
RHD2000 Application Note

 www.intantech.com ● info@intantech.com 1

intan
TECHNOLOGIES, LLC

 RHD2000

 Application Note:
 Data File Formats

19 September 2013; updated 20 October 2016

This application note describes the file formats used by the Intan Recording Controller or the RHD2000 Evaluation System to
save acquired waveforms to disk. While Intan provides some m-files for reading saved data files into MATLAB, some users may
wish to write their own software to access this information. This document provides the necessary information for parsing these
files. The software supports multiple file format options (selected by clicking the “Select File Format” button), and each of these
formats will be described in a following section.

Data Types
Most of the data types described in this document will be familiar to those with rudimentary programming experience. The
following table summarizes the data types referenced in this document:

NAME DESCRIPTION RANGE

uint16 unsigned 16-bit integer 0 to 65,535

int16 signed 32-bit integer -32,768 to 32,767

uint32 unsigned 16-bit integer 0 to 4,294,967,295

int32 signed 32-bit integer -2,147,483,648 to 2,147,483,647

single 32-bit single-precision floating point number ±3.4 × 10±38 with 7-digit accuracy

double 64-bit double-precision floating point number ±1.7 × 10±308 with 15-digit accuracy

QString length-prefixed Unicode string (see below) 0 to 2,147,483,647 Unicode characters

All numbers are saved to disk with “little endian” byte order. That is, the least-significant byte is written first and the most-
significant byte is written last. MATLAB reads data in little endian format by default.

Text fields are not stored as null-terminated strings as is common in the C family of languages. Rather, they are stored as
length-prefixed strings using the QString style from the open-source Qt framework for C++. In the QString format, each string
begins with a 32-bit unsigned number (uint32) that indicates the length of the string, in bytes. If this number equals
0xFFFFFFFF, the string is null. A series of 16-bit (2-byte) Unicode characters follows, and there is no special character to
indicate the end of the string.

intan
TECHNOLOGIES, LLC

RHD2000 Application Note

 www.intantech.com ● info@intantech.com 2

intan
TECHNOLOGIES, LLC

The following MATLAB function reads a QString from a file identifier fid and translates it into a MATLAB-format string a:

function a = fread_QString(fid)

a = '';
length = fread(fid, 1, 'uint32');
if length == hex2num('ffffffff')
 return;
end
length = length / 2; % convert length from bytes to 16-bit Unicode words
for i = 1:length
 a(i) = fread(fid, 1, 'uint16');
end

return

Standard Intan RHD2000 Header
All Intan RHD2000 data file formats make use of the Standard Intan RHD2000 Header which is described in this section. This
header contains records of sampling rate, amplifier bandwidth, channel names, and other useful information.

Each file containing a Standard Intan RHD2000 header has a filename ending with the .rhd prefix. These are a binary files that
begin with the following file type and version information.

DATA TYPE NAME DESCRIPTION
uint32 Intan RHD2000 Header identifier This “magic number” always has a value of 0xC6912702 to indicate a

traditional Standard Intan RHD2000 Header.
int16 Data file main version number These two integers indicate the version of the data file (e.g., v1.2 would

be encoded by a 1 followed by a 2). int16 Data file secondary version number

Next is a block of data containing global sampling rate and amplifier frequency parameters.

single Sample rate Amplifier sample rate (units: Samples/s)
int16 DSP enabled? 0: DSP offset removal high-pass filter was disabled

1: DSP offset removal high-pass filter was enabled
single Actual DSP cutoff frequency DSP offset removal high-pass filter cutoff frequency (units: Hz)
single Actual lower bandwidth Amplifier analog high-pass filter cutoff frequency (units: Hz)
single Actual upper bandwidth Amplifier analog low-pass filter cutoff frequency (units: Hz)
single Desired DSP cutoff frequency User-requested DSP offset removal filter cutoff frequency (units: Hz)
single Desired lower bandwidth User-requested amplifier high-pass filter cutoff frequency (units: Hz)
single Desired upper bandwidth User-requested amplifier low-pass filter cutoff frequency (units: Hz)

The RHD2000 chips are not always capable of achieving the precise cutoff frequencies specified by the user, so both the values
requested in the GUI and the actual values realized on the chip are saved.

