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Abstract

This white paper documents the optimization of a 3D stencil code, “WALLS”, developed by the COSMOS 
supercomputing facility at the University of Cambridge, UK. We demonstrate that straightforward parallel tuning 
techniques can deliver significant performance improvements on both Intel® Xeon® processors and Intel® Xeon 

Phi™ coprocessors, while maintaining code readability and platform portability. 

Our changes accelerate the execution of “WALLS” by factors of 9.3 and 30.1 on processors and coprocessors, 
respectively, and a single coprocessor is shown to outperform two processor sockets by a factor of 1.3. These 

results highlight the benefits of tuning software to effectively exploit parallel hardware and demonstrate the utility 
of Intel® Xeon Phi™ coprocessors for cosmology workloads.
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1.0  Introduction
The discovery of the Higgs particle at the Large Hadron Collider (LHC) confirms that the Universe has a 
complicated underlying structure with broken symmetries. A more familiar type of broken symmetry is seen 
in a ferromagnet with its magnetised domains; the boundaries between each of these misaligned regions 
have additional energy and are called domain walls. The same can happen in our Universe: Higgs-like fields 
in different regions become aligned in different directions with domain walls separating them (or indeed 
other defects, such as cosmic strings).

A. B.

Figure 1: (a) Walls are generic phenomena wherever there are preferred directions in space, such as in a ferromagnet. 

(b) Cosmic walls can form complex hybrid networks stretching across the observed universe. Here, isocontours of 

the energy density are plotted, showing the lines along which walls intersect and overlap.

Walls have potentially important implications in the very early universe, as well as the late universe 
(i.e. the universe today). There are a number of observational motivations for this investigation. Domain 
walls can create distinctive imprints in the cosmic microwave background radiation because of their 
gravitational effects. One possibility is that low-energy walls stretching across the Universe could account 
for the apparent asymmetries observed by the Planck satellite. Like cosmic strings, they can also create 
signals that are similar to gravitational waves which were constrained recently using a joint analysis of the 
Planck and BICEP experiments.

The “WALLS” code simulates the evolution of a network of domain walls in the early universe (i.e. less than 
a nanosecond after the big bang), and has been developed into a number of variants -- complex hybrid 
networks with up to 100 different types of walls and strings have been investigated, as well as wall evolution 
in four and five space-time dimensions, with the latter inspired by fundamental theory. The reader is referred 
to the Stephen Hawking Centre for Theoretical Cosmology webpage [1] for more information.

In this white paper, we investigate the optimization and modernization of the simplest of the WALLS variants 
– a 3D implementation used as a benchmark for acceptance testing on new COSMOS supercomputers. A 
complete run of this benchmark configured for a 2048x2048x2048 problem requires 256 GB of memory, 
and takes approximately half an hour to complete 1020 iterations using more than a quarter of the 
COSMOS-IX supercomputer (512 Intel® Xeon® E5-4650L cores). There is a desire at COSMOS to run 
production simulations that are much larger than this, for more iterations, and preferably on fewer cores.

Although featuring simplified mathematics, the benchmark variant we use here remains representative in 
terms of its algorithmic and memory behaviors; the lessons we learn are easily transferable to the more 
complex cases, and are consequently of great value to COSMOS.
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2.0  Implementation
“WALLS” creates random initial conditions on a 3D grid for a network of domain walls. It then solves dynamical 
field equations to find out how they evolve, computing the sum of the wall areas in every time-step. 

Each time-step consists of three distinct algorithmic stages, using the equations below:

Benchmark System

1.  Laplacian Stencil Operation 
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ferromagnet.  (b) Cosmic walls can form complex hybrid networks stretching across the observed 
universe.  Here, isocontours of the energy density are plotted, showing the lines along which walls 
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#pragma omp parallel 
for (int t = 0; t < nsteps; t++) { 
 
    // Stage 1: Laplacian stencil using Phi at step t 
    // Stage 2: Leap-frog integration, moving Phi to step t+1 
    #pragma omp for 
    for (int k = 0; k < Nz; k++) { 
        for (int j = 0; j < Ny; j++) { 
            for (int i = 0; i < Nx; i++) { 
                … 
            } 
        } 
    } 
 
