;

x = x - 1; // When you follow the instruction,

// the value of x will change -32,768 into 32,767.

x = 32,767;

x = x + 1; // When the statement is done,

// the value of x will change from 32,767 to -32,768

3.8.4 unsigned int : a variable of unsigned integer type

This type variable is similar to an int variable but will store only positive integers by

storing the value 0 to 65,535 (216-1).

Syntax

unsigned int var = val;

Parameters

var - the name of the desired int variable.

val - the desired value to assign to a variable.

Example 3-31

unsigned int ledPin = 13;

// Determine ledPin variable to have the value equal to 13 of unsigned type

When a variable has a maximum capacity, it will roll over back to a minimum

capacity later. Additionally, when a variable has a minimum capacity, it will roll over and

become a maximum capacity when there is value reduction again. As the example

Example 3-32

unsigned int x

x = 0;

x = x - 1; // After executed, the x value change from 0 to 65535.

x = x + 1; // After executed, the x value change from 65535 into 0

Robo-Creator2 : ATX2 controller board activity book 43

3.8.5 long : a variable of 32-bit integer type

The variable stores integer values and extends its capacity from an int variable. A

long variable uses a memory space of 32 bits (4 bytes) and is capable of storing values

from -2,147,483,648 through 2,147,483,647.

Syntax

long var = val;

Parameters

var - the long variable name.

val - the value that assign to the variable.

Example 3-33

long time; // Specify a time variable to be the long type

3.8.6 unsigned long : a variable of unsigned 32-bit integer type

A variable stores positive integers. One variable uses a memory space of 32 bits (4

bytes) and stores a value in range of 0 to 4,294,967,295 or 232-1.

Syntax

unsigned long var = val;

Parameter

var - the name of unsigned long variable.

val - the value that assign to the variable.

Example 3-34

unsigned long time; // Determine a time variable to be unsigned long type

3.8.7 float : float-point variable

Float is a variable for storing a value of decimal number values. It is popular to be

used to keep an analog signal value or a continuous value. Because this variable gives

values more precise than an int variable does, a float variable can store in a range of

4.4028235 x 1038 through -4.4028235 x 1038 and one variable will cover 32-bit memory space

(4 bytes).

In a mathematical calculation with the float variable will be slower than a

calculation of int variable so you should avoid calculating with float variables when doing

loop statement with the highest speed of a time function because it must be very precise.

Some programmers will convert decimal numbers to integer numbers before a calculation

for faster operation.

44Robo-Creator2 : ATX2 controller board activity book

Syntax

float var = val;

Parameters

var - the float variable name

val - the value that determine to the variable

Example 3-35

float myfloat;

float sensorCalbrate = 1.117;

Example 3-36

int x;

int y;

float z;

x = 1;

y = x / 2; // y is equal to 0 no storage of values of
// remainder from division

z = (float)x / 2.0; // z is equal to 0.5

When there is a usage of a float variable, numbers that are operated with this

float variable will be decimals as well. From the example is that number 2 calculated with

float variable x, so the number 2 is written as 2.0.

3.8.8 double : Double precision floating-point variable

Double has the size of 8 bytes and the highest stored value is 1.7976931348623157 x

1038 . In Arduino, there is limited capacity so it doesn’t use this type of variables.

Robo-Creator2 : ATX2 controller board activity book 45

3.8.9 string : variable of text type

String is a variable that stores text and it is usually array of a char variable in C

language.

Example 3-37 : Example of declaration of string variables

char Str1[15];

char Str2[8] = {'a','r','d','u','i','n','o'};

char Str3[8] = {'a','r','d','u','i','n','o','\0'};

char Str4[] = "arduino";

char Str5[8] = "arduino";

char Str6[15] = "arduino";

 Str1 is a declaration of a string variable in which a default value is not defined.

 Str2 announces a string variable along with defining a value of each character

for a text. If it is not completed following the announced number, a complier will add null

string until completing (from the example, 8 characters are declared but the text has only

7 characters so a complier fill one null string).

 Str3 states a string variable together with determining a value to give a text

and close the end with a closing character which is\0.

 Str4 declares a string variable together with a determining a variable value in

quotes. From the example, it doesn’t assign the size of a variable, so a complier will assign

the size according to a number of letters.

 Str5 proclaims a string variable along with specifying a variable value in a

quotation mark and the size of the variable, from the example, is 8 letters.

 Str6 reveals a string variable and defines the size reserving for another text

that is longer than this.

3.8.9.1 Addition of characters which inform null termination

A string variable in C language specifies that the last character is an indicator of a

null string. The indicator is 0. In determination of size of variables (value in square brackets),

the size is equal to the amount of characters +1, as shown in the variable Str2 and Str3 in the

example 4-37. In the text of Arduino, there are 7 characters, declaration must specify as [8].

In announcement of a string variable, you should keep a space for storing a

character, which notifies the null termination. Otherwise, a complier will warn a mistake

happening. In the example, variable Str1 and Str6 can store messages with a maximum of

14 characters.

3.8.9.2 Single and double quotes

Normally, a string variable is determined inside quotes, such as “ABC”. For a char

variable, it is defined inside single quotation marks ‘A’.

46Robo-Creator2 : ATX2 controller board activity book

3.8.10 Array variable

An array is a variable containing multiple variables which are stored in variables

of the same name.

Each variable is referred by an index number written inside square brackets. An

array variable of Arduino will be cited according to C language. It may look complicated

but if using an array variable directly, it is easy to understand.

Example 3-38 : Example of declaration of array

int myInts[6];

int myPins[] = {2, 4, 8, 3, 6};

int mySensVals[6] = {2, 4, -8, 3, 2};

char message[6] = “hello”;

 A program developer is able to declare an array without determination of a

myInts variable.

 Announcement of variable myPins is a declaration of an array variable without

specifying its size.

 In declaration of an array, a program developer can announce and determine

a size of an array in the same time, as the example of declaration of variable mySensVals

to proclaim a size and specify values.

 The last example is the declaration of a message variable, which is a char

variable, and there are 5 characters, including hello. However, determination of a variable

size will have to preserve a space for a character that informs null termination, so the

index value is specified as 6.

3.8.10.1 Usability of array variables

The usability of arrays can be done by typing a variable name together with

specifying an index value inside square brackets. An index value of an array variable

starts with value 0, so the value of a mySensVals variable is as follows.

mySensVals[0] == 2, mySensVals[1] == 4 ,

Determination of a value for an array variable can do as follows

mySensVals[0] = 10;

Calling a member value of an array value is done as this example

x = mySensVals[4];

Robo-Creator2 : ATX2 controller board activity book 47

3.8.10.2 Arrays and for loop instructions

Generally, application of an array variable is found in a for statement. An index

value of an array variable is given from using a value of a loop variable of the for statement

as the following example.

Example 3-39

int i;

for (i = 0; i < 5; i = i + 1)

{

Serial.println(myPins[i]); // Showing a member value of an array
// variable at a serial monitor window

}

 The completed program example of application of array variables are available

in the example of KnightRider in the topic of Tutorials at the website www. arduino.cc.

3.9 Scope of variables
Variables in C language used in Arduino have a specification called scope. This is

different from BASIC language that all variables have the same status and the status is

called global.

3.9.1 Local and global variables

Global variables are variables all functions in a program knowed by declaring the

variables outside functions. Local variables are variables proclaimed inside braces of

functions and known only in functions.

When programs are larger and more complex, usage of local variables is very

useful because only functions can apply the variables. This helps to protect mistakes when

a function modifies variable values used by other functions.

Example 3-40

int gPWMval; // All functions can see this variable.

void setup()

{}

void loop()

{

int i; // Variable i will be seen and performed inside only
// a loop function.

float f; // Variable f will be seen and applied only inside a
// loop function.

}

48Robo-Creator2 : ATX2 controller board activity book

3.9.2 Static variables

A static variable is a reserved word and used when declaring variables, which

have scope of use only inside functions. It is different from a local variable that a local

variable will be created and deleted every time to run functions. For a static variable,

when a function finishes, it is still appeared (not deleted). This is a preservation of a variable

value during function performs.

A declared variable as static will build and define a value at the first time to run a

function.

3.10 Constants
Constants are a group of characters or text preconfigured, so a complier of Arduino

will recognise these constants and it is not neccesary to notify or determine constants.

3.10.1 HIGH, LOW : used to assign logical values

In reading and writing values for digital port pins, two possible values are HIGH or

LOW.

HIGH is determination of values for digital pins and has voltage equal to +5V. If you

can read a value equal to +3V or greater, a microcontroller will read the value as LOW. A

constant of LOW is “0” or compared to logic as false.

LOW, which is configuration of digital pins, has voltage equal to 0V. If you can read

a value as +2V or less, a microcontroller will read the value as LOW and a constant of LOW

is “0” or compared to logic as false.

3.10.2 INPUT, OUTPUT : Determination of direction of digital
port pins

Digital port pins can serve for 2 types including being input and output:

When defined as INPUT means to assign that port pin as an input pin.

When specified as OUTPUT means to assign that port pin as an output pin.