The next parameter records the state of the software-implemented 50/60 Hz notch filter in the GUI during recording. This notch
filter is never applied to saved data, but this information may be used to re-apply the notch filter to recorded data, if desired.
(The m-file read_Intan_RHD2000_file.m re-implements this notch filter on amplifier data that was saved with the filter enabled.)

int16 Notch filter mode 0: Software notch filter was disabled
1: Software notch filter was enabled and set to 50 Hz
2: Software notch filter was enabled and set to 60 Hz

RHD2000 Application Note

 www.intantech.com ● info@intantech.com 3

intan
TECHNOLOGIES, LLC

Next are two floating-point numbers indicating the latest user-requested electrode impedance test frequency and the impedance
test frequency actually realized on the RHD2000 chip.

single Desired impedance test frequency Electrode impedance test frequency last requested by user (units: Hz)
single Actual impedance test frequency Closest realizable electrode impedance test frequency (units: Hz)

In the “Configure” tab of the Intan GUI, there are three general-purpose text fields that may be used to enter notes on particular
recording sessions. The contents of these text fields are saved here.

QString Note 1 User text from the “Note 1” field in the “Configure” tab in the GUI.
QString Note 2 User text from the “Note 2” field in the “Configure” tab in the GUI.
QString Note 3 User text from the “Note 3” field in the “Configure” tab in the GUI.

Versions 1.1 and later support saving on-chip temperature sensor readings. The following number is saved in these versions,
indicating the number of temperature sensors recorded. This number is typically equal to the number of RHD2000 chips plugged
into the SPI ports, or zero if the temperature recording option is disabled. Note that some file formats do not support saving
temperature sensor data; in those formats, this number will always be zero.

int16 Number of temperature sensors Number of temperature sensor channels saved in file. This number is
set to zero if the option for saving temperature data is not selected.

Version 1.3 and later saves the “board mode”. This integer is set by hardware in the RHD2000 USB interface board or Intan
Recording Controller. Currently, a board mode of zero indicates that the on-board ADCs operate over a range of 0-3.3V; a board
mode of one indicates that the on-board ADCs operate over a range of ±5.0V. The Intan Recording Controller has a board
mode of 13. This indicates that the ADCs (Analog In ports) operate over a range of ±10.24V.

int16 Board mode Integer ranging from 0-15 indicating global properties of the hardware
used to acquire the data.

Version 2.0 and later (supported only by the 512- or 1024-channel Intan Recording Controller) saves name of the channel used
for digital re-referencing. The waveform from this channel may be added to other amplifier channels to undo the effects of digital
re-referencing, if desired. If hardware referencing was selected, this string is set to “n/a”.

QString Reference channel name Native channel name of the channel used as digital reference (e.g.,
“A-001” or “H-123”. If hardware referencing was selected, this string is
set to “n/a”.

The next number indicates the number of “signal groups” present in the data file. This number is typically equal to seven: Port A,
Port B, Port C, Port D, Board ADC Inputs, Board Digital Inputs, and Board Digital Outputs. If a 1024-channel Intan Recording
Controller was used, this number will be equal to 11: Ports A – H, Board ADC Inputs, Board Digital Inputs, and Board Digital
Outputs.

int16 Number of signal groups in data file Each “signal group” includes all signals from a particular SPI port or the
USB board ADC inputs or digital inputs. There will typically be seven
signal groups representing the six items listed under “Ports” in the GUI,
plus Board Digital Outputs.

RHD2000 Application Note

 www.intantech.com ● info@intantech.com 4

intan
TECHNOLOGIES, LLC

For each signal group, the following “signal group header” is saved, along with a description of each channel in the signal group.

QString Signal group name e.g., “Port B” or “Board Digital Inputs”
QString Signal group prefix e.g., “B” or “DIN”
int16 Signal group enabled? 0: disabled

1: enabled
int16 Number of channels in signal group Total number of channels in signal group
int16 Number of amplifier channels in

signal group
Of the total number of channels in the signal group, the number that are
amplifier channels

 List of channels See below

Immediately following a signal group (before the remaining signal group headers) is a list of channel descriptions. If a signal
group is enabled and has more than zero channels, then for each channel the following information is saved.