    // Stage 3: Calculate area of walls at step t+1 
    #pragma omp for 
    for (int k = 0; k < Nz; k++) { 
        for (int j = 0; j < Ny; j++) { 
            for (int i = 0; i < Nx; i++) { 
                … 
            } 
        } 
    } 
 
} 

Figure 2: Pseudo-code for “WALLS”. 
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The first two algorithmic stages are implemented as a single loop over all of the cells in the 
grid, and the third stage as a separate loop (again over all of the cells in the grid).  All 
iterations of the loops are known to be independent, and so both can be scheduled to be run 
in parallel using OpenMP (as shown in Figure 2). 

The SGI* UV2000 supercomputer currently deployed at COSMOS is a large symmetric 
multiprocessing (SMP) machine which, unlike a more typical cluster of interconnected 
nodes, presents itself to software as a single shared-memory system.  The OpenMP 
parallelism in WALLS is therefore sufficient to enable the code to scale across sockets, 
cores and coprocessors without the use of a communication library such as MPI. 

Experimental Setup 
All experiments were performed on a single node of the COSMOS-IX supercomputer at the 
University of Cambridge, UK.  Since “WALLS” is a stencil code that is expected to ultimately 
become memory bound, much of the optimization work can take place at this scale. 

A summary of the hardware and software configuration is given in Table 1.  Except where 
noted, we use all of the available cores on each platform and each core runs the maximum 
number of threads supported -- one per processor core (hyper-threading is disabled to 
improve machine stability) and four per coprocessor core.  All comparisons between 
processor and coprocessor feature two processor sockets and a single coprocessor. 
 
We use a 480x480x480 problem, to ensure that good data decompositions are possible on 
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The first two algorithmic stages are implemented as a single loop over all of the cells in the grid, and the third 
stage as a separate loop (again over all of the cells in the grid). All iterations of the loops are known to be 
independent, and so both can be scheduled to be run in parallel using OpenMP (as shown in Figure 2).

The SGI® UV™ 2000 supercomputer currently deployed at COSMOS is a large symmetric multiprocessing (SMP) 
machine which, unlike a more typical cluster of interconnected nodes, presents itself to software as a single 
shared-memory system. The OpenMP parallelism in WALLS is therefore sufficient to enable the code to scale 
across sockets, cores and coprocessors without the use of a communication library such as MPI.

3.0  Experimental Setup
All experiments were performed on a single node of the COSMOS-IX supercomputer at the University of 
Cambridge, UK. Since “WALLS” is a stencil code that is expected to ultimately become memory bound, 
much of the optimization work can take place at this scale.

A summary of the hardware and software configuration is given in Table 1. Except where noted, we use all of 
the available cores on each platform and each core runs the maximum number of threads supported -- one 
per processor core (hyper-threading is disabled to improve machine stability) and four per coprocessor core. All 
comparisons between processor and coprocessor feature two processor sockets and a single coprocessor.

We use a 480x480x480 problem, to ensure that good data decompositions are possible on both platforms (i.e. 
480 planes / 16 threads = 30 planes per thread; 480 planes / 240 threads = 2 planes per thread). Choosing 
a problem size that decomposes well on one platform but not on the other (e.g. 512 planes / 16 threads = 
32 planes per thread; 512 planes / 240 threads = 2.133 planes per thread) would lead to load imbalance, 
and would give one platform an unfair advantage. It is possible to alleviate the effects of this by increasing the 
granularity of the exploitable parallelism (e.g. through loop restructuring or use of #pragma omp for collapse), 
but in choosing a “good” problem size here we are able to report and compare the best performance available 
on both platforms.

Table 1: Hardware and software configuration 

Intel® Xeon® E5-4650L 
Processor

Intel® Xeon® Phi 5110P 
Processor

Sockets x Cores x Threads 2 x 8 x 1 1 x 60 x 4

Clock (GHz) 2.60 1.05

Single Precision Peak (GFLOP/s) 665 
(8 adds + 8 multiplies per cycle)

2021 
(16 fused multiply-adds per cycle)

L1 / L2 / L3 Cache (KB) 32 / 256 / 20,480 32 / 512

DRAM (GB) 64 8

Max Bandwidth (GB/s) 51.2 320

Compiler Version -icc 14.0.0 20130728

OpenMP Environment -KMP_AFFINITY=compact,granularity=fine
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4.0  Analysis
Out of the box, the original “WALLS” code runs 2x faster on two processors than it does on a single coprocessor. 
This is not in line with our expectations – typically, a single coprocessor can outperform two sockets by a factor of 
around 1.5 – suggesting that there are likely to be some opportunities to improve performance.

Performing a “General Exploration” analysis in Intel® VTune™ Amplifier, we see that the number of cycles per 
instruction (CPI) is very high and that a large number of L1 misses are not being serviced by L2 cache. Additionally, 
examining the compiler’s vector report output (from –vec-report), we see that the main compute loops do not 
vectorize. The results of this initial high-level analysis explain the difference in runtime we see between the two 
platforms, since much of the performance of Intel® Xeon Phi™ coprocessors comes from their increased memory 
bandwidth and wider vector units (relative to Intel® Xeon® processors).

In the following sections, we explore several changes to “WALLS” designed to address the performance issues 
we have observed. Broadly speaking, these changes can be categorised as either optimizations (i.e. code-level 
changes that improve performance on a fixed hardware platform) or modernizations (i.e. algorithmic changes 
that are likely to be of benefit on any modern architecture). For example, under this categorization system, better 
utilization of a particular instruction set would be considered an optimization; increasing the amount of exploitable 
parallelism, or improving the flop:byte ratio, would be considered a modernization.

5.0  Optimization and Modernization

5.1  Enabling Auto-vectorization

Although this white paper focuses on the performance of 3D simulations (the most typical use case at 
COSMOS today), the version of “WALLS” that we use supports problems of up to four dimensions – as 
a result, an NxNxN problem is actually handled by default as an NxNxNx1 problem. The fourth dimension 
is traversed in the code’s inner-most loop and, since this loop only ever performs a single iteration, auto-
vectorization should not be expected to provide any speed-up. Our first change to the code simply alters the 
loop order, such that the problem is treated as 1xNxNxN.

Compiling with –vec-report3 and –vec-report5 causes the compiler to output diagnostic messages describing 
the reason that each loop in the program could not be vectorized, along with a list of any assumed inter-iteration 
dependencies. The most common of these assumed dependencies in C programs are caused by the use 
of pointers – for correctness, the compiler must assume that two pointers could point to the same memory. 
Marking pointers with the restrict keyword or adding #pragma ivdep immediately before a loop allows the 
compiler to ignore its assumptions.

In “WALLS” we see another kind of dependency, where a variable is used to accumulate the sum total of all 
wall areas. In the original code, this accumulation step is guarded by a branch (which checks whether a wall 
exists), and the compiler therefore does not identify this sum as a reduction. We can fix this either by moving the 
addition outside of the branch (adding zero when no wall exists), or by declaring the reduction explicitly (using 
#pragma simd reduction(+:sum).

We also encounter a less common diagnostic message: “remark: loop was not vectorized: operator unsuited 
for vectorization”. The operator in question is modulo (%) which “WALLS” uses to handle its periodic boundary 
condition – when addressing neighbour cells during the stencil operation, the next i index is computed as (i+1) 
% Nx, and the previous index as (i-1 + Nx) % Nx. Intel® Xeon Phi™ coprocessors do not have a packed modulo 
instruction, which prevents loops containing modulo operators from being vectorized.
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An alternative way of handling this periodic boundary condition – one that the compiler is able to vectorize – is 
to replace the % operations with simple branches via C’s “ternary operator”, as below:

int im1 = (i > 0) ? i-1 : Nx-1; 
int ip1 = (i < Nx-1) ? i+1 : 0;

The compiler can generate vector masks and masked move instructions for this code, enabling it to be 
effectively vectorized.

5.2  Improving Auto-vectorization and Cache Behavior

Although “WALLS” auto-vectorizes after applying the code changes detailed in the previous section, handling 
boundary conditions in this way is not efficient. Even though the vast majority of the loads encountered during 
our stencil will be contiguous, the compiler may choose to use a sequence of relatively expensive gather/
scatter operations instead of simple packed loads (due both to the presence of the branch, and to border cells 
requiring data from the other “end” of the array).

There are two alternative optimizations that we could employ to handle the periodic boundary condition more 
efficiently: 1) peeling the first and last iterations from the inner-most loop, such that all of the remaining iterations 
are known not to handle any edge cases; or 2) introducing “halo” or “ghost” cells (i.e. a layer of additional cells 
around the grid which store values representative of the boundary condition).

 12 13 14 15  

3 0 1 2 3 0 

7 4 5 6 7 4 

11 8 9 10 11 8 

15 12 13 14 15 12 

 0 1 2 3  

Figure 3: A 4x4 grid with halo data, for a periodic boundary condition

Such halo cells are a commonly used design pattern in many high performance applications, frequently 
appearing alongside domain decompositions. For a periodic boundary condition, each halo cell must store 
an up-to-date copy of the value on the opposite side of the volume (as shown in Figure 3), and thus we must 
introduce additional code to copy data from the grid into the appropriate halo cells between time-steps.

The memory overhead of such a halo scheme is negligible for sufficiently large simulations. For example, 
adding halo cells to an array of 1024x1024x1024 doubles increases its 8 GB footprint by only 48 MB.

The use of halo cells in this manner doesn’t only improve vectorization, but also cache behavior – a cell is much 
“closer” in memory to a neighbouring halo cell than to a cell on the other side of the array. Indeed, introducing a 
halo only in the X dimension is sufficient to improve vectorization (since taking a step in the Y or Z directions will 
always give a contiguous run of X values), but we see benefits from introducing halos in all three dimensions.
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#pragma omp for 
for (int k = 0; k < Nz; k++) { 
    for (int j = 0; j < Ny; j++) { 
        im1 = ni; ip1 = 1; 
        … 
        for (int i = 1; i < Nx-1; i++) { 
            im1 = i-1; ip1 = i+1; 
            … 
        } 
        im1 = i-1; ip1 = 0; 
        … 
    } 
} 

#pragma omp for 
for (int k = 0; k < Nz; k++) { 
    for (int j = 0; j < Ny; j++) { 
        for (int i = 1; i < Nx+1; i++) { 
            im1 = i-1; ip1 = i+1; 
            … 
        } 
    } 
} 

A. B.

Figure 4: Preparing 3D loop for vectorization using (a) loop peeling; and (b) halo cells.

Additionally, using halo regions results in code that is much simpler and consequently more readable and 
maintainable than a loop with peeling (as demonstrated by Figure 4, in which all ellipses represent an identical 
loop body).

5.3  Avoiding Slow Vector Operations

It is well known that some arithmetic operations run faster (i.e. in fewer clock cycles) than others. Floating-point 
division operations specifically are significantly slower (in terms of latency and throughput) than a floating-point 
add or multiply, and are a performance bottleneck in many scientific applications.

A common optimization is to replace divisions with multiplications by reciprocals, and the Intel® Xeon Phi™ 
coprocessor features hardware support for approximate reciprocals (the accuracy of which can be improved 
through Newton-Raphson iteration) to accelerate the cases where this transformation is permissible. When the 
division is by a constant, even greater speedups are possible, since the reciprocal of that constant can be pre-
computed and reused in multiple calculations.

It is this last case (i.e. division by a constant) that appears most commonly in “WALLS”; for example, we can 
see that the calculation of 
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where ! is a constant.  We can therefore reuse a pre-computed reciprocal for every cell in 
every time-step, replacing hundreds of thousands of division operations with multiplications. 

Enabling certain compiler options (e.g. -no-prec-div, -fast) may be sufficient to allow the 
compiler to perform this and similar optimizations without any source modification.  For 
“WALLS”, we found that this was not the case – although the compiler was able to replace 
the divisions by reciprocals, it did not identify that they could be hoisted outside of the loop. 

Reducing Memory Footprint 
Although the complete COSMOS-IX system has a large amount of memory available, it is 
important that we do not waste memory unnecessarily.  Efficient memory utilization is 
especially important when looking to use a coprocessor, since they have a limited amount of 
RAM (8 GB). 

The code’s original implementation uses a significant amount of memory -- four 3D arrays of 
doubles storing !!"#! , !!"#!!!, !!"#

!!!!! and !!"#
!!!!!. 

Rearranging  !!"#!!! ! !!"#! ! !!!!"#
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possible to compute half-time-step quantities from full-time-step quantities, and thereby 
decrease the code’s memory footprint by a factor of two.  The decrease in the number of 
arrays we must stream through in a given time-step also decreases our memory bandwidth 
requirements, and places less pressure on prefetching and paging hardware. 
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“WALLS”, we found that this was not the case – although the compiler was able to replace 
the divisions by reciprocals, it did not identify that they could be hoisted outside of the loop. 
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phi = P[l-1][k][j][i] + P[l+1][k][j][i] + 
      P[l][k-1][j][i] + P[l][k+1][j][i] + 
      P[l][k][j-1][i] + P[l][k][j+1][i] + 
      P[l][k][j][i-1] + P[l][k][j][i+1] + … 
      - 8 * P[l][k][l][i]; 
 
where every cell’s neighbour in the fourth (l) dimension is itself, due to the periodic boundary 
condition.  The code therefore performs two unnecessary loads and additions per grid cell in 
every time-step.  The problem dimensionality (and problem size) used by “WALLS” are not 
decided at runtime but rather at compile time, and we are therefore able to remove these 
unnecessary calculations by specializing code generation for the 3D and 4D cases through 

the use of #if guards (as shown in Figure 5). 

The importance of performing such specialization is increased by our earlier decision to 
introduce halo cells, since the dimensionality of the halo data required changes with the 
dimensionality of the problem: individual cells in 1D; rows and columns in 2D; planes in 3D; 
and cuboids in 4D.  The halo data in the fourth dimension for a 1xNxNxN problem is actually 
two complete copies of the entire NxNxN grid; therefore, specialization does not only avoid 
wasted work but wasted memory as well. 

Fusion of Algorithmic Stages 
As shown in Figure 2, the two loops in “WALLS” are necessary because the algorithmic 
stages operate on different time-steps: the stencil is computed for step t, the simulation 
advances to step t+1 and the wall areas are computed for step t+1. 

It is possible to combine all three algorithmic stages into a single loop through some simple 
restructuring of the computation – specifically, by computing the wall areas for step t at the 
same time as computing the stencil.  “Fusing” the two loops in this manner improves 
memory behaviour significantly, since we need only stream through the phi array once per 
time-step instead of twice. 

We must introduce a prologue (i.e. a single time-step without any area calculation) in order 
to mimic the application’s original behaviour, but the overhead of this prologue is amortized 
across the remaining time-steps. 

#if DIMENSION == 3 
laplace = 6; 
#elif DIMENSION == 4 
laplace = 8; 
#endif 
… 
phi = P[l][k-1][j][i] + P[l][k+1][j][i] + … ; 
#if DIMENSION == 4 
phi += P[l-1][k][j][i] + P[l+1][k][j][i]; 
#endif 
phi -= laplace * P[l][k][l][i]; 

Figure 5: Generating code specialized for 3D and 4D stencil operations. 
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The importance of performing such specialization is increased by our earlier decision to introduce halo cells, 
since the dimensionality of the halo data required changes with the dimensionality of the problem: individual 
cells in 1D; rows and columns in 2D; planes in 3D; and cuboids in 4D. The halo data in the fourth dimension 
for a 1xNxNxN problem is actually two complete copies of the entire NxNxN grid; therefore, specialization 
does not only avoid wasted work but wasted memory as well.
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5.6  Fusion of Algorithmic Stages

As shown in Figure 2, the two loops in “WALLS” are necessary because the algorithmic stages operate on 
different time-steps: the stencil is computed for step t, the simulation advances to step t+1 and the wall 
areas are computed for step t+1.

It is possible to combine all three algorithmic stages into a single loop through some simple restructuring of the 
computation – specifically, by computing the wall areas for step t at the same time as computing the stencil. 
“Fusing” the two loops in this manner improves memory behavior significantly, since we need only stream 
through the phi array once per time-step instead of twice.

We must introduce a prologue (i.e. a single time-step without any area calculation) in order to mimic the application’s 
original behavior, but the overhead of this prologue is amortized across the remaining time-steps.

6.0 Results and Conclusions
The graph in Figure 6 shows the speedups (higher is better) resulting from each of our optimizations and 
modernizations. We calculate speedup relative to the performance of the original code running on two 
Intel® Xeon® processors; therefore, the tallest bar represents not only the greatest speedup, but also the best 
overall runtime. Note that we treat the introduction of halo cells in the inner-most and outer loops as different 
optimizations (Halo 1D and 3D, respectively) to separate the speedups arising as a result of improvements in 
vectorization and cache behavior.
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Figure 6: Achieved speedup for each of our optimizations and modernizations, 

relative to the original code running on two Intel® Xeon® processors.
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There are three important takeaways from these results:

1.  For this workload, enabling auto-vectorization alone is sufficient to make the coprocessor outperform 
two processors. Vectorization improves processor performance by 3.9x and improves coprocessor 
performance by 10.8x. The coprocessor speedup is greater than the vector width because we also avoid 
expensive scalar operations (e.g. modulo).

2.  Each of our optimizations and modernizations benefit both processor and coprocessor. That the 
coprocessor benefits more is due to its increased sensitivity to vectorization and memory behavior.

3.  The speedups we see on each platform are large enough to have significant impact upon scientific 
discovery at COSMOS. The final version of the code runs 9.3x and 30.1x faster than the original code 
running on processors and coprocessors respectively, and a single coprocessor outperforms two 
processors by 1.3x.

This white paper therefore demonstrates that it is possible to deliver dramatic performance improvements to real-life 
codes through straightforward changes that do not impact platform portability, maintainability or code readability.

6.1  Future Work

The current version of the code computes the wall areas (and a number of other diagnostic values) in each 
time step, performs a reduction operation across the threads and then, for certain timesteps, writes these 
values to file. The cost of synchronization at this point is higher on the coprocessor (due to the increased 
number of threads), and subsequently harms performance. We are in the process of investigating several 
methods to reduce this synchronization cost, including: computing the diagnostic values less frequently (e.g. 
every 10 timesteps); and computing the diagnostic values at the same frequency, but reducing them less often.

The optimizations and modernizations explored here have focused on improving single node performance. 
The code’s ability to scale to larger problems running on hundreds of nodes is a key requirement – after a 
sufficient number of time-steps, the presence of a boundary condition (which does not exist in the real universe) 
begins to have an effect on wall evolution, limiting the amount of real-world time that can be simulated using a 
fixed memory footprint.

The current generation of Intel® Xeon Phi™ coprocessors cannot access the full memory available in COSMOS-IX, 
limiting native runs of “WALLS” to simulations that fit in 8 GB of memory. We are currently investigating the use 
of the pragma-based Intel® Language Extensions for Offload (LEO), and the similar functionality available in 
OpenMP* 4.0, as a means of overcoming this limitation.

7.0  Additional Resources
[1]  The Stephen Hawking Centre for Theoretical Cosmology, www.ctc.cam.ac.uk/outreach/origins/cosmic_

structures_two.php

[2]  W.H. Press, B.S. Ryden and D.N. Spergel, “Dynamical Evolution of Domain Walls in an Expanding Universe”, 
Astrophys. J. 347 (1989)

[3]  A.M.M. Leite and C.J.A.P Martins, “Scaling Properties of Domain Wall Networks”, Physical Review D 84 (2011)

[4]  A.M.M. Leite, C.J.A.P Martins and E.P.S. Shellard, “Accurate Calibration of the Velocity-Dependent 
One-Scale Model for Domain Walls”, Physics Letters B 7 18 (2013)
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