Robo-Creator2 : ATX2 controller board activity book 49

Assignment of integer constants to be in various number bases of
Arduino

An integer constant is a number you write in a program of Arduino directly, such

as 123, and normally, these numbers are decimal numbers. If you would like to specify

them into other number radix systems, you will have to use special marks to specify. For

example

Base Example

10 (decimal) 123

2 (binary) B1111011

8 (octal) 0173

16 (hexadecimal) 0x7B

Decimal is a decimal number used in daily life

Example : 101 = 101. It is from (1* 102) + (0 * 101) + (1 * 100) = 100 + 0 + 1 = 101

Binary is a binary number in which a number in each position can be only 0 or 1.

Example : B101 = 5 in decimal. It is from (1 * 22) + (0 * 21) + (1 * 20) = 4 + 0 + 1 = 5

Binary numbers can be used less than 8 bits (not greater than 1 byte) and

have values from 0 to (B0) 255 (B11111111).

Octal is an octal number and a number in each position has a value from 0 to 7

only.

Example : 0101 = 65 in decimal. It is from (1 * 82) + (0 * 81) + (1 * 80) = 64 + 0 +1

= 65

Caution in configuration of constants is to not put 0 in the front, otherwise, a

compiler will translate a meaning incorrectly that a number value is octal.

Hexadecimal (Hex) is a hexadecimal number. A number in each position is worth

from 0 to 9 and character A is 10 and B is 11 until F which is equal to 15.

Example : 0x101 = 257 in decimal. It is from (1 * 162) + (0 * 161) + (1 * 160) = 256 +

0 + 1 = 257

Arduino-Note

50Robo-Creator2 : ATX2 controller board activity book

3.11 Other operators related to variables

3.11.1 cast : changing kinds of variables temporarily

Cast is an operator that instructs changing of a type of variables into another type

and controls calculation of a variable value to become a new kind.

Syntax

(type)variable

type is a type of any variables (such as int, float, long)

variable is any variable or constant

Example 3-41

int i;

float f;

f = 4.6;

i = (int) f;

In the change of a variable type from float into int, a remainder of an obtained

value will be cut out, so (int) 4.6 becomes 4.

3.11.2 sizeof : notifying the size of variables

Sizeof is used to identify the amount of byte of variables you are interested and it

can be both a normal variable and an array.

Syntax

written into two patterns as follows

sizeof(variable)

sizeof variable

Therefore; Variable is a normal variable or an array variable (int, float, long)

user would like to know the size.

Example 3-42

Sizeof operators are very useful in management with array variables (including

string variables).

The following example will type text out through a serial port, each character a

time.

Robo-Creator2 : ATX2 controller board activity book 51

char myStr[] = “this is a test”;

int i;

void setup()

{

Serial.begin(9600);

}

void loop()

{

for (i = 0; i < sizeof(myStr) - 1; i++)

{

Serial.print(i, DEC);

Serial.print(“ = “);

Serial.println(myStr[i], BYTE);

}

}

3.12 Reserved words of Arduino
A reserved word is a constant, a variable, and a function defined as a part of of C

language of Arduino. Don’t take these words to denominate variables. They are shown as

follows :

Constants

HIGH

LOW

INPUT

OUTPUT

SERIAL

DISPLAY

PI

HALF_PI

TWO_PI

LSBFIRST

MSBFIRST

CHANGE

FALLING

RISING

false

true

null

Literal Constants

GLCD_RED

GLCD_GREEN

GLCD_BLUE

GLCD_YELLOW

GLCD_BLACK

GLCD_WHITE

GLCD_SKY

GLCD_MAGENTA

Port Constants

DDRB

PINB

PORTB

DDRC

PINC

PORTC

DDRD

PIND

PORTD

Names

popxt

ATX2

Datatypes

boolean

byte

char

class

default

do

double

int

long

private

protected

public

return

short

signed

static

switch

throw

try

unsigned

void

Methods/Fucntions

sw_ok

sw_ok_press

analog

knob

glcd

glcdChar

glcdString

glcdMode

glcdGetMode

glcdFlip

glcdGetFlip

colorRGB

setTextColor

setTextBackgroundColor
setTextSize

getTextColor

getTextBackgroundColor

getTextSize

glcdFillScreen

glcdClear

glcdPixel

glcdRect

glcdFillRect

glcdLine

glcdCircle

52Robo-Creator2 : ATX2 controller board activity book

glcdFillCircle

glcdArc

getdist

in

out

motor

motor_stop

fd

bk

fd2

bk2

tl

tr

sl

sr

servo

sound

beep

uart_set_baud

uart_get_baud

uart_putc

uart_puts

uart

uart_available

uart_getkey

uart1_set_baud

uart1_get_baud

uart1_putc

uart1_puts

uart1

uart1_available

uart1_getkey

uart1_flush

Other

abs
acos
+=
+
[]
asin
=
atan

atan2
&
&=
|
|=
boolean
byte
case
ceil
char
char
class

,
//
?:
constrain
cos
{}
—
default
delay
delayMicroseconds
/

/**
.
else
==
exp
false
float

float
floor

for
<
<=
HALF_PI
if
++
!=
int
<<
<
<=
log

&&
!
||
^
^=
loop
max
millis
min
-
%
/*

*
new
null
()
PII
return
>>
;
Serial
Setup
sin
sq

sqrt

-=
switch

tan
this
true
TWO_PI
void
while
Serial
begin
read
print
write
println

available
digitalWrite
digitalRead
pinMode
analogRead
analogWrite
attachInterrupts
detachInterrupts
beginSerial
serialWrite
serialRead
serialAvailable

printString
printInteger
printByte
printHex
printOctal
printBinary
printNewline
pulseIn

shiftOut

OK

Robo-Creator2 : ATX2 controller board activity book 53

The development of C/C++ language programming for the ATX2 controller board

is performed under the support of library file; ATX2.h. It helps to reduce the complexity of

programming to control the hardware.

The sturcture of the ATX2.h library file is shown below.

ATX2.h library

Color Graphic LCD

T
B

6
6

1
2

F
N

G

M

M

Servo motor

On-board piezo speaker

6-ch. DC motor driver

Analog sensors

16-ch. Serial
servo motor
controller

XBEE

Bluetooth

Serial Monitor
Arduino IDE ZX-LED

ZX-SWITCH01

LED8 board

Chapter 4

ATX2 library

54Robo-Creator2 : ATX2 controller board activity book

4.1 ATX2.h library
To run the instructions for ATX2 and Robo-Creator2 program development;

developers have to include ATX2.h mainly library file at the beginning of the C/C++

code with this command :

#include <ATX2.h>

to declare the compiler know all statements of the ipst.h library.

The ipst.h library consist of many sub-library. Includes :

 ATX2_glcd.h contains the functions and statements of the display message, number

and line art graphic on the color graphic LCD of IPST-SE board (not support the image file).

 ATX2_sleep.h contains the function and statements of delayed time.

 ATX2_in_out.h contains the functions and statements of reading digital input port

and sending digital data to digital output port.

 ATX2_analog.h contains the functions and statements of reading analog input. Also

included KNOB button and OK switch value.

 ATX2_sound.h contains the functions and statements of sound generation.

 ATX2_motor.h contains the functions and statements of DC motor driving.

 ATX2_servoMotor.h contains the functions and statements of servo motor control.

This library work with fixed microcontroller port.

 ATX2_serial.h contains the functions and statements of serial data communication

via USB and TxD1/RxD1 of the IPST-SE controller board.

 ATX2_led8.h contains the functions and statements of interfacing with the LED8

board to control the LED operations.

 ATX2_SPI.h contains the functions and statements of interfacing with the SPI (Serial

Peripheral Interface) devices.

 ATX2_XIO.h contains the functions and statements of interfacing with the on-board

extension input/output controller.

 ATX2_i2c.h contains the functions and statements of interfacing with the 2-wire bus

devices such as I2C bus.

 ATX2_gp2d120.h contains the functions and statements of interfacing with the

GP2D120/GP2Y0A41 Infrared distance sensor.

Robo-Creator2 : ATX2 controller board activity book 55

4.2 Library description
This topic describes all sub-libraries of ATX2.h library file. Includes important

functions and commands.

4.2.1 The delay time library

This library file has functions for time delaying. Important functions of this library

file are consisted of :

4.2.1.1 sleep and delay

sleep and delay are same operation. They delayed time in millisecond unit.

Syntax

void sleep(unsigned int ms)

void delay(unsigned int ms)

Parameter

ms - Set the delay time in millsecond unit. Range is 0 to 65,535.

Example 4-1

sleep(20); // Delay 20 millisecond

delay(1000); // Delay 1 second

4.2.1.2 delay_us

It is delay time function in microsecond unit.

Syntax

void delay_us(unsigned int us)

Parameter

us - Set the delay time in microsecond unit. Range is 0 to 65,535.

Example 4-2

delay_us(100); // Delay 100 microsecond

56Robo-Creator2 : ATX2 controller board activity book

4.2.2 Sound library

This library file has functions for sound generator to drive a small piezo speaker.

Important functions of this library file are consisted of :

4.2.2.1 beep

It is "beep" signal generated function forthe piezo speaker on the ATX2 controller

board. Beep signal frequency should be select 4 frequencies (250, 506, 762 and 1,274Hz)

with duration time 100 millisecond. ATX2 board will drive the sound signal to on-board

piezo speaker.