QString Native channel name e.g., “B-013” or “DIN-15”
QString Custom channel name e.g., “MyTetrode3-4” or “TTLSensor” renamed by user
int16 Native order The original numerical order of this channel in the GUI display (e.g., the

native order of amplifier channel B-013 is 13).
int16 Custom order The numerical order of this channel as it appears on the GUI, after

possible reordering by the user.
int16 Signal type 0: RHD2000 amplifier channel

1: RHD2000 auxiliary input channel
2: RHD2000 supply voltage channel
3: USB board ADC input channel
4: USB board digital input channel
5: USB board digital output channel

int16 Channel enabled? 0: channel disabled
1: channel enabled

int16 Chip channel RHD2000 channel number (0-31)
int16 Board stream USB board data stream (0-7); each data stream supports up to 32

channels. Each RHD2164 chips use two data streams. Each RHD2216
chip uses an entire data stream.

int16 Spike Scope voltage trigger mode 0: trigger on digital input
1: trigger on voltage threshold

int16 Spike Scope voltage threshold Spike voltage threshold (units: microvolts)
int16 Spike Scope digital trigger channel USB board digital input channel used for spike trigger (0-15)
int16 Spike Scope digital edge polarity 0: trigger on digital falling edge

1: trigger on digital rising edge
single Electrode impedance magnitude Last measured impedance magnitude (units: Ohms)
single Electrode impedance phase Last measured impedance phase (units: degrees)

Even non-amplifier channels will contain fields for Spike Scope trigger parameters and electrode impedance data, but these
fields will contain default values that may be ignored.

The Spike Scope feature in the GUI is used only to aid in viewing neural spikes; the software saves full waveforms, not just
spikes. However, the user-specified thresholds set in the Spike Scope are saved for each channel, so it would be relatively easy
to write a script to isolate action potentials based on these thresholds (e.g., for compressing saved data files after recording).

This concludes the Standard Intan RHD2000 Header contents. Typical headers consume very little disk space (a few KB) even
for large numbers of enabled channels.

RHD2000 Application Note

 www.intantech.com ● info@intantech.com 5

intan
TECHNOLOGIES, LLC

Traditional Intan File Format
This file format saves all types of waveforms (RHD2000 amplifier channels, auxiliary channels from RHD2000 chips, chip supply
voltages, USB board ADC inputs, and USB board digital inputs) to one file, along with the Standard Intan RHD2000 Header
described above. Only enabled channels of each type are saved. To keep individual file size reasonable, a new file is created
every N minutes, where N is an integer that is specified by the user. New filenames are created by appending a date and time
stamp to a base filename provided by the user. Each file contains both a Standard Intan RHD2000 Header and approximately N
minutes of saved data. These .rhd data files may be read into MATLAB using read_Intan_RHD2000_file.m, which is provided
on the Intan Technologies web site.

This file format includes an option to save the temperature sensor readings from each RHD2000 chip attached to the USB
interface board.

Immediately following the Standard Intan RHD2000 Header in each data file is the waveform data. The traditional Intan file
format saves waveforms in “data blocks” corresponding to the Rhd2000DataBlock object (or RHD2000DataBlockUsb3 object)
in the C++ code. Each data block contains data from N amplifier samples, where N = 60 for the 256-channel RHD2000
Evaluation System and N = 128 for the 512-channel and 1024-channel Intan Recording Controllers.

Each data block is organized as follows:

N × int32 Amplifier sample time index Sequential integers (e.g., 0, 1, 2, 3…) with zero marking the beginning of
a recording or a trigger point. Time indices can be negative to denote
pre-trigger times. Divide by the amplifier sampling rate (in Samples/s) to
get a time vector with units of seconds.
The use of an int32 data type means that this number will not “roll over”
until total recording times exceed 19.8 hours with the maximum sample
rate of 30 kS/s, or 29.8 hours with a sample rate of 20 kS/s.

For each enabled RHD2000 amplifier channel, N ADC samples:

N × uint16 Electrode voltage Units: ADC steps. To convert to electrode voltage in microvolts, first
subtract 32768 then multiply by 0.195.

For each enabled RHD2000 auxiliary input channel, N/4 ADC samples. (The Intan GUI software samples the RHD2000 auxiliary
inputs at one-fourth the sampling rate of the amplifiers.)

N/4 × uint16 Auxiliary input voltage Units: ADC steps. To convert to volts, multiply by 0.0000374.

For each enabled RHD2000 supply voltage channel, one ADC sample. (The Intan GUI software samples the RHD2000 supply
voltage once per data block.)

1 × uint16 Supply voltage Units: ADC steps. To convert to volts, multiply by 0.0000748.

For each enabled RHD2000 temperature sensor channel, one ADC sample. (The Intan GUI software samples the RHD2000
temperature sensor once per data block.) The GUI calculates a running average of temperature sensor readings over a window
of approximately 100 ms to improve sensor accurate.

1 × int16 Temperature sensor reading Units: 0.01°C per step. To convert to °C, divide by 100.

For each USB interface board ADC channel, N samples:

N × uint16 Board ADC input voltage Units: ADC steps. To convert to volts:
If board mode = 0, multiply by 0.000050354.
If board mode = 1, subtract 32768 and multiply by 0.00015259.
If board mode = 13, subtract 32768 and multiply by 0.0003125.

RHD2000 Application Note

 www.intantech.com ● info@intantech.com 6

intan
TECHNOLOGIES, LLC

If any USB interface board digital inputs are enabled, unsigned 16-bit integers record N samples from all digital inputs 0-15. If
no digital inputs are enabled, these samples are not recorded.

N × uint16 Board digital inputs All 16 digital inputs are encoded bit-by-bit in each 16-bit word. For
example, if digital inputs 0, 4, and 5 are high and the rest low, the uint16
value for this sample time will be 20 + 24 + 25 = 1 + 16 + 32 = 49.

The m-file read_Intan_RHD2000_file.m includes code to extract the bit-by-bit information from these 16-bit words into individual
digital waveforms.

“One File Per Signal Type” Format
This file format creates a subdirectory using the base filename provided, plus a date and time stamp. Global information is
saved in a Standard Intan RHD2000 Header file, and all waveform data is saved in separate raw data files. Although the raw
data files are divided by signal type (i.e., one file for all amplifier channels, another file for all auxiliary input channels, etc.), the
file sizes can grow large quickly: If 64 amplifier channels were recorded at 20 kS/s for one hour, the amplifier data file would be
9.2 GB in size.

The raw data files written in this format are compatible with the NeuroScope open-source software for data viewing and analysis.
(See http://neuroscope.sourceforge.net for more information on this third-party software.)

When using this file format, the following data files are written to the subdirectory:

Standard Intan RHD2000 Header file: info.rhd
This file contains the data listed in the Intan RHD2000 Standard Header described above: sampling rate, amplifier bandwidth,
channel names, and other useful information. The information in this file may be read into MATLAB data structures using
read_Intan_RHD2000_file.m, which is provided on the Intan Technologies web site.

Timestamp data file: time.dat
This file contains int32-type sequential integers (e.g., 0, 1, 2, 3…) corresponding to sample times indices, with zero marking the
beginning of a recording or a trigger point. Time indices can be negative to denote pre-trigger times. Divide by the amplifier
sampling rate (in Samples/s) to get a time vector with units of seconds.
The following MATLAB code reads a timestamp data file and creates a time vector with units of seconds:
fileinfo = dir('time.dat');
num_samples = fileinfo.bytes/4; % int32 = 4 bytes
fid = fopen('time.dat', 'r');
t = fread(fid, num_samples, 'int32');
fclose(fid);
t = t / frequency_parameters.amplifier_sample_rate; % sample rate from header file

The use of the int32 data type means that this number will not “roll over” until total recording times exceed 19.8 hours with the
maximum sample rate of 30 kS/s, or 29.8 hours with a sample rate of 20 kS/s.

Amplifier data file: amplifier.dat
This file contains a matrix of ADC samples from all enabled RHD2000 amplifier channels in int16 format. For example, if four
amplifier channels are enabled, data will be written in the following order:

amp1(t), amp2(t), amp3(t), amp4(t), amp1(t+1), amp2(t+1), amp3(t+1), amp4(t+1), amp1(t+2), amp2(t+2), …

To convert to electrode voltage in microvolts, multiply by 0.195.

If no amplifier channels are enabled in the GUI, this file will not be written.

RHD2000 Application Note

 www.intantech.com ● info@intantech.com 7

intan
TECHNOLOGIES, LLC

The following MATLAB code reads an amplifier data file and creates an electrode voltage matrix with units of microvolts:
num_channels = length(amplifier_channels); % amplifier channel info from header file
fileinfo = dir('amplifier.dat');
num_samples = fileinfo.bytes/(num_channels * 2); % int16 = 2 bytes
fid = fopen('amplifier.dat', 'r');
v = fread(fid, [num_channels, num_samples], 'int16');
fclose(fid);
v = v * 0.195; % convert to microvolts

Auxiliary input data file: auxiliary.dat
This file contains a matrix of ADC samples from all enabled RHD2000 auxiliary input channels in uint16 format. To convert to
volts, multiply by 0.0000374.

Although the RHD2000 interface software samples the RHD2000 auxiliary input channels at one-fourth the rate of the amplifiers,
each auxiliary input sample is repeated four times in this file so that this data may easily be aligned with the timestamp vector in
the time.dat file.

If no auxiliary input channels are enabled in the GUI, this file will not be written.

The following MATLAB code reads an auxiliary input data file and creates a waveform matrix with units of volts:
num_channels = length(aux_input_channels); % aux input channel info from header file
fileinfo = dir('auxiliary.dat');
num_samples = fileinfo.bytes/(num_channels * 2); % uint16 = 2 bytes
fid = fopen('auxiliary.dat', 'r');
v = fread(fid, [num_channels, num_samples], 'uint16');
fclose(fid);
v = v * 0.0000374; % convert to volts

Supply voltage data file: supply.dat
This file contains a matrix of ADC samples from all enabled RHD2000 supply voltage sensor channels in uint16 format. To
convert to volts, multiply by 0.0000748.

Although the RHD2000 interface software samples the RHD2000 auxiliary input channels at one-sixtieth the rate of the
amplifiers, each supply voltage sample is repeated sixty times in this file so that this data may easily be aligned with the
timestamp vector in the time.dat file.

If no supply voltage channels are enabled in the GUI, this file will not be written.

The following MATLAB code reads a supply voltage data file and creates a waveform matrix with units of volts:
num_channels = length(supply_voltage_channels); % supply channel info from header file
fileinfo = dir('supply.dat');
num_samples = fileinfo.bytes/(num_channels * 2); % uint16 = 2 bytes
fid = fopen('supply.dat', 'r');
v = fread(fid, [num_channels, num_samples], 'uint16');
fclose(fid);
v = v * 0.0000748; % convert to volts

Board ADC input data file: analogin.dat
This file contains a matrix of ADC samples from the analog inputs on the USB interface board, in uint16 format. To convert to
volts, multiply by 0.000050354. (If the board mode is not equal to zero, other scaling values may apply.)

If no board ADC input channels are enabled in the GUI, this file will not be written.

The following MATLAB code reads a board ADC input data file and creates a waveform matrix with units of volts:
num_channels = length(board_adc_channels); % ADC input info from header file
fileinfo = dir('analogin.dat');
num_samples = fileinfo.bytes/(num_channels * 2); % uint16 = 2 bytes
fid = fopen('analogin.dat', 'r');

RHD2000 Application Note

 www.intantech.com ● info@intantech.com 8

intan
TECHNOLOGIES, LLC

v = fread(fid, [num_channels, num_samples], 'uint16');
fclose(fid);
v = v * 0.000050354; % convert to volts

Board digital input data file: digitalin.dat
This file contains samples of digital inputs 0-15 on the USB interface board, in uint16 format. All 16 digital inputs are encoded
bit-by-bit in each 16-bit word. For example, if digital inputs 0, 4, and 5 are high and the rest low, the uint16 value for this sample
time will be 20 + 24 + 25 = 1 + 16 + 32 = 49.

If no board digital input channels are enabled in the GUI, this file will not be written. If any USB interface board digital inputs are
enabled, the uint16 numbers in this file record data from all digital inputs 0-15.

The following MATLAB code reads a board digital input data file and creates vector of 16-bit words:
fileinfo = dir('digitalin.dat');
num_samples = fileinfo.bytes/2; % uint16 = 2 bytes
fid = fopen('digitalin.dat', 'r');
digital_word = fread(fid, num_samples, 'uint16');
fclose(fid);

Board digital output data file: digitalout.dat
This file contains samples of digital outputs 0-15 on the USB interface board, in uint16 format. All 16 digital inputs are encoded
bit-by-bit in each 16-bit word. For example, if digital outputs 0, 4, and 5 are high and the rest low, the uint16 value for this
sample time will be 20 + 24 + 25 = 1 + 16 + 32 = 49.

If the “Save Digital Outputs” box is not checked in the Select File Format dialog, this file will not be written.

The following MATLAB code reads a board digital output data file and creates vector of 16-bit words:
fileinfo = dir('digitalout.dat');
num_samples = fileinfo.bytes/2; % uint16 = 2 bytes
fid = fopen('digitalout.dat', 'r');
digital_word = fread(fid, num_samples, 'uint16');
fclose(fid);

“One File Per Channel” Format
This file format creates a subdirectory using the base filename provided, plus a date and time stamp. The subdirectory contains
separate files for each waveform recorded by the RHD2000 USB interface; if 256 amplifier channels are connected to the
system, then 256 individual amplifier data files will be written. This file format has the advantage of maintaining reasonable
individual file sizes even for long recordings (a one-hour recording session at 30 kS/s would generate a 216 MB file for each
enabled channel) while not dividing particular waveforms between multiple files.

When using this file format, the following data files are written to the subdirectory:

Standard Intan RHD2000 Header file: info.rhd
This file contains the data listed in the Intan RHD2000 Standard Header described above: sampling rate, amplifier bandwidth,
channel names, and other useful information. The information in this file may be read into MATLAB data structures using
read_Intan_RHD2000_file.m, which is provided on the Intan Technologies web site.

Timestamp data file: time.dat
This file contains int32-type sequential integers (e.g., 0, 1, 2, 3…) corresponding to sample times indices, with zero marking the
beginning of a recording or a trigger point. Time indices can be negative to denote pre-trigger times. Divide by the amplifier
sampling rate (in Samples/s) to get a time vector with units of seconds.

RHD2000 Application Note

 www.intantech.com ● info@intantech.com 9

intan
TECHNOLOGIES, LLC

The use of the int32 data type means that this number will not “roll over” until total recording times exceed 19.8 hours with the
maximum sample rate of 30 kS/s, or 29.8 hours with a sample rate of 20 kS/s.
The following MATLAB code reads a timestamp data file and creates a time vector with units of seconds:
fileinfo = dir('time.dat');
num_samples = fileinfo.bytes/4; % int32 = 4 bytes
fid = fopen('time.dat', 'r');
t = fread(fid, num_samples, 'int32');
fclose(fid);
t = t / frequency_parameters.amplifier_sample_rate; % sample rate from header file

Amplifier data files
Each amplifier data file has a filename that begins with amp followed by the SPI port letter and channel number. For example:
amp-A-000.dat, amp-C-063.dat, or amp-D-027.dat.
Each amplifier data file contains the consecutive ADC samples from one enabled RHD2000 amplifier channel in int16 format.
To convert to electrode voltage in microvolts, multiply by 0.195.

The following MATLAB code reads an amplifier data file and creates an electrode voltage vector with units of microvolts:
fileinfo = dir('amp-B-003.dat');
num_samples = fileinfo.bytes/2; % int16 = 2 bytes
fid = fopen('amp-B-003.dat', 'r');
v = fread(fid, num_samples, 'int16');
fclose(fid);
v = v * 0.195; % convert to microvolts

Auxiliary input data files
Each auxiliary input data file has a filename that begins with aux followed by the port and auxiliary channel: AUX1, AUX2, or
AUX3. (If a dual-chip amplifier board is used, AUX4, AUX5, and AUX6 may be present.) For example: aux-A-AUX1.dat, aux-
B-AUX3.dat, or aux-C-AUX2.dat.
Each auxiliary input data file contains the consecutive ADC samples from one enabled RHD2000 auxiliary input channel in
uint16 format. To convert to volts, multiply by 0.0000374.

Although the RHD2000 interface software samples the RHD2000 auxiliary input channels at one-fourth the rate of the amplifiers,
each auxiliary input sample is repeated four times in this file so that this data may easily be aligned with the timestamp vector in
the time.dat file.

The following MATLAB code reads an auxiliary input data file and creates a waveform vector with units of volts:
fileinfo = dir('aux-C-AUX1.dat');
num_samples = fileinfo.bytes/2; % uint16 = 2 bytes
fid = fopen('aux-C-AUX1.dat', 'r');
v = fread(fid, num_samples, 'uint16');
fclose(fid);
v = v * 0.0000374; % convert to volts

Supply voltage data files
Each supply voltage data file has a filename that begins with vdd followed by the port and MISO channel: VDD1 (or VDD2 if a
dual-chip amplifier board is used). For example: vdd-A-VDD1.dat, vdd-B-VDD1.dat, or vdd-D-VDD2.dat.
Each supply voltage data file contains the consecutive ADC samples from one enabled RHD2000 supply voltage sensor channel
in uint16 format. To convert to volts, multiply by 0.0000748.

Although the RHD2000 interface software samples the RHD2000 auxiliary input channels at one-sixtieth the rate of the
amplifiers, each supply voltage sample is repeated sixty times in this file so that this data may easily be aligned with the
timestamp vector in the time.dat file.

The following MATLAB code reads a supply voltage data file and creates a waveform vector with units of volts:
fileinfo = dir('vdd-D-VDD1.dat');

RHD2000 Application Note

 www.intantech.com ● info@intantech.com 10

intan
TECHNOLOGIES, LLC

num_samples = fileinfo.bytes/2; % uint16 = 2 bytes
fid = fopen('vdd-D-VDD1.dat', 'r');
v = fread(fid, num_samples, 'uint16');
fclose(fid);
v = v * 0.0000748; % convert to volts

Board ADC input data files
Each board ADC input data file has a filename that begins with board-ADC followed by the channel number. For example:
board-ADC-00.dat, board-ADC-01.dat, or board-ADC-07.dat.
Each board ADC input data file contains the consecutive ADC samples from one enabled analog input on the USB interface
board, in uint16 format. See the Traditional Intan File Format section above for instructions on converting this data to volts.

The following MATLAB code reads a board ADC data file and creates a waveform vector with units of volts:
fileinfo = dir('board-ADC-00.dat');
num_samples = fileinfo.bytes/2; % uint16 = 2 bytes
fid = fopen('board_ADC-00.dat', 'r');
v = fread(fid, num_samples, 'uint16');
fclose(fid);
v = v * 0.000050354; % convert to volts (only valid if board mode == 0)

Board digital input data files
Each board digital input data file has a filename that begins with board-DIN followed by the channel number. For example:
board-DIN-00.dat, board-DIN-01.dat, or board-DIN-15.dat.
Each board digital input data file contains the consecutive binary samples from one enabled digital input on the USB interface
board, in uint16 format. Each uint16 value in these files will be equal either to 0 or 1.

The following MATLAB code reads a board digital input data file and creates a waveform vector:
fileinfo = dir('board-DIN-07.dat');
num_samples = fileinfo.bytes/2; % uint16 = 2 bytes
fid = fopen('board-DIN-07.dat', 'r');
din07 = fread(fid, num_samples, 'uint16');
fclose(fid);

Board digital output data files
Each board digital output data file has a filename that begins with board-DOUT followed by the channel number. For example:
board-DOUT-00.dat, board-DOUT-01.dat, or board-DOUT-15.dat.
Each board digital output data file contains the consecutive binary samples from one digital output on the USB interface board, in
uint16 format. Each uint16 value in these files will be equal either to 0 or 1.

The following MATLAB code reads a board digital output data file and creates a waveform vector:
fileinfo = dir('board-DOUT-00.dat');
num_samples = fileinfo.bytes/2; % uint16 = 2 bytes
fid = fopen('board-DOUT-00.dat', 'r');
dout00 = fread(fid, num_samples, 'uint16');
fclose(fid);

Handling Large Data Files
The Intan Recording Controller supports up to 1024 amplifier channels, plus several other analog and digital inputs, that may be
sampled up to 30 kS/s/channel. This can quickly create enormous data files. The example MATLAB code shown above reads
entire raw data files into memory, but it is also possible to read particular segments of data from a file using the MATLAB
commands fseek, ftell, and frewind to move to specified positions in a file. Then fread may be used to read a subset
of the data in the file beginning at that point. Similar functions are available in C++ and other programming languages.

	Data Types
	Standard Intan RHD2000 Header
	Traditional Intan File Format
	“One File Per Signal Type” Format
	Standard Intan RHD2000 Header file: info.rhd
	Timestamp data file: time.dat
	Amplifier data file: amplifier.dat
	Auxiliary input data file: auxiliary.dat
	Supply voltage data file: supply.dat
	Board ADC input data file: analogin.dat
	Board digital input data file: digitalin.dat
	Board digital output data file: digitalout.dat

	“One File Per Channel” Format
	Standard Intan RHD2000 Header file: info.rhd
	Timestamp data file: time.dat
	Amplifier data files
	Auxiliary input data files
	Supply voltage data files
	Board ADC input data files
	Board digital input data files
	Board digital output data files

	Handling Large Data Files

