
30 EE Times europe | May 21 - June 3, 2007 www.eetimes.eu

design currents

By Christian Lipsky

System-on-chips (SoCs) are used in a wide range of applica-
tion spaces from automotive to consumer electronics, and
they are getting ever more complex. Multicore, multibus

designs with a multitude of discrete signals and loads of embed-
ded software are already commonplace. Today’s high-end embed-
ded systems already contain several million lines of software code
and the number is growing. General Motors Corp. estimates that,
by the year 2010, its cars will each contain 100 million lines of code[1].

Christian Lipsky, is a senior design engineer at

the IPextreme design centre in Munich.

Customers expect bug-free products;
software failures can lead to loss of rep-
utation, customer loyalty, and money or,
even worse, loss of life in certain safety-
critical applications. As a consequence,
fast and effective debugging capabilities
are a key success factor for embedded
systems. To overcome the challenges
arising from increased SoC complexity,
new powerful debugging approaches are
required. Advanced debug solutions also
help with software optimization – for
example, calibrating parameters in the
fi eld.

Before embedded systems were
integrated in one single chip (SoC),
the different functional blocks of the
system were typically distributed as
chips across a printed circuit board.

For debugging, logic analyzers
and oscilloscopes were attached to
the chip interfaces and buses on the
board. This approach couldn’t be
employed any more when the dif-
ferent cores and buses moved into a
single-chip SoC. Accessing the signals
buried deep within the chip created
new demands for appropriate debug-
ging solutions. Traditional software
and system debugging methodologies
for an SoC include C-modeling, rapid
prototyping, and run control.

C-models (or other high-level mod-
els) can be used to simulate a com-
plete system, including hardware, by
mapping the design to the memory of
a simulation computer. This approach
allows full visibility of the system
internal states and signals. But this
debugging methodology has major

drawbacks. A model doesn’t always
behave like the real system will in
a real-life environment because the
environment impacts the system.

Additional effort would be required
to model such environmental infl u-
ences, and still not all effects can
be anticipated upfront. Apart from
that, the simulation runtime is much
higher than running the real system
hardware.

Even the continuous performance
gains in computer platforms cannot
keep up with the more rapidly grow-
ing complexity of the systems to be
simulated. C-modeling can be useful
at the early stages of a project when
SoC hardware is not yet available.

Rapid prototyping is an alterna-
tive method to C-modeling. In this
approach, the debugged system (for
which silicon is not yet available) is
mapped onto programmable logic
devices such as FPGAs. The fact that
the RTL code of the debugged system
is used in the emulating hardware
allows for a more accurate debugging
methodology than modeling.

Rapid prototyping features much
higher execution speed than C-mod-
eling, but it is still slower than the
real SoC silicon. Typically, the FPGA
emulation of a complex and fast sys-
tem is at least four times slower than
the fi nal silicon version[2]. As with
modeling, issues still arise around
mismatches with the real system due
to environmental infl uences. Also,
dedicated environment devices like
data sinks and sources or traffi c gen-
erators are needed. Rapid prototyping
also requires bulky and more expen-
sive hardware, and the RTL descrip-
tion of the debugged system must be
available.

Run control moves debugging
closer to the production system by

running system software directly
on the SoC. In the run control
approach, the system is halted
when a certain user-defi ned
breakpoint or watchpoint
occurred. Most of today’s proc-
essor cores contain additional
debug logic that enables run
control by an external debugger
tool. For a multicore SoC, every
core has to support run control.
A multicore break and suspend
switch is required in order to
halt the system within an accept-
able slippage[2].

The run control debugging
methodology is restricted to
postmortem debugging (i.e.,
the system is inspected after it
has halted rather than while it is
running).

For certain mechanical appli-
cation spaces (for example,
engine control modules and hard
disk drives), this approach is not

applicable because such systems can
be damaged when they are suddenly
halted before the system enters a state
where it can be safely shut down. Run
control will defi nitely remain a stand-
ard debug feature in the future. But
its capabilities are not suffi cient for
real-time debugging requirements in
complex multicore SoCs.

In the tracing approach, dedicated
debug support hardware generates
streams of information that has been
obtained by observing certain system
nodes of interest. The trace hardware
can be located on-chip (on-chip trac-
ing) or in external hardware (e.g.,
debugger box or emulator box).

Tracing is performed at runtime
and enables the observed information
to be time stamped. For instance, the
instruction pointer or data/address
values on the system bus are traced
and then forwarded to an external
debug tool. Appropriate means have to
be applied to get the trace information
off the chip.

The debug tool can reconstruct the
obtained trace information and, for
example, map the instruction pointer
values to the known source code of
the program that has been running
on a certain system core, in order to
analyze the program fl ow. In contrast
to the run control approach, tracing is
non-intrusive; that is, it has no impact
on the program execution. Sporadic
bugs, such as bugs that cannot be
reproduced or bugs that only occur
after a program has been running for
a long time, can be discovered by the
tracing approach much more easily
than by single-stepping (run control).
For debugging complex multicore
SoCs in real-time, the most powerful
approach is defi nitely tracing com-
bined with run control.

In the bond-out based ICE, a special
emulation device that contains the
same logic as the target SoC bonds
out internal buses and signals for
increased visibility using additional
pads and pins. Development effort is
required to create an ICE probe that
provides the adaptation of the emu-

Multicore debug
and performance
optimization IP for
complex SoCs

EETE-P30-31-32.indd 30 15/05/07 13:40:44

For superior solutions
in industrial electronics

• Aluminum electrolytic capacitors for
temperatures up to 150 °C

• PFC products with high reliability

• EMC filters for currents up to 8,000 A

• Thermistors for temperature measurement

• Inductors with high current capability

• Ferrite materials with reduced power losses

PCIM Nürnberg, Germany
May 22 to 24, 2007 • Hall 12, Stand 12-535

SENSOR + TEST Nürnberg, Germany
May 22 to 24, 2007 • Hall 7, Stand 7-247

www.epcos.com

www.eetimes.eu May 21 - June 3, 2007 | EE Times europe 31

design currents
lation device to the target device’s
footprint.

Additional debug hardware
required, such as an ICE box and a
bulky probe, make this solution inap-
plicable for certain target systems and
for debugging systems in the fi eld.
Furthermore, the clock speed of the
observed buses or signals must not
exceed the limit given by conventional
chip pins designed for harsh environ-
ments. As the system bus is typically
bonded out, this limitation directly
refers to the system speed. A possible
solution would be to run the emula-
tion device at a lower frequency. But
this might lead to behavior that is
slightly different from the production
SoC’s behavior. Other factors may also
cause possible differences – for exam-
ple, the analog behavior of an A/D
converter[2]. Using a bond-out based
ICE is the most powerful and effi cient

debugging solution for single-core sys-
tems running at operating frequencies
well below 100 MHz.

The IEEE-ISTO 5001-1999 Stand-
ard for a Global Embedded Processor
Debug Interface, familiarly known
as Nexus, features a message-driven
on-chip tracing system. The idea is to
have high-quality debug support on
mass production SoC devices. This
approach became practicable with the
ever increasing scale of integration.
The standard eases migration between
processors from different vendors and
enables support by a broad range of
tool developers.

Nexus specifi es a scalable hardware
interface; JTAG is typically used as the
control interface. An AUX interface
with additional control signals (3 to
5 pins) is used to transfer trace data
(usually 8 or 16 pins). The additional
pins increase the device cost. Further-
more, the required SoC trace band-
width scales with Moore’s Law and
rising clock frequencies. But trends

show that costs for package pins don’t
decrease fast enough[2]. In addition,
bulky connectors are required next to
the chip.