Syntax

void beep(int beepType)

Parameter

beepType - beep frequency

0 or () : 1,274Hz

1 : 762Hz

2 : 506JHz

3 : 250Hz

Example 4-3

beep(1); // Generate the signal 762Hz with 100ms to ATX2 speaker.

4.2.2.2 sound

It is sound generated function for the piezo speaker on the ATX2 controller board.

This function sets the frequency, duration time and output pin. ATX2 board will drive the

sound signal to on-board piezo speaker.

Syntax

void sound(int freq, int time)

Parameter

freq - Frequency value. It is 0 to 32,767 in Hz unit.

time - Duration time. It is 0 to 32,767 in millisecond unit.

Example 4-4

sound(1200,500);

// Generate the signal 1200Hz with 500ms to ATX2 on-speaker

Robo-Creator2 : ATX2 controller board activity book 57

4.2.3 Digital input/output port library

This library file has functions for reading and sending the digital value to any digital

input/output port of ATX2 controller board.

Important functions of this library file are consisted of :

4.2.3.1 in

Read data from the specific digital port

Syntax

char in(x)

Parameter

x - Digital pin of ATX2 board. It is 0 to 31. Pin 2, 3, 8, 9, 18, 24 to 31 are

recommended.

Return value

0 or 1

Example 4-5

char x; // Declare x variable for keeping reading input data

x = in(18); // Read pin 18 and store data to x variable.

4.2.3.2 out

Write or send the data to the specific digital port

Syntax

out(char _bit,char _dat)

Parameter

_bit - Set digital pin of ATX2 board. It is 0 to 31. Pin 2, 3, 8, 9, 18, 24 to 31 are

recommended.

_dat - Set data output as 0 ot 1.

Example 4-6

out(24,1); // Out oin 17 with “1”

out(25,0); // Out pin 18 with “0”

58Robo-Creator2 : ATX2 controller board activity book

4.2.4 Analog input library

This library file supports all instructions for reading the analog input port (A0 to A7),

Extended analog input port (A8 to A12), KNOB button and OK switch of the ATX2 controller

board.

Important functions of this library file are consisted of :

4.2.4.1 analog

This gets digital data from the analog to digital converter module of any analog

port; A0 to A12 of the ATX2 controller board.

Syntax

unsigned int analog(unsigned char channel)

Parameter

channel - Analog input port. It is 0 to 12 (means A0 to A12)

Return value

Digital data from analog to digital converter module. The value is 0 to 1,023 (in

decimal). It represents 0 to +5Vdc.

Example 4-7

#include <ATX2.h> // Include main library

int val=0; // Declare stored variable

void setup()

{

OK(); // Wait for OK

glcdClear();

setTextSize(2); // Set text size as 2x

}

void loop()

{

glcd(1,2,"AnalogTest"); // Show message on GLCD

val = analog(2); // Read A2 input and store to val variable

setTextSize(3); // Set text size as 3x

glcd(2,2,"%d ",val); // Show A2 value

setTextSize(2); // Set text size back to 2x

}

Robo-Creator2 : ATX2 controller board activity book 59

Illustration shows how to connect the ZX-POT (simple analog sensor) to the ATX2

controller board for analog function testing.

After uploading, ATX2 will read analog value from A2 input and shows the digital

data that converted by A/D converter within microcontroller. The value is 0 to 1,023

from 10-bit A/D converter resolution.

60Robo-Creator2 : ATX2 controller board activity book

4.3.4.2 knob()

Read the KNOB button data of the ATX2 board.

Syntax

unsigned int knob()

Retuen value

Digital data from analog to digital converter module of KNOB button. It is 0 to

1,000

Example 4-8

#include <ATX2.h> // Include main library

void setup()

{

OK(); // Wait for OK button

glcdClear();

setTextSize(2); // Set text size as 2x

}

void loop()

{

glcd(1,2," KnobTest"); // Show message on GLCD

setTextSize(3); // Set text size as 3x

glcd(2,2,"%d ",knob()); // Show KNOB button value on GLCD

setTextSize(2); // Set text size back to 2x

}

Robo-Creator2 : ATX2 controller board activity book 61

4.3.4.3 sw_OK()

Read status of the OK button on the ATX2 controller board.

Syntax

unsigned char sw_ok()

Retun value

1 (true) when the switch is pressed

0 (false) no press the switch

Example 4-9

#include <ATX2.h> // Include main library

void setup()

{

glcdClear();

}

void loop()

{

if (sw_OK()) // Check OK switch pressing

{

glcdFillScreen(GLCD_YELLOW); // Change background to yellow

delay(3000); // Show time 3 seconds

}

glcdClear(); // Clare screen and set backgoround color to black

}

4.3.4.4 sw_OK_press()

Loop to check the OK button pressing function

Example 4-10

............

sw_OK_press(); // Wait until the OK button is pressed

.............

62Robo-Creator2 : ATX2 controller board activity book

4.3.4.5 OK()

Initialize the system thenloop to check the OK switch pressing and display the

welcome message “ATX2 Push OK”. Only OK characters are blinked.

Example 4-11

............

OK(); // Show welcome message and wait OK button is pressed

.............

Robo-Creator2 : ATX2 controller board activity book 63

4.3.5 DC motor control library

ATX2 board has 6 of DC motor driver outputs. It can drive 3 to 9V DC motor.

Important functions of this library file are consisted of :

4.3.5.1 motor

Drive DC motor function.

Syntax

void motor(char _channel,int _power)

Parameter

_channel - DC motor output. Includes :

 1 to 6 for each channel 1, 2, 3, 4, 5 or 6

12 for channel 1 and 2

34 for channel 3 and 4

56 for channel 5 and 6

100 or ALL or ALL4 for channel 1 to 4

106 or ALL6 for all channels (1 to 6)

_power - Power value. It is -100 to 100

If set _power as positive value (1 to 100), motor moves forward

If set_power as negative value (-1 to -100), motor moves backward

If set as 0, motor stop but not recommended. Please choose the motor_stop

function better.

64Robo-Creator2 : ATX2 controller board activity book

Example 4-12

#include <ATX2.h>

void setup()

{

OK(); // Wait for OK

}

void loop()

{

motor(1,60); // Drive motor 1 with 60% power

delay(500); // Driving time 0.5 second

motor(1,-60); // Drive motor 1 backward with 60% power

delay(500); // Driving time 0.5 second

}

5.4.6.2 motor_stop

Stop motor driving function

Syntax

void motor_stop(char _channel)

Parameter

_channel - DC motor output. Includes :

 1 to 6 for each channel 1, 2, 3, 4, 5 or 6

12 for channel 1 and 2

34 for channel 3 and 4

56 for channel 5 and 6

100 or ALL or ALL4 for channel 1 to 4

106 or ALL6 for all channels (1 to 6)

Robo-Creator2 : ATX2 controller board activity book 65

Example 4-13

#include <ATX2.h> // Include main library

void setup()

{

OK(); // Check the OK switch pressing

}

void loop()

{

motor(1,60); // Drive motor1 with 60% power

delay(500); // Driving time 0.5 second

motor(1,-60); // Drive motor1 backward with 60% power

delay(500); // Driving time 0.5 second

if (sw_OK_press()) // Check the OK button pressing

{

motor_stop(1); // If OK button is pressed, stop motor1

while (1);

}

}

Example 4-14

#include <ATX2.h> // Include main library

void setup()

{

OK(); // Check the OK switch pressing

}

void loop()

{

motor(1,50); // Drive motor1 with 50% power

motor(2,50); // Drive motor2 with 50% power

sleep(3000); // Driving time 3 seconds

motor(1,-50); // Drive motor1 backward with 50% power

motor(2,-50); // Drive motor 2 backward with 50% power

sleep(3000); // Driving time 3 seconds

motor_stop(ALL); // Stop both motors

sleep(3000); // Delay 3 seconds

}

66Robo-Creator2 : ATX2 controller board activity book

4.3.6 Servo motor library

This is library for control the servo motor of ATX2 board. It has 8 servo motor outputs.

It can drive each output or all in same time.

The re is only one func tion in this lib ra ry. It is servo.

Syntax

void servo(unsigned char _ch, int _angle)

Parameter

_ch - Servo motor output. It is 1 to 8

_pos - Servo motor shaft position. It is 0 to 180 and -1.

If set to -1, it means stop that servo motor output

Example 4-15

#include <ATX2.h> // Include main library

void setup()

{

OK(); // Check the OK switch pressing

}

void loop()

{

servo(0,60); // Drive servo motor0 to 60 degress position

sleep(5000); // Delay 5 seconds

servo(0,120); // Drive servo motor0 to 120 degree position

sleep(5000); // Delay 5 seconds
}

Robo-Creator2 : ATX2 controller board activity book 67

4.3.7 Serial data communication library

It is library that contains function and statement for supporting the serial data

communication with UART of ATX2 board.

4.3.7.1 Hardware connection

ATX2 board has 2 channels for support serial data communication. They are UART0

and UART1. Hardware connection could be done as follows :

UART0 (connectd with USB port via USB to UART circuit)

Connect USB cable between ATX2 board and computer’s USB port.

