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design currents

By Christian Lipsky

System-on-chips (SoCs) are used in a wide range of applica-
tion spaces from automotive to consumer electronics, and 
they are getting ever more complex. Multicore, multibus 

designs with a multitude of discrete signals and loads of embed-
ded software are already commonplace. Today’s high-end embed-
ded systems already contain several million lines of software code 
and the number is growing. General Motors Corp. estimates that, 
by the year 2010, its cars will each contain 100 million lines of code[1]. 
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Customers expect bug-free products; 
software failures can lead to loss of rep-
utation, customer loyalty, and money or, 
even worse, loss of life in certain safety-
critical applications. As a consequence, 
fast and effective debugging capabilities 
are a key success factor for embedded 
systems. To overcome the challenges 
arising from increased SoC complexity, 
new powerful debugging approaches are 
required. Advanced debug solutions also 
help with software optimization – for 
example, calibrating parameters in the 
fi eld. 

Before embedded systems were 
integrated in one single chip (SoC), 
the different functional blocks of the 
system were typically distributed as 
chips across a printed circuit board. 

For debugging, logic analyzers 
and oscilloscopes were attached to 
the chip interfaces and buses on the 
board. This approach couldn’t be 
employed any more when the dif-
ferent cores and buses moved into a 
single-chip SoC. Accessing the signals 
buried deep within the chip created 
new demands for appropriate debug-
ging solutions. Traditional software 
and system debugging methodologies 
for an SoC include C-modeling, rapid 
prototyping, and run control.

C-models (or other high-level mod-
els) can be used to simulate a com-
plete system, including hardware, by 
mapping the design to the memory of 
a simulation computer. This approach 
allows full visibility of the system 
internal states and signals. But this 
debugging methodology has major 

drawbacks. A model doesn’t always 
behave like the real system will in 
a real-life environment because the 
environment impacts the system. 

Additional effort would be required 
to model such environmental infl u-
ences, and still not all effects can 
be anticipated upfront. Apart from 
that, the simulation runtime is much 
higher than running the real system 
hardware. 

Even the continuous performance 
gains in computer platforms cannot 
keep up with the more rapidly grow-
ing complexity of the systems to be 
simulated. C-modeling can be useful 
at the early stages of a project when 
SoC hardware is not yet available.

Rapid prototyping is an alterna-
tive method to C-modeling. In this 
approach, the debugged system (for 
which silicon is not yet available) is 
mapped onto programmable logic 
devices such as FPGAs. The fact that 
the RTL code of the debugged system 
is used in the emulating hardware 
allows for a more accurate debugging 
methodology than modeling. 

Rapid prototyping features much 
higher execution speed than C-mod-
eling, but it is still slower than the 
real SoC silicon. Typically, the FPGA 
emulation of a complex and fast sys-
tem is at least four times slower than 
the fi nal silicon version[2]. As with 
modeling, issues still arise around 
mismatches with the real system due 
to environmental infl uences. Also, 
dedicated environment devices like 
data sinks and sources or traffi c gen-
erators are needed. Rapid prototyping 
also requires bulky and more expen-
sive hardware, and the RTL descrip-
tion of the debugged system must be 
available. 

Run control moves debugging 
closer to the production system by 

running system software directly 
on the SoC. In the run control 
approach, the system is halted 
when a certain user-defi ned 
breakpoint or watchpoint 
occurred. Most of today’s proc-
essor cores contain additional 
debug logic that enables run 
control by an external debugger 
tool. For a multicore SoC, every 
core has to support run control. 
A multicore break and suspend 
switch is required in order to 
halt the system within an accept-
able slippage[2]. 

The run control debugging 
methodology is restricted to 
postmortem debugging (i.e., 
the system is inspected after it 
has halted rather than while it is 
running). 

For certain mechanical appli-
cation spaces (for example, 
engine control modules and hard 
disk drives), this approach is not 

applicable because such systems can 
be damaged when they are suddenly 
halted before the system enters a state 
where it can be safely shut down. Run 
control will defi nitely remain a stand-
ard debug feature in the future. But 
its capabilities are not suffi cient for 
real-time debugging requirements in 
complex multicore SoCs. 

In the tracing approach, dedicated 
debug support hardware generates 
streams of information that has been 
obtained by observing certain system 
nodes of interest. The trace hardware 
can be located on-chip (on-chip trac-
ing) or in external hardware (e.g., 
debugger box or emulator box). 

Tracing is performed at runtime 
and enables the observed information 
to be time stamped. For instance, the 
instruction pointer or data/address 
values on the system bus are traced 
and then forwarded to an external 
debug tool. Appropriate means have to 
be applied to get the trace information 
off the chip. 

The debug tool can reconstruct the 
obtained trace information and, for 
example, map the instruction pointer 
values to the known source code of 
the program that has been running 
on a certain system core, in order to 
analyze the program fl ow. In contrast 
to the run control approach, tracing is 
non-intrusive; that is, it has no impact 
on the program execution. Sporadic 
bugs, such as bugs that cannot be 
reproduced or bugs that only occur 
after a program has been running for 
a long time, can be discovered by the 
tracing approach much more easily 
than by single-stepping (run control). 
For debugging complex multicore 
SoCs in real-time, the most powerful 
approach is defi nitely tracing com-
bined with run control.

In the bond-out based ICE, a special 
emulation device that contains the 
same logic as the target SoC bonds 
out internal buses and signals for 
increased visibility using additional 
pads and pins. Development effort is 
required to create an ICE probe that 
provides the adaptation of the emu-
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lation device to the target device’s 
footprint.

Additional debug hardware 
required, such as an ICE box and a 
bulky probe, make this solution inap-
plicable for certain target systems and 
for debugging systems in the fi eld. 
Furthermore, the clock speed of the 
observed buses or signals must not 
exceed the limit given by conventional 
chip pins designed for harsh environ-
ments. As the system bus is typically 
bonded out, this limitation directly 
refers to the system speed. A possible 
solution would be to run the emula-
tion device at a lower frequency. But 
this might lead to behavior that is 
slightly different from the production 
SoC’s behavior. Other factors may also 
cause possible differences – for exam-
ple, the analog behavior of an A/D 
converter[2]. Using a bond-out based 
ICE is the most powerful and effi cient 

debugging solution for single-core sys-
tems running at operating frequencies 
well below 100 MHz.

The IEEE-ISTO 5001-1999 Stand-
ard for a Global Embedded Processor 
Debug Interface, familiarly known 
as Nexus, features a message-driven 
on-chip tracing system. The idea is to 
have high-quality debug support on 
mass production SoC devices. This 
approach became practicable with the 
ever increasing scale of integration. 
The standard eases migration between 
processors from different vendors and 
enables support by a broad range of 
tool developers. 

Nexus specifi es a scalable hardware 
interface; JTAG is typically used as the 
control interface. An AUX interface 
with additional control signals (3 to 
5 pins) is used to transfer trace data 
(usually 8 or 16 pins). The additional 
pins increase the device cost. Further-
more, the required SoC trace band-
width scales with Moore’s Law and 
rising clock frequencies. But trends 

show that costs for package pins don’t 
decrease fast enough[2]. In addition, 
bulky connectors are required next to 
the chip. 

As the Nexus architecture is intend-
ed for low gate count, the capabilities 
for trace qualifi cation and trigger gen-
eration are usually limited. External 
breakpoints and watchpoints are heav-
ily delayed by compression and buffer-
ing, which makes them impractical 
for fi nding complicated bugs. Another 
issue relevant for multi-target debug-
ging is the fact that exact time correla-
tion between different trace sources 
is nearly impossible[3]. Nexus is a suit-
able solution for SoCs with a certain 
complexity and frequency level, but 
not those requiring maximum trace 
bandwidth.

Nexus 5001 is too expensive for 
high volume, complex multicore 
SoCs and it doesn’t offer a solution 

for applications where mechanical or 
environmental constraints preclude 
the use of bulky headers and short 
cables. Therefore, Infi neon Technolo-
gies decided to develop a new concept 
in cooperation with leading automo-
tive suppliers. In the MCDS based 
debug architecture, the complete emu-
lator from trace message generation 
down to trace storage is located within 
the device package – see fi gure 1. So 
the debugging process takes place in 
the real target system and the “What 
you debug is what you ship” require-
ment is fulfi lled. 

At the heart of this emulator logic 
is Infi neon’s on-chip MCDS, which 
features trace, triggers, and perform-
ance monitoring. The architecture is 
independent of the physical interface 
between chip and debug host, and no 
additional hardware is required except 
for the host PC. Instead of an addition-
al emulator box, a software layer run-
ning on the host computer can be used 

Continued on page 32
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to confi gure the MCDS and to read the 
stored trace data. Infi neon developed 
and uses such a layer, called device 
access server (DAS). 

With this concept, any existing chip 
interface can be shared to get the trace 
data off-chip; so no additional pins 
are required. A popular solution is to 
use the standard JTAG pins as debug 
interface. Especially for debugging or 
calibration measurement in the fi eld 
(e.g., engine control in a car while 
driving), a long thin JTAG cable is 
much more convenient than the bulky 
cables, headers, or adaptors which are 
required for other debug architectures. 
As the trace memory is located on-
chip, the new approach does not have 
any bandwidth bottleneck issues.

The limiting factor is the size of the 
trace memory, which is constrained by 
production cost factors and die area 
requirements. Today’s SoCs already 
generate several tens of  Gbits/s of raw 
trace data. Even if the huge amount of 
information that results from program 
execution durations in the range of 
several seconds or minutes was stored 
(on-chip or off-chip), it would not be 
practical to fi nd the bug by searching 
manually. Appropriate fi lter mecha-
nisms are required in order to qualify 
special sections of the trace where the 
bug resides. The traditional approach 
(for example in Nexus 5001) is to 
record a lot of trace information and, 
afterwards, fi lter non-relevant sections 
of the trace.

The MCDS based approach takes 
the opposite path. The trace informa-
tion is qualifi ed before it is stored; i.e., 
only relevant information is written 
to the trace memory. In addition, this 
information, which consists of trace 
messages, is compressed. Memory 
sizes in the range of several tens of 
kilobytes are suffi cient for simple 
program fl ow debugging. The trace 
memory can be confi gured as a 
circular buffer to collect trace 
messages either continuously 
or before and/or after a certain 
condition (e.g., watchpoint 
occurred) is met.

In some application spaces, 
security is a critical require-
ment. The software running 
in the SoC shall not be acces-
sible to everyone. In order to 
support such requirements, 
many SoCs already contain 
dedicated logic that enables 
certain debug features only 
after an authentication process 
has successfully been executed. 
For such SoCs, the MCDS logic 

block can be locked by default and 
has to be unlocked by the described 
authentication process.

For devices where chip area or 
production costs are a critical factor 
(e.g., high volume products), a dedi-
cated emulation device can be pro-
duced, which contains the logic of the 
production chip as hard macro, the 
emulation logic, and the emulation 
memory[3]. 

Because of its on-chip trace storage 
and because it uses the same integra-
tion technology as the production 
SoC, the MCDS-based concept scales 
with integration density and clock 
frequency trends (Moore’s Law) and 
is therefore the right solution for com-
plex SoCs in the future[2].

The MCDS-based concept is tar-
geted to manufacturers of complex 
multicore SoCs who want to add 
highly sophisticated debug and trace 
capabilities, while maintaining reason-
able production costs. Different mar-
kets from the automotive industry to 
consumer electronics will benefi t from 
the extensive debug and code optimi-
zation features of the new concept.

The features in the MCDS-based 

concept as described previously are 
based on trace message generation, 
trace qualifi cation, and trace compres-
sion. These tasks are realized by the 
MCDS logic block. Infi neon partners 
with IPextreme to make the MCDS 
technology available to SoC designers 
as IP in order to create an attractive 
market for associated tooling, which 
benefi ts tool vendors (market size) 
and users (tool cost and quality).

MCDS can trace one or more cores 
in parallel at run-time and at full oper-
ating speed. Scalable time-stamping 
down to cycle level and exact time 
correlation between different trace 
sources (cross-target) allow accurate 
tracing of concurrency-related bugs. 
The IP solution supports any type of 
processor, bus, or set of signals as 
debug targets. 

Bus tracing becomes more and 
more important in complex SoCs 
because a signifi cant amount of trans-
fers cannot be observed at the proces-
sor cores. Figure 3 shows the function-
al blocks of the MCDS in an example 
system for two debug targets (cores A 
and B). Depending on the target type 
(processor, bus, set of signals), the rel-

evant traced information can 
be different. For instance, 
the instruction pointer can 
obviously only be traced at 
a processor target. For other 
target types, information 
such as data, status, process 
ID, can be of interest.

Highly confi gurable, 
scalable, complex trigger 
generation is used for trace 
qualifi cation and run con-
trol of the processor debug 
targets. Triggers can be 
generated internally in the 
MCDS block – for example, 
by using state machines 
based on counters. As fi gure 

4 shows, triggers from the debugged 
cores can be fed into the MCDS where 
they can be combined with internal 
or external triggers from other cores 
(cross-target). A confi gurable break 
and suspend switch allows control of 
multiple processors as a group by user-
defi ned combinations of triggers.

Apart from the debugging features 
of MCDS, the solution also offers 
capabilities for code profi ling and per-
formance optimization. Dedicated per-
formance counters evaluate specifi c 
signals from the debug targets. Corre-
sponding trace messages allow analy-
sis of attributes like cache hits/misses, 
number of executed instructions, 
number of stall cycles, or number of 
fi nished bus transactions per emula-
tion clock cycle.

MCDS is already being used in the 
automotive industry, where calibra-
tion and corresponding measurement 
tasks are performed. For instance, 
software variables and program fl ow 
are traced over time while certain soft-
ware parameters are being varied. 

For debugging complex multicore 
SoCs, on-chip trace is the only long-
term sustainable real-time debug 
approach. The new MCDS-based 
concept, comprising the MCDS logic 
block, trace memory, and access logic, 
offers the required features. The solu-
tion scales with integration density 
and clock frequency trends (Moore’s 
Law) and is, therefore, the right solu-
tion for the future. 

MCDS is available as an IP-based 
solution for multi-processor run con-
trol and trace of all types of proces-
sors, buses, and sets of signals. Using 
MCDS does not require an external 
emulator box and the trace data can 
be transferred through an existing 
interface (e.g., JTAG) to avoid adding 
high-speed pins. The solution has no 
bandwidth bottleneck and effi cient 
trace memory usage is given by com-
plex confi gurable trace qualifi cation 
and trace compression.
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