As the Nexus architecture is intend-
ed for low gate count, the capabilities
for trace qualifi cation and trigger gen-
eration are usually limited. External
breakpoints and watchpoints are heav-
ily delayed by compression and buffer-
ing, which makes them impractical
for fi nding complicated bugs. Another
issue relevant for multi-target debug-
ging is the fact that exact time correla-
tion between different trace sources
is nearly impossible[3]. Nexus is a suit-
able solution for SoCs with a certain
complexity and frequency level, but
not those requiring maximum trace
bandwidth.

Nexus 5001 is too expensive for
high volume, complex multicore
SoCs and it doesn’t offer a solution

for applications where mechanical or
environmental constraints preclude
the use of bulky headers and short
cables. Therefore, Infi neon Technolo-
gies decided to develop a new concept
in cooperation with leading automo-
tive suppliers. In the MCDS based
debug architecture, the complete emu-
lator from trace message generation
down to trace storage is located within
the device package – see fi gure 1. So
the debugging process takes place in
the real target system and the “What
you debug is what you ship” require-
ment is fulfi lled.

At the heart of this emulator logic
is Infi neon’s on-chip MCDS, which
features trace, triggers, and perform-
ance monitoring. The architecture is
independent of the physical interface
between chip and debug host, and no
additional hardware is required except
for the host PC. Instead of an addition-
al emulator box, a software layer run-
ning on the host computer can be used

Continued on page 32

EETE-P30-31-32.indd 31 15/05/07 13:40:59

32 EE Times europe | May 21 - June 3, 2007 www.eetimes.eu

design currents

to confi gure the MCDS and to read the
stored trace data. Infi neon developed
and uses such a layer, called device
access server (DAS).

With this concept, any existing chip
interface can be shared to get the trace
data off-chip; so no additional pins
are required. A popular solution is to
use the standard JTAG pins as debug
interface. Especially for debugging or
calibration measurement in the fi eld
(e.g., engine control in a car while
driving), a long thin JTAG cable is
much more convenient than the bulky
cables, headers, or adaptors which are
required for other debug architectures.
As the trace memory is located on-
chip, the new approach does not have
any bandwidth bottleneck issues.

The limiting factor is the size of the
trace memory, which is constrained by
production cost factors and die area
requirements. Today’s SoCs already
generate several tens of Gbits/s of raw
trace data. Even if the huge amount of
information that results from program
execution durations in the range of
several seconds or minutes was stored
(on-chip or off-chip), it would not be
practical to fi nd the bug by searching
manually. Appropriate fi lter mecha-
nisms are required in order to qualify
special sections of the trace where the
bug resides. The traditional approach
(for example in Nexus 5001) is to
record a lot of trace information and,
afterwards, fi lter non-relevant sections
of the trace.

The MCDS based approach takes
the opposite path. The trace informa-
tion is qualifi ed before it is stored; i.e.,
only relevant information is written
to the trace memory. In addition, this
information, which consists of trace
messages, is compressed. Memory
sizes in the range of several tens of
kilobytes are suffi cient for simple
program fl ow debugging. The trace
memory can be confi gured as a
circular buffer to collect trace
messages either continuously
or before and/or after a certain
condition (e.g., watchpoint
occurred) is met.

In some application spaces,
security is a critical require-
ment. The software running
in the SoC shall not be acces-
sible to everyone. In order to
support such requirements,
many SoCs already contain
dedicated logic that enables
certain debug features only
after an authentication process
has successfully been executed.
For such SoCs, the MCDS logic

block can be locked by default and
has to be unlocked by the described
authentication process.

For devices where chip area or
production costs are a critical factor
(e.g., high volume products), a dedi-
cated emulation device can be pro-
duced, which contains the logic of the
production chip as hard macro, the
emulation logic, and the emulation
memory[3].

Because of its on-chip trace storage
and because it uses the same integra-
tion technology as the production
SoC, the MCDS-based concept scales
with integration density and clock
frequency trends (Moore’s Law) and
is therefore the right solution for com-
plex SoCs in the future[2].

The MCDS-based concept is tar-
geted to manufacturers of complex
multicore SoCs who want to add
highly sophisