
Intan Technologies RHD2000interface C++/Qt source code version 1.01 release notes

21 March 2013

mainwindow.cpp:
Added line 1908: fifoPercentageFull = 0.0;
This initializes a variable and fixes a problem that shows up on some computers only when running the
program in demo mode (i.e., with no USB interface board attached).

Intan Technologies RHD2000interface C++/Qt source code version 1.1 release notes

31 May 2013

Added ‘Options’ menu to allow users to save temperature sensor data from each chip. (Temperature
readings are not displayed in the GUI, but can be plotted in MATLAB after recording data using the GUI.)

Modifications were made to the following files:

mainwindow.cpp, mainwindow.h
signalprocessor.cpp, signalprocessor.h,
globalconstants.h

The MATLAB file read_Intan_RHD2000_file.m was also updated to read version 1.1 saved data files
containing temperature sensor data. (This new m-file will also read older version 1.0 data files.)

Intan Technologies RHD2000interface C++/Qt source code version 1.11 release notes

11 June 2013

Fixed bug that was present since v1.0 and sometimes caused problems if the number of amplifier boards
was changed and “Rescan Ports A-D” was clicked. Added lines 1658-1709 to findConnectedAmplifiers()
in mainwindow.cpp.

Intan Technologies RHD2000interface C++/Qt source code version 1.2 release notes

20 June 2013

Fixed bug that was present since v1.0 and sometimes caused problems routing amplifier channels to
DAC outputs properly if chips were plugged into SPI ports B, C, or D.

Updated Rhythm C++ API (specifically, rhd2000evalboard.cpp and rhd2000registers.cpp) to support
RHD2164 chip.

Extensive changes in mainwindow.cpp to support RHD2164 chip: notably, findConnectedAmplifiers().

Extensive changes in mainwindow.cpp and signalprocessor.cpp to support multiple data file formats;
added setsaveformatdialog.cpp. Added “Select File Format” button.

Extensive changes in mainwindow.cpp and signalprocessor.cpp to support triggered recordings; added
triggerrecorddialog.cpp. Added “Trigger” button.

Added check box in “DAC/Audio” tab to lock DAC 1 to currently selected channel (mainwindow.cpp).

Changes in signalprocessor.cpp to bundle many individual 32- and 16-bit integers into byte arrays and
use QDataStream::writeRawData() to speed up writing to disk (in functions loadAmplifierData() and
saveBufferedData()).

Changes in signalprocessor.cpp to improve running average of temperature sensor data.

Intan Technologies RHD2000interface C++/Qt source code version 1.3 release notes

10 December 2013

Included qtincludes.h in all files that use Qt functions to aid in cross-platform compilation.

Changes in mainwindow.cpp to add low-latency threshold comparator functions and software/DAC
high-pass filter options (in the Bandwidth tab and DAC/Audio tab). Added integer array ttlOut to make
it easier to set digital output lines. Changed code to set ttlOut[15] high during data acquisition and to
set ttlOut[11-14] high when amplifier boards are present on SPI Ports A-D to support future LEDs.

Changes in signalprocessor.cpp to add software high-pass filter capability.

Change in waveplot.cpp to draw an X over disabled channel plots.

Added several help dialogs accessible through “?” pushbuttons: helpdialogchipfilters.cpp,
helpdialogcomparators.cpp, helpdialogdacs.cpp, helpdialoghighpassfilter.cpp, and
helpdialognotchfilter.cpp.

Intan Technologies RHD2000interface C++/Qt source code version 1.4 release notes

26 February 2014

Changes in mainwindow.cpp to add optional real-time control of fast settle function and auxiliary digital
output pin of RHD2000 chips. Also added option to adjust SPI cable delay compensation manually since
some RHD2164 board/cable combinations seem to require this. All of these changes appear in the
“Configure” tab in the GUI.

Added several dialogs used in these new functions: auxdigoutconfigdialog.cpp,
helpdialogfastsettle.cpp, and cabledelaydialog.cpp.

Updated Rhythm C++ API (specifically, rhd2000evalboard.cpp and rhd2000registers.cpp) to support
real-time control of fast settle and auxiliary digital output pins.

Intan Technologies RHD2000interface C++/Qt source code version 1.41 release notes

8 April 2014

Two minor bug fixes:

Added line 2472 in mainwindow.cpp to fix bug when a non-default data file format was selected. The
“evaluation board mode” word was not being written to the info.rhd file, and this caused problems for
users who wanted to load this file into Matlab using the Intan Matlab code.

In waveplot.cpp, modified toggleSelectedChannelEnable() to prevent users from enabling or disabling
amplifier channels while recording is taking place. Added isRecording() to mainwindow.cpp to facilitate
this functionality.

Intan Technologies RHD2000interface C++/Qt source code version 1.4.2 release notes

9 July 2015

Making the windows resizable, which provides better support for higher resolution monitors. Changes
in mainwindow.cpp, setsaveformatdialog.cpp, spikeplot.cpp, spikeplot.h, spikescopedialog.cpp,
triggerrecorddialog.cpp, waveplot.cpp, waveplot.h.

In mainWindow.cpp, fixed a bug where saving impedances didn’t work for RHD2216 chips.

In main.cpp, added a Window-only ability to display a console with cerr output while running the GUI
(commented out). If uncommented (and if guicon.cpp is compiled and linked in), this can be useful
when debugging certain problems, especially problems where the software can’t contact the RHD2000
Evaluation Board. Added additional logging messages in okFrontPanel.DLL.cpp, rhd2000evalboard.cpp,
mainwindow.cpp.

Several necessary enhancements for 64-bit support: fixed compile warnings in okFrontPanelDLL.cpp and
rhd2000registers.cpp when compiling 64-bit, and distributing the 64-bit okFrontPanel.dll. Note that
you we have only tested 64-bit Rhythm, not 64-bit RHD2000 interface GUI, so there may be other Qt-
related issues that need to be resolved.

Intan Technologies RHD2000interface C++/Qt source code version 1.5 release notes

3 May 2016

We added two forms of error checking to routines that read data from the USB port, to guard against
rare, intermittent glitches that may corrupt or drop a few bytes of USB data during long recording
sessions:

(1) A small number of users reported USB interface board freeze-ups during long recording
sessions. These freeze-ups seemed to happen randomly, with the software suddenly
announcing that the FIFO buffer was full even though the CPU seemed to have no trouble
keeping up with the data streaming over the USB interface. We determined that this was likely
caused by corrupted data on a USB transfer. In mainwindow.cpp, runInterfaceBoard() regularly
checks two WireOuts from the Opal Kelly board that contain the number of words in the FIFO
buffer used to regulate USB data transfers (see rhdevalboard.cpp, numWordsInFifo()). It is
important to stop the software just before the FIFO fills up, because it can “roll over” and send
corrupted data otherwise. We added a static int triggerEndCounter to verify that
numWordsInFifo() has returned a “nearly full” reading three times in a row before we stop data
acquisition. This prevents one USB glitch from halting operation.

(2) A small number of users reported occasional situations where amplifier channels seemed to
shift during recording sessions, with channel 1 ending up at channel 14, for example, and
channel 2 at channel 15, etc. We determined that this was caused by several bytes being
dropped during USB data transfers over the PipeOut, which caused the data frames sent from
the Opal Kelly board to become misaligned with the software. We added error-checking
routines in the readDataBlocks() method in rhd2000evalboard.cpp that check for the proper
“magic number” at the beginning of each USB data frame and fix misalignments. The method
readAdditionalDataWords() was added to support the new readDataBlocks(). We made the
checkUsbHeader() method in rhd2000datablock.cpp public instead of private to facilitate the
error checking.

We expanded the functionality of triggered recordings to support unsupervised, episodic recording
that starts and stops in response to a trigger signal. In mainwindow.cpp, we added the private bool
triggered. We made changes to runInterfaceBoard(), including the addition of static int
triggerEndCounter. We made extensive changes to triggerrecorddialog.cpp to allow users to specify
a posttrigger time, and to (optionally) automatically save the signal used for triggering. We modified
createSaveList() in signalprocessor.cpp to support automatic saving of the trigger signal.