UART1

Connect the cable to RXD1 (pin 2) and TXD1 (pin 3) on the ATX2 board

UART0 (connect via USB to UART circuit) UART1 (TxD1/RxD1)

68Robo-Creator2 : ATX2 controller board activity book

4.3.7.2 uart

This is serial data sending function via UART0 port. The default baudrate of this

function is 9,600 bit per second.

Syntax

void uart(char *p,...)

Parameter

*p - Type of data. Support the special character for setting display method.

Command Operation

%c or %C Display 1 character

%d or %D Display the decimal value -32,768 to +32,767

%l or %L Display the decimal value -2,147,483,648 to +2,147,483,647

%f or %F Display floating point 3 digits

\r Set the message left justify of the line

\n Display message on the new line

Example 4-16

#include <ATX2.h> // Include main library

void setup()

{}

void loop()

{

uart("Hello Robo-Creator2!\r\n");

// Transmit data to computer with carriage returm

sleep(2000); // Delay 2 seconds

}

For running this sketch, still connect the USB cable after uploading. Open the

Serial Monitor by clicking on button or choose at menu Tools > Serial Monitor

Robo-Creator2 : ATX2 controller board activity book 69

Wait a moment, The Serial Monitor is appeared and shows the messages

following the picture below. Click to mark at Auto Scroll box and select No line ending.

Last box is selected to 9600 Baud.

4.3.7.3 uart_set_baud

Baud rate setting function of UART0

Syntax

void uart_set_baud(unsigned int baud)

Parameter

baud - Baud rate value of UART0. It is 2,400 to 115,200

Example 4-17

uart_set_baud(4800); // Set baud rate to 4,800 bit per second

4.3.7.4 uart_available

This is receiveing data testing function of UART0.

Syntax

unsigned char uart_available(void)

Return value

- “0” : no data received

- more than 0 : received character

Example 4-18

char x =uart_available();

// Check receiving data of UART0.

// If x is more than 0, it means now data is received

// Must read data by using uart_getkey funtion immediately

70Robo-Creator2 : ATX2 controller board activity book

4.3.7.5 uart_getkey

This is data reading function from receiver’s buffer of UART0

Syntax

char uart_getkey(void)

Return value

- “0” : no data received

- data : received character in ASCII code

Example 4-19

#include <ATX2.h>
void setup()
{

glcdMode(1); // Set display rotation mode 1
setTextSize(2); // Set text size 2x

}
void loop() // Main loop
{

glcdClear();
if(uart_available()) // Received data checking
{

if(uart_getkey()=='a') // Key a is pressed ?
{

glcd(3,1,"Key a Active!"); // Show message to response
sleep(2000); // Delay 2 seconds

}
else
{

glcdClear(); // Clear screen
}

}
}

Note Using uart() function to send data out from UART0 and uart_getkey()

function to get character, baud rate is set to 9,600 bit per second, 8-bit data and none

parity checking automatically. It is default value. If requres to change baud rate, have

to use uart_set_baud funtion.

For running this sketc h, still connec t the USB c ab le a fter up load ing . Open the

Se ria l Monitor by c lic king on button or choose at menu Tools > Serial Monitor

Robo-Creator2 : ATX2 controller board activity book 71

Wait a moment, The Serial Monitor is appeared and shows the messages

following the picture below. Click to mark at Auto Scroll box and select No line ending.

Last box is selected to 9600 Baud.

After ATX2 board gets the a character, it shows message Key a Active!

on th color GLCD screen.

72Robo-Creator2 : ATX2 controller board activity book

4.3.7.6 uart1

This is serial data sending function via UART1 port (TxD1 andc RxD1). The default

baud rate is 9,600 bit per second.

Syntax

void uart1(char *p,...)

Parameter

*p - Type of data. Support the special character for setting display method.

See details in uart0 function.

4.3.7.7 uart1_set_baud

This is baud rate setting function for UART1.

Syntax

void uart1_set_baud(unsigned int baud)

Parameter

baud - Baud rate of UART1. It is 2,400 to 115,200

Example 4-20

uart1_set_baud(19200); // Set baud rate as 19,200 bit per second

4.3.7.8 uart1_available

This is receiving data testing function of UART1.

Syntax

unsigned char uart1_available(void)

Return value

- “0” : no data received

- more than 0 : received character

Example 4-21

char x =uart1_available();

// Check receiving data of UART1.

// If x is more than 0, it means now data is received

// Must read data by using uart1_getkey funtion immediately

4.3.7.9 uart1_getkey

This is data reading function from receiver’s buffer of UART1.

Syntax

char uart1_getkey(void)

Return value

- “0” : no data received

- data : received character in ASCII code

Robo-Creator2 : ATX2 controller board activity book 73

4.3.7.10 When does using UART1 ?

1. Connnect with wirelss devices such as bluetooth, XBEE, WiFi, etc.

ATX2 board
 BlueStick

Serial bluetooth
(slave)

TXD1

RXD1

Rx

Tx

Computer
Laptop

Smartphone
that support
bluetooth
(master)

Example of the connection diagram between ATX2 board with smartphone/tablet
(Android) or computer in wirelessly via bluetooth.

2. Communicate between 2 of ATX2 board

3. Interface with any serial devices and modules such as ZX-SERVO16i : Serial servo

motro controller board, Serial LCD16x2 (SLCD16x2), Serial Real-time clock (ZX-17), Pixy

Camera module, RFID reader board, etc.

Robo-Creator2 : ATX2 controller board activity book 75

In the development of modern applied science projects that related to

programming, must have automatic control systems involved. Including the need to

have contact with any sensor. User need to know the value of the sensor measuring or

detecting it. One of the most important devices is display device. It is used to display or

report the value or data.

 ATX2 controller board also available an on-board display device. It is color

graphic LCD module. This chapter describes about features, library, how to interface

and some of examples.

5.1 Features of GLCD module of the ATX2 board
 1.8” size and 128 x 160 dots resolution

 Support line art and simple graphic with 65,536 color. Not support the image or

photo file.

 Support the standard character (5 x 7 dots) with 21 characters 16 lines maximum.

 Built-in LED back light

 Programming support with ATX2_glcd.h library

5.2 Library file for GLCD executation
The suitable library file for worlking with GLCD module of ATX2 controller board will

be installed together with Arduino IDE 1.0.7 installation. The library file ATX2_glcd.h is located

in folder C:\Arduino\libraries\ATX2 and executed by ATX2.h main library.

This library must be included at the top of the program with the command #include as

follows :

#include <ATX2.h>

Chapter 5

ATX2 with GLCD activity

76Robo-Creator2 : ATX2 controller board activity book

5.3 ATX2 board’s color GLCD function description

5.3.1 glcd

It is the function for display message on the color graphic LCD screen. The default

display is 21 characters, 16 lines with smallest (default) font size.

Syntax

void glcd(unsigned char x, unsigned char y ,char *p,...)

Parameter

x - line number. Value is 0 to 15

y - character position. Value is 0 to 20

*p - the display message and special character or symbol for determine the

display as follows :

%c or %C - display one character

%d or %D - display integer from -32,768 to 32,767

%l or %L - display integer from -2,147,483,648 to 2,147,483,647

%f or %F - display floating point (3-digit maximum)

defghijk

0 0000000000

300000000000000000000

400000000000000000000

500000000000000000000

600000000000000000000

700000000000000000000

800000000000000000000

900000000000000000000

a00000000000000000000

b00000000000000000000

c00000000000000000000

d00000000000000000000

e00000000000000000000

f00000000000000000000

012345 89abc67

20000 0000d

100000000000000000000

Line 0 (Line 1st)

Column 0
(Column1st)

Line 15 (Line 16th)

Column 20
(Column 21st)

The color graphic LCD
features 128 x 160
points resolution,
displays standard
character 21 characters
16 lines (with resolution
5x7 points)

Figure 5-1 : Illustated of details and displayed dot location of the
GLCD module that used in ATX2 controller board

Robo-Creator2 : ATX2 controller board activity book 77

Example 5-1

glcd(2,0,"Hello World");

// Show message; Hello World at left end position of line 2

defghijk

0 0000000000

300000000000000000000

400000000000000000000

500000000000000000000

600000000000000000000

700000000000000000000

800000000000000000000

900000000000000000000

a00000000000000000000

b00000000000000000000

c00000000000000000000

d00000000000000000000

e00000000000000000000

f00000000000000000000

012345 89abc67

Hello World

100000000000000000000

Column 0
(first digit)

Line 2

Line 0
Line 1

First is line number. Begin from 0.
2 is line 2 or 3rd line.

Display message

Next digit is column position.
Begin from 0. 0 is first digit or column.

Example 5-2

int x=20;

glcd(1,2,"Value = %d",x);

// Display both charater and number same line

// Start from column 2 of line 1

78Robo-Creator2 : ATX2 controller board activity book

5.3.2 colorRGB

It is color changing function in RGB (Red Blue Green) format to 16-bit data. It

divides 5-bit for Red , 6-bit for Green and last 5-bit for Blue.

Syntax

unsigned int colorRGB(uint red,uint green,uint blue)

Parameter

red - Red value is between 0 to 31. If applied data is greater than 31, adjsut to 31

green - Green value is between 0 to 63. If applied data is greater than 63,

adjust to 63

blue - Blue value is between 0 to 31. If applied data is greater than 31, adjsut to 31

Example 5-3

#include <ATX2.h>

int colors;

void setup()

{

int colors;

colors=colorRGB(31,0,0); // Set 16-bit data of red to colors variable

glcdFillScreen(colors); // Fill background color

}

void loop()

{}

Robo-Creator2 : ATX2 controller board activity book 79

5.3.3 color[]

It is array type variable. It is uesd for set the 18 colors. Developers can also use

color[] directly or use the color name.

Syntax

unsigned int color[]= { GLCD_RED,

GLCD_GREEN, GLCD_BLUE,

GLCD_YELLOW, GLCD_BLACK,

GLCD_WHITE, GLCD_SKY,

GLCD_MAGENTA, GLCD_ORANGE,

GLCD_LIME, GLCD_VIOLET

GLCD_PINK, GLCD_DOLLAR,

GLCD_BROWN, GLCD_DARKGREEN,

GLCD_NAVY,GLCD_DARKGREY,

GLCD_GREY};

Parameter

GLCD_RED - Select red GLCD_GREEN - Select grren

GLCD_BLUE - Select blue GLCD_YELLOW - Select yellow

GLCD_BLACK - Select black GLCD_WHITE - Select white

GLCD_SKY - Select sky blue color GLCD_MAGENTA - Select magenta

GLCD_ORANGE - Select orange GLCD_LIME - Select lime green

GLCD_VIOLET - Select vilolet GLCD_PINK - Select pinko

GLCD_DOLLAR - Select black GLCD_BROWN - Select white

GLCD_DARKGREEN - Select dark green GLCD_NAVY - Select magenta

GLCD_DARKGREY - Select dark grey color GLCD_GREY - Select Grey

Example 5-4

glcdFillScreen(color[5]); // Set background color as white

Example 5-5

glcdFillScreen(GLCD_BLUE); // Set backgrounbd color as blue

80Robo-Creator2 : ATX2 controller board activity book

5.3.4 glcdSetColorWordBGR

It is factory color data setting function in BGR type. The setting data consists of 5-

bit of blue, 6-bit of green and 5-bit of red. There is 2 models of this color GLCD productions.

One is set the color data as RGB. Another is RGB.

The default of ATX2_glcd.h is set to BGR. No need to put this function into the

sketch.

Syntax

glcdSetColorWordBGR()

Example 5-6

#include <ATX2.h>

void setup()

{

glcdSetColorWordBGR();

// Set color data setting of GLCD to BGR type. Normally not require

}

void loop()

{}

5.3.5 glcdSetColorWordRGB();

It is factory color data setting function in RGB type. The setting data consists of 5-

bit of red, 6-bit of green and 5-bit of blue.

Need to put this function into the sketch if GLCD operation after uploading shows

incorrect color. It means the current color GLCD is RGB type. Developer have to put

this function in the setup() on the top of sketch.

Syntax

glcdSetColorWordRGB()

Example 5-7

#include <ATX2.h>

void setup()

{

glcdSetColorWordBGR(); // Set color data setting to RGB type

}

void loop()

{}

Robo-Creator2 : ATX2 controller board activity book 81

5.3.6 setTextColor

This function is used to set the text color that displayed with glcd()function. The

default color is white.

Syntax

void setTextColor(unsigned int newColor)

Parameter

newColor - This is to set the target color. It is 16-bit data or variable data which

is defined from the variable color[]

Example 5-8

setTextColor(GLCD_YELLOW); // Set text color as yellow

5.3.7 setTextBackgroundColor

It is to set the text background color function. The default color is black. The text

background color is not screen background. Setting the screen background color,

need to use the glcdFillScreen function.

Syntax

void setTextBackgroundColor(unsigned int newColor)

Parameter

newColor - This is to set the target color. It is 16-bit data or variable data which

is defined from the variable color[]

Example 5-9

setTextBackgroundColor(GLCD_GREEN);

// Set text backgorund color as green

82Robo-Creator2 : ATX2 controller board activity book

5.3.8 glcdClear

It is clear screen function. The background color will be latest the text backgorund

color. If not defined before, the background color will be black

Syntax

void glcdClear()

Example 5-10

glcdClear(); // Clear screen

IPST-SE

Screen status

Before execute
glcdClear();

Screen status

After execute
glcdClear();

Robo-Creator2 : ATX2 controller board activity book 83

5.3.9 glcdFillScreen

This will clear the screen and change to the background color function. After

executing this function, all contents on scrren will be cleared and it will change the

backgtround color to the target color.

Syntax

void glcdFillScreen(unsigned int color)

Parameter

color - This is to set the target color. It is 16-bit data or variable data which is

defined from the variable color[]

Example 5-11

glcdFillScreen(GLCD_YELLOW); // Fill GLCD screen with yellow

Screen status

Before execute
glcdFillScreen(GLCD_YELLOW);

Screen status

After execute
glcdFillScreen(GLCD_YELLOW);

84Robo-Creator2 : ATX2 controller board activity book

5.3.10 glcdMode

It is for setting the display orientation. There are 4 modes; 0 (0 degree), 1 (oritentate

right 90 degrees), 2 (orientate 180 degrees or invert) and 3 (orientate 270 degrees from

origin)

Syntax

glcdMode(unsigned int modeset)

Parameter

modeset - Orientation mode number. It is 0 to 3 for determine 0, 90, 180 and 270

degrees orientation. The default is 0 degree in vertical.

ATX2

A
T
X
2

ATX2

A
T
X
2

glcdMode0
0o

glcdMode1
orientate 90o

glcdMode2
orientate 180o

glcdMode3
orientate 270o

Example 5-12

#include <ATX2.h>
void setup()
{

setTextSize(2); // Set text size as 2x
}
void loop()
{

glcdClear(); // Clear screen
glcdMode(0); // Set display orientation mode 0
glcd(0,0,"ATX2"); // Show message
sw_ok_press(); // Wait OK switch pressing
glcdClear();
glcdMode(1); // Set display orientation mode 1
glcd(0,0,"ATX2");
sw_ok_press();
glcdClear();
glcdMode(2); // Set display orientation mode 2
glcd(0,0,"ATX2");
sw_ok_press();
glcdClear();
glcdMode(3); // Set display orientation mode 3
glcd(0,0,"ATX2");
sw_ok_press();

}

Robo-Creator2 : ATX2 controller board activity book 85

5.3.11 setTextSize

This function is used to set the text size. The text size is 1x time by default. It requires

6 x 10 dots include character gap. With the default size, this display shows 21 characters

16 lines maximum in vertical.

height
 7 dots

width
5 dots

gap 1 dot

line space
2 dots

pitch 1 dot

Syntax

setTextSize(unsigned int newSize)

Parameter

newSize - times number of the default size. It is 1 to 16.

text size 1 contains 21 characters 16 lines

text size 2 contains 10 characters 8 lines

text size 3 contains 7 characters 5 lines

text size 4 contains 5 characters 4 lines

text size 5 contains 4 characters 3 lines

text size 6 and 7 contains 3 characters 2 lines

text size 8 contains 2 characters 2 lines

text size 9 and 10 contains 2 characters 1 line

text size 11 to 16 contains only 1 character and 1 line to fit in screen.

86Robo-Creator2 : ATX2 controller board activity book

Example 5-13

#include <ATX2.h>

void setup()

{

setTextSize(1); // Set text size as default

setTextColor(GLCD_GREEN); // Set text color as green

glcd(0,0,"Size1"); // Show message

setTextSize(2);

glcd(1,0,"Size2"); // Set text size 2x

setTextSize(3);

glcd(2,0,"Size3"); // Set text size 3x

setTextSize(4);

glcd(3,0,"Size4"); // Set text size 4x

}

void loop()

{}

5.3.12 getTextColor

Get the current text color.

Syntax

unsigned int getTextColor()

Return value

textColor - It is 16-bit data. It refer colorRGB[] function

Example 5-14

unsigned int color;

color=getTextColor(); // Store current text color data to variable

Robo-Creator2 : ATX2 controller board activity book 87

5.3.13 getTextBackgroundColor

Get the current text background color.

Syntax

unsigned int getTextBackgroundColor()

Return value

textColor - It is 16-bit data. It refer colorRGB[] function

Example 5-15

unsigned int color;

color=getTextBackgroundColor();

// Store current text background color data to variable

5.3.14 getTextSize

Get the current text size.

Syntax

unsigned int getTextSize()

Return value

textSize - The size is times number from the default size. Range is 1 to 16.

Example 5-16

unsigned int textSize;

textSize=getTextSize(); // Store current text size value to variable

5.3.15 glcdGetMode

Get the current orientation in display mode.

Syntax

unsigned int glcdGetMode()

Return value

mode - The orientation display mode number. It is 0 to 3. See details in glcdMode

function

Example 5-17

unsigned int Mode;

Mode=glcdGetMode();

// Get the current orientation display mode number

88Robo-Creator2 : ATX2 controller board activity book

5.3.16 glcdPixel

This plots the dots on the coordinator of the display. It refers to 128 x 160 dots

display.

Syntax

void glcdPixel(unsigned int x,unsigned int y,unsigned
int color)

Parameter

x - Horizontal axis coordinator or x-axis. Value is 0 to 127.

y - Vertical axis coordinator or y-axis. Value is 0 to 159

color - The target color. It is 16-bit data or variable data which is defined from

the variable color[]

Example 5-18

#include <ipst.h>

int i;

void setup()

{

for (i=0;i<128;i+=4)

{

glcdPixel(i,80,GLCD_RED);

// Plot a dot every 4 dots on x-axis at the center of screen

}

for (i=0;i<160;i+=4)

{

glcdPixel(64,i,GLCD_RED);

// Plot a dot every 4 dots

// on y-axis at the center of

// screen

}

}

void loop()

{}

Robo-Creator2 : ATX2 controller board activity book 89

6.3.1.17 glcdRect

Draw the rectangular shape that refer dot coordinator at 128 x 160 dots resolution

of color GLCD screen following the figure 6-2.

Syntax

void glcdRect(unsigned int x1,unsigned int y1,

unsigned int width,unsigned int height,

unsigned int color)

Parameter

x1 - Start point of the rectangular shape on x-axis. Value is 0 to 127

y1 - Start point of the rectangular shape on y-axis. Value is 0 to 159

width - The width of rectangular shape. Value is 1 to 128

height - The height of rectangular shape. Value is 1 to 158

color - Line color. It is 16-bit data or variable data which is defined from the

variable color[]

x-axis

y-axis

dot 0

dot 159
dot 158
dot 157

dot 1
dot 2
dot 3

dot 0 dot 4 dot 127

Figure 5-2 : Dot coordinator of ATX2 board’s color display

90Robo-Creator2 : ATX2 controller board activity book

Example 5-19

#include <ATX2.h>

void setup()

{

glcdRect(32,40,64,80,GLCD_RED);

// Draw the red rectangle with 64 x 80 dots size

}

void loop()

{}

300000000000000000000

400000000000000000000

500000000000000000000

600000000000000000000

700000000000000000000

800000000000000000000

900000000000000000000

a00000000000000000000

b00000000000000000000

c00000000000000000000

d00000000000000000000

e00000000000000000000

f00000000000000000000

X1 point
(32)

Y1 point
(40)

width 64 dots

height 80 dots

width

height
line colorStart dot of x-axis

Start dot of y-axis

5.3.18 glcdFillRect

This creates a filled rectangle. It is only fill color without an outline.

Syntax

void glcdFillRect(unsigned int x1, unsigned int y1,
unsigned int width, unsigned int height,
unsigned int color)

Parameter

x1 - Start point of the rectangular shape on x-axis. Value is 0 to 127

y1 - Start point of the rectangular shape on y-axis. Value is 0 to 159

width - The width of rectangular shape. Value is 1 to 128

height - The height of rectangular shape. Value is 1 to 158

color - Fill color. It is 16-bit data or variable data which is defined from the

variable color[]

Robo-Creator2 : ATX2 controller board activity book 91

Example 5-20

#include <ATX2.h>

void setup()

{

glcdFillRect(32,40,64,80,GLCD_RED);

// Create the solid red rectangle 64 x 80 pixels

}

void loop()

{}

300000000000000000000

400000000000000000000

500000000000000000000

600000000000000000000

700000000000000000000

800000000000000000000

900000000000000000000

a00000000000000000000

b00000000000000000000

c00000000000000000000

d00000000000000000000

e00000000000000000000

f00000000000000000000

X1 point
(32)

Start dot of x-axis

Y1 point
(40)

width 64 dots

Height
80 dots

Start dot of y-axis

width
height

target color

92Robo-Creator2 : ATX2 controller board activity book

5.3.19 glcdLine

Draw the straight line from point to point.

Syntax

void glcdLine(unsigned int x1,unsigned int y1,

unsigned int x2,unsigned int y2,unsigned int color)

Parameter

x1 - Start point on the x-axis. Value is 0 to 127.

y1 - Start point on the y-axis. Value is 0 ro 159

x2 - Destination point on the x-axis. Value is 0 to 127.

y2 - Destination point on the y-axis. Value is 0 ro 159

color - Line color. It is 16-bit data or variable data which is defined from the

variable color[]

Example 5-21

#include <ipst.h>

void setup()

{

glcdLine(0,0,127,159,GLCD_RED);

// Draw a red diagonal line from top left to bottom right

}

void loop()

{}

3 0

0000000000000000

4 0

0000000000000000

500000000000000000000

600000000000000000000

700000000000000000000

800000000000000000000

900000000000000000000

a00000000000000000000

b00000000000000000000

c00000000000000000000

d00000000000000000000

e00000000000000000000

f00000000000000000000

X1
(0)

Y1
(0)

3 0

4 0

X2
(127)

Y2
(159)

Robo-Creator2 : ATX2 controller board activity book 93

5.3.20 glcdCircle

Draw a circle function.

Syntax

void glcdCircle(unsgined int x, unsgined int y,

unsgined int radius,unsgined int color)

Parameter

x - Center of thge circle coordinator on x-axis. Value is 0 to 127

y - Center of thge circle coordinator on y-axis. Value is 0 to 159

radius - Radius value

color - Circumference color. It is 16-bit data or variable data which is defined

from the variable color[]

Example 5-22

#include <ATX2.h>

void setup()

{

glcdCircle(32,120,31,GLCD_RED);

//Draw a red circle with 31 dots radius

}

void loop()

{}

0000000000000000

0000000000000000

500000000000000000000

600000000000000000000

700000000000000000000

800000000000000000000

900000000000 00000000

a000000000 0000000000

b00000000000000000000

c00000000000000000000

d00000000000000000000

e00000000000000000000

f00000000000000000000

y-coordinator
(120)

radius 31 dots

x-coordinator
(32)

94Robo-Creator2 : ATX2 controller board activity book

5.3.21 glcdFillCircle

Creates a filled circle without the circumference.

Syntax

void glcdFillCircle(unsigned int x,unsigned int y,

unsigned int radius,unsigned int color)

Parameter

x - Center of thge circle coordinator on x-axis. Value is 0 to 127

y - Center of thge circle coordinator on y-axis. Value is 0 to 159

radius - Radius value

color - Circle color. It is 16-bit data or variable data which is defined from the

variable color[]

Example 5-23

#include <ATX2.h>

void setup()

{

glcdFillCircle(32,120,31,GLCD_RED);

// Create the solid red circle with radius 31 dots

}

void loop()

{}

0000000000000000

0000000000000000

500000000000000000000

600000000000000000000

700000000000000000000

800000000000000000000

900000000000 00000000

a000000000 0000000000

b00000000000000000000

c00000000000000000000

d00000000000000000000

e00000000000000000000

f00000000000000000000

y-coordinator
(120)

radius 31 dots

x-coordinator
(32)

Robo-Creator2 : ATX2 controller board activity book 95

5.3.22 glcdArc

Draw the arc line function.

Syntax

void glcdArc(unsigned int x,unsigned int y,

unsigned int r,int start_angle,int end_angle,uint color)

Parameter

x - Center of thge circle coordinator on x-axis. Value is 0 to 127

y - Center of thge circle coordinator on y-axis. Value is 0 to 159

radius - Radius value of the arc

start_angle - Start angle of the arc

end_angle - Ending angle of the arc

color - Arc line color. It is 16-bit data or variable data which is defined from

the variable color[]

Example 5-24

#include <ATX2.h>

void setup()

{

glcdArc(48,80,16,30,150,GLCD_RED);

glcdCircle(48,75,5,GLCD_YELLOW);

glcdCircle(80,75,5,GLCD_YELLOW);

glcdArc(80,80,16,30,150,GLCD_RED);

glcdFillCircle(64,90,7,GLCD_GREEN);

glcdArc(64,100,30,220,320,GLCD_RED);

}

void loop()

{}

96Robo-Creator2 : ATX2 controller board activity book

Robo-Creator2 : ATX2 controller board activity book 97

This chapter presents examples of the hardware experiment with the ATX2

controller board of the Robo-Creator2 robot kit. There are 4 main activities as follows.

Activity 1 : Shows message on the display of the ATX2 board (5 sub-activities)

Activity 2 : Reading KNOB and OK button of the ATX2 board

Activity 3 : Control the simple output devices

Activity 4 : Simple I/O controller

Activity 5 : Sound activity

The procedure of development of each activity is the same. That is open Arduin

1.0.7 software, create the sketch, compiled and uploaded onto the ATX2 board. Finally,

test the running program.

The important thing to emphasize is every time you turn on the power to the ATX2

board. Wait for the controller to ready first. It takes about 3 to 5 seconds after turning on

the power or after pressing the RESET switch. If it is uploaded before ATX2 board ready,

The work may cause an error in the connection or the uploaded code does not work

as it should be. It will not damage the controller board. It just the board does not work

or work not properly.

Chapter 6

Hardware experiment of ATX2 board

98Robo-Creator2 : ATX2 controller board activity book

Activity 1 : Shows message on the display of
the ATX2 board

Activity 1-1 Hello World

(A1.1.1) Open the Arduino 1.0.7 software. Create the new sketch file. Type the code following

the Listing A1-1. then save as the sketch.

(A1.1.2) Apply the supply voltage to the ATX2 board and turn on power. Connect the USB

cable between ATX2 board and computer.

(A1.1.3) Choose the hardware at menu Tools > Board > ATX2; ATmega644P @20MHz

Robo-Creator2 : ATX2 controller board activity book 99

(A1.1.4) Choose the interfaced port at menu Tools > Serial Port (Number of interfaced port

may be different depend on each computer)

(A1.1.5) Compile and upload the sketch to ATX2 board by clicking on the button or

choose at menu File > Upload

At the ATX2 screen, message Hello World will be displayed.

#include <ATX2.h> // Include main library
void setup()
{
 glcdMode(1); // Set orientation mode 1 (90 deg)
 setTextSize(2); // Set text size 2x
 glcd(1,0,"Hello World"); // Send message to display
}
void loop()
{}

Code description

This code will set the display orientation to 90 degree first (mode 1) because the ATX2

board orientation is wide. Next, set text size as 2x and send message "Hello World" to display

at the line 1 column 0 of GLCD screen.

This sketch run at once. Because all code are contained in setup(); bracket

Listing A1-1 : ATX2_HelloGLCD.ino; the sketch file for sending
message to display on the GLCD scrren of the ATX2 board

100Robo-Creator2 : ATX2 controller board activity book

Activity 1-2 Multipleline display

The GLCD screen of ATX2 board size is 128 x 160 dots. Show the character with 5 x 7

dots resolution by 21 charactes 16 lines. Developer can define the position of each line and

column on the screen by using glcd function of the ipst.h library file.

Additionally, glcd function provides the special characters for setting the display position

insteadto use the position number. It will be show in the Listing A1-2.

(A1.2.1) Open the Arduino 1.0.7 software. Create the new sketch file. Type the code following

the Listing A1-2. then save as the sketch.

#include <ATX2.h> // Include main library
int i;
void setup()
{
 glcdMode(1); // Set orientation mode 1 (90 deg)
 glcdFillScreen(GLCD_WHITE); // Set background color as white
 setTextColor(GLCD_BLACK); // Set text color as black
 setTextBackgroundColor(GLCD_WHITE); // Set text background as white
 for (i=0;i<13;i++) / / Loop 13 times for displaying messages

 {
 glcd(i,i,"Row %d ",i); // Display messages on the screen
 }
}
void loop()
{}

Code description

This sketch add 3 functions of GLCD displaying as follows :

1. glcdFillScreen - Set the screen background color function

2. setTextColor - Set the text color function

3. setTextBackground - Set the text background color function

After screen setting already, the sketch will send the Row message following line number

that get from increase the value of i variable and also shift the position by using i variable

value.

Thus, firt line will be displayed Row0 message at column 0. Next on the line 2 will show

Row1 message respcetively untill line 12. It will be show Row 12 message at the column 12.

Listing A1-2 : ATX2_GLCDmultipleline.ino; the sketch file of Arduino
for sending message to display on the GLCD screen of the ATX2
board in multiline.

Robo-Creator2 : ATX2 controller board activity book 101

(A1.2.2) Apply the supply voltage to the ATX2 board and turn on power. Connect the USB

cable between ATX2 board and computer.

(A1.2.3) Compile and upload the sketch to ATX2 board by clicking on the button or

choose at menu File > Upload

At the ATX2 screen, it shows Row0 to Row15 message on each line respectively.

Summary, wide orientation of GLCD screen could be display 13 lines maximum with

standard text size.

102Robo-Creator2 : ATX2 controller board activity book

Activity 1-3 Fun with size and rotation text on GLCD

Font size displayed on the GLCD screen of the ATX2 board when it starts is the smallest.

The number of dots per character is 6 x 10 dots (the actual font size is 5 x 7 dots). To adjust the

font size, use setTextSize() function. The value size in () is time of the default size. For

example :

setTextSize(2) is set text size to 2 times of the default size. The number of

dots per character is 12 x 20 dots.

setTextSize(3) is set text size to 3 times of the default size. The number of

dots per character is 18 x 30 dots.

When adjusting the font size is larger. Number of characters per line was reduced from

21 characters 16 lines. Afdter set the text size 2 times, it will display 10 characters 8 lines. This

is important factor that all programmers have to concentrate.

In addition to setting the font size, programmer can rotate the displaying by using the

function glcdMode(). The default mode is 0 (glcdMode(0)) is displayed vertically. For

another 3 modes 1, 2 and 3, rotate the displaying 90 degrees each. That is from 0 to 90 degrees

(mode 1), 90 to 180 degress (mode 2) and 180 to 270 degrees (mode 3).

(A1.3.1) Open the Arduino 1.0.7 software. Create the new sketch file. Type the code following

the Listing A1-3. then save as the sketch.

#include <ATX2.h>
int x,m;
void setup()
{

//glcdSetColorWordRGB(); // Enable this function if displaying color
// of GLCD incorrect

setTextColor(GLCD_RED); // Set text color as red
}
void loop()
{

for (x=1;x<6;x++)
{

setTextSize(x); // Set text size
for(m=0;m<4;m++)
{

glcdClear(); // Clear screen
glcdMode(m); // Set rotation of display
glcd(0,0,"%dX",x); // Show text size
glcd(1,0,"M=%d",m); // Show rotation mode number
sleep(500);

}
}

}

Listing A1-3 : ATX2_FlipText.ino; the sketch file for testing about
setting text size and rotation display direction of GLCD screen of
the ATX2 board

Robo-Creator2 : ATX2 controller board activity book 103

(A1.3.2) Apply the supply voltage to the ATX2 board and turn on power. Connect the USB

cable between ATX2 board and computer.

(A1.3.3) Compile and upload the sketch to the ATX2 board by clicking on the button or

choose at menu File > Upload.

ATX2 display shows the number of text size and number of display mode. Starts from

the upper left, upper right, lower right and lower left corner. Surrounding the display starts

from 1X, 2X, 3X, 4X and 5X each with 4 display direction by the M value.

M = 0; display in vertical M = 1; rotate displaying to 90o

 Text size is 3 times (3X) Text size is 4 times (4X)

M = 2; rotate displaying to 180o M = 3; rotate displaying to 270o

 Text size is 4 times (4X) Text size is 5 times (5X)

104Robo-Creator2 : ATX2 controller board activity book

Activity 1-4 : Simple graphic displaying

The glcd() function is main function for GLCD screen of ATX2 board operation. Except

showing text messages, this function also support more commands for drawing lines and simple

geometry shape. Includes :

glcdRect(int x1,int y1,int width,int height,uint color) is

function to draw a rectangle shape.

glcdFillRect(int x1,int y1,int width,int height,uint color)

is function to create a solid rectangle shape.

glcdLine(int x1, int y1, int x2, int y2,uint color) is function

to draw the line.

glcdCircle(int x, int y, int radius,uint color) is function to

draw a circle.

glcdFillCircle(int x, int y, int radius,uint color) is function

to create a solid circle shape.

glcdClear(uint color) is clear display function.

The testing program is shown in the Listing A1-4. Create the sketch, compile and upload

to the ATX2 board. The result is as follows :

If the color of the display is not correct, may be due to the version of the GLCD monitor.

This GLCD monitor has 2 versions that different data setting. The solution is remove // symbol

from the glcdSetColorWordRGB (); function in setup(); . It will be change the color data setting.

Robo-Creator2 : ATX2 controller board activity book 105

#include <ATX2.h> // Include IPST-SE library

int i,j;

void setup()

{

//glcdSetColorWordRGB(); // Enable this function if displaying color
// incorrect

}

void loop()

{

glcdClear; // Clear screen and set background to black

sleep(300);

for (i=0;i<160;i+=4)

{

glcdLine(0,0,128,i,GLCD_WHITE); // Draw the white line from 0,0
// coordinate to target

}

for (i=0;i<128;i+=4)

{

glcdLine(0,0,i,160,GLCD_RED); // Draw the red line from 0,0
// coordinate to target

}

sleep(2000);

glcdRect(32,40,64,80,GLCD_BLUE); // Draw the blue rectangle layout

sleep(300);

glcdFillCircle(32,40,31,GLCD_GREEN); // Create the solid green circle

glcdFillCircle(96,40,31,GLCD_YELLOW); // Create the solid yellow circle

glcdFillCircle(32,120,31,GLCD_MAGENTA); // Create the solid margenta circle

glcdFillCircle(96,120,31,GLCD_SKY); // Create the solid light blue circle

sleep(1000);

glcdCircle(64,40,31,GLCD_GREEN); // Draw the green circumference

glcdCircle(32,80,31,GLCD_BLUE); // Draw the blue circumference

glcdCircle(64,120,31,GLCD_YELLOW); // Draw the yellow circumference

glcdCircle(96,80,31,GLCD_SKY); // Draw the light blue circumference

sleep(1000);

glcdFillRect(0,0,128,160,GLCD_YELLOW); // Create the solid yellow rectangle

sleep(1000);

}

Listing A1-4 : ATX2_SimpleGraphic.ino; the sketch file for demon-
stration of simple graphic displaying of the ATX2 board

106Robo-Creator2 : ATX2 controller board activity book

Activity 1-5 : Draw the curve

Except the circles and rectangle, the curve is a key component in creating graphics. In

glcd function also provides a function to create the curve. It is glcdArc(). The parameter

that must be reasonable. See more detail in chapter of the GLCD library.

(A1.5.1) Open the Arduino 1.0.7 software. Create the new sketch file. Type the code following

the Listing A1-5. then save as the sketch.

(A1.5.2) Apply the supply voltage to the ATX2 baord and turn on power. Connect the USB

cable between ATX2 board and computer.

(A1.5.3) Compile and upload the sketch to ATX2 board by cl icking on the button or

choose at menu File > Upload

#include <ATX2.h>

int i;

// Smiley face graphic function

void face()
{

glcdFillCircle(64,70,50,GLCD_WHITE);

glcdArc(48,60,16,30,150,GLCD_RED);

glcdCircle(48,55,5,GLCD_BLUE);

glcdCircle(80,55,5,GLCD_BLUE);

glcdArc(80,60,16,30,150,GLCD_RED);

glcdFillCircle(64,70,7,GLCD_YELLOW);

glcdArc(64,80,30,220,320,GLCD_RED);

glcdArc(64,80,29,220,320,GLCD_RED);

}
void setup()
{

//glcdSetColorWordRGB(); // Enable this function if displaying color
// incorrect

}
void loop()
{

for(i=0;i<4;i++)
{

glcdClear();

glcdMode(i); // Rotate displaying

face();

sleep(1000);

}

}

Listing A1-5 : GLCDarcTest.pde; the sketch file for demonstration
of creating the curve on GLCD screen of the IPST-SE board

Robo-Creator2 : ATX2 controller board activity book 107

(A1.5.4) Run the sketch. See the ATX2 board operation.

The display shows a smiley face for 1 second and turn it each 90 degrees respectively

and then loop back to the start page. The display will go all the time.

108Robo-Creator2 : ATX2 controller board activity book

Activity 2 : Reading KNOB and OK button of the
ATX2 board

Normal automatic control system must be configured with a switch in user interface

hardware. The ATX2 board also provides the user interface hardware as well. It contains KNOB

and OK button.

(A2.1) Create the new sketch with Listing A2-1 and save as to ATX2_OKbuttonKnobTest.ino.

(A2.2) Compile and upload to the ATX2 board then run the sketch.

ATX2 display shows below message :

Press OK (text size 2x)

(A2.3) Press the OK switch to continue.

GLCD monitor shows a yellow circle 1 second then show message :

Knob value (text size 2x)

XXXX (text size larger to 3x)

therefore; xxxx value is 94 to 1023

(A2.4) Adjust the KNOB button on the ATX2 board.

Knob’s value at the screen is changed following adjustment at KNOB button.

(A2.5) Press the OK switch and release.

GLCD shows the solid green circle 1 second then shows message and KNOB value.

Robo-Creator2 : ATX2 controller board activity book 109

#include <ATX2.h> // Include the main library

void setup()

{

 //glcdSetColorWordRGB(); // Enable this function if displaying color
// incorrect

 glcdClear(); // Clear screen and set black backgound

 glcdMode(1); // Set display mode 1

 setTextSize(2); // Set text size 2x

 glcd(1,2,"Press OK"); // Show entry essage

 sw_OK_press(); // Loop for pressing the OK switch

 glcdClear(); // Clear screen and set black backgound

 glcdFillCircle(64,70,50,GLCD_YELLOW); // Draw the solid yellow circle

 delay(1000); // Show graphic 1 second

 glcdClear(); // Clear screen and set black backgound

}

void loop()

{

 if (sw_OK()) // Check the OK switch pressed

 {

 glcdClear(); // Clear screen and set black backgound

 glcdFillCircle(64,70,50,GLCD_GREEN); // Draw the solid green circle

 delay(1000); // Show graphic 1 second

 glcdClear(); // Clear screen and set black backgound

 }

 glcd(1,2,"Knob value"); // Show message

 setTextSize(3); // Set text size as 3x

 glcd(2,2,"%d ",knob()); // Show the value of KNOB button

 setTextSize(2); // Set text size 2x

}

Listing A2-1 : ATX2_OKbuttonKnobTest.ino; the sketch for
demonstration about reading the value of KNOB button, OK and
SW1 switch on the ATX2 board

110Robo-Creator2 : ATX2 controller board activity book

Activity 3 : Control the simple output devices

The library file ATX2.h provides out (char _bit, char _dat) function for sending a logic

"0" or "1" to the microcontrolle’s digital output pin. It helps the ATX2 to to drive the output

device easier. The simplest example device is LED.

In this activity, connect the ZX-LED board to the ATX2 board at any pin. LED on ZX-LED

board will be on when receive the logic "1" and off when receive the logic "0"

(A3.1) Connect the first ZX-LED board to pin 28 and second one to pin 30.

(A3.2) Create the new sketch with Listing A3-1 and save as ATX2_LEDTest.ino file.

(A3.3) Apply the supply voltage to the ATX2 board and turn on power. Connect the USB cable

between ATX2 board and computer. Compile and upload to the ATX2 board then run the

sketch.

(A3.4) Observe the operation of both ZX-LED board.

The ATX2 monitor shows the title message. Then press the OK button start. The screen

shows message > Running.. and LED of both ZX-LED boards on and off alternately

continuous.

Robo-Creator2 : ATX2 controller board activity book 111

#include <ATX2.h> // Include the main library

void setup()

{
OK();

}

void loop()

{

out(28,1); // LED at pin 28 is on

out(30,0); // LED at pin 30 is off

sleep(400);

out(28,0); // LED at pin 28 is off

out(30,1); // LED at pin 30 is on

sleep(400);

}

Listing A3-1 : ATX2_LEDTest.ino; the sketch for demonstration

about simple driving the output devices of the ATX2 board

112Robo-Creator2 : ATX2 controller board activity book

Activity 4 : Simple I/O Controller

The library file ipst.h provides in (x) function for getting the digital logic "0" or "1" from

input port of microcontroller. It helps the ATX2 to get the logic from external input device such

as a push-button swith.

In this activity, connect the ZX-LED board to the ATX2 board at any pin. Connect the ZX-

SWITCH01 board that represent the digital input device to any pin of ATX2 board. Pressing

and Releasign are used to control the LED on the ZX-LED board.

(A4.1) Connect the ZX-SWITCH01 board to pin 28 of ATX2 board and connect ZX-LED board

to pin 30.

(A4.2) Create the new sketch with Listing A4-1 and save as ATX2_SimpleIO.ino file.

(A4.3) Compile and upload to the ATX2 board then run the sketch.

(A4.4) Observe the operation of switch and LED.

The ATX2 monitor shows the title message. Then press the OK button start. The screen

shows message > Running..

Try to press the ZX-SWITCH01. The LED on ZX-LED boards will operate same pressing

the switch. For example, no pressing LED is on because the logic is high. If pressed, LED is off

because the logic is low.

Robo-Creator2 : ATX2 controller board activity book 113

#include <ATX2.h>
void setup()
{
 OK(); // Wait for OK to Start
}
void loop()
{
 if(in(28)==1) // Check status at pin 28
 {
 out(30,1); // If pin 28 is high, LED at pin 30 is on
 }
 else // If pin 28 is low, LED at pin 30 is off
 {
 out(30,0);
 }
}

Listing A4-1 : ATX2_SimpleIO.ino; the sketch for demonstration

about simple input/output controller by using the ATX2 board

114Robo-Creator2 : ATX2 controller board activity book

Activity 5 : Sound activity

The ATX2 controller board provides the sound output device on-board. It is piezo

speaker. The speaker’s resonance frequency is range of about 300 to 3,000Hz. For

programming to drive this device, use beep() and sound()function.

Listing A5-1 is example about how to use beep() function to drive the beep signal

with 4 fixed frequencies every 1 second.

Listing A5-2 is example about how to use sound() function to drive the sound at any

frequency in defined period.

(A5.1) Create the new sketch with Listing A5-1 and save as ATX2_BeepTest.ino file.

(A5.2) Compile and upload to the ATX2 board.

(A5.3) Run the sketch. Observe the operation of ATX2 piezo speaker.

To hear "beep" sound with 4 different frequencies in every 1 second.

(A5.4) Create the new sketch with Listing A5-2 and save as ATX2_SoundTest.ino file. Compile

and upload to the ATX2 board again.

(A5.5) Run the sketch. Observe the operation of ATX2 piezo speaker.

To hear sound 2 frequencies alternately continuous.

Robo-Creator2 : ATX2 controller board activity book 115

#include <ATX2.h> // Include the main library
void setup()
{
 OK();
}
void loop()

{

sound(500,500); // Generate the 500Hz signal in 0.5 second

sound(2500,500); // Generate the 2500Hz signal in 0.5 second

}

#include <ATX2.h> // Include the main library
void setup()
{
 OK();
}
void loop()
{
 beep(); // Generate the default “beep” signal
 sleep(1000);
 beep(1); // Generate type 1 of beep signal
 sleep(1000);
 beep(2); // Generate type 2 of beep signal
 sleep(1000);
 beep(3); // Generate type 3 of beep signal
 sleep(1000);
}

Listing A5-1 : ATX2_BeepTest.ino; the sketch for demonstration

about generate the beep signal of the ATX2 board

Listing A5-2 : ATX2_SoundTest.ino; the sketch for demonstration

about generate the sound with any frequency of the ATX2 board

116Robo-Creator2 : ATX2 controller board activity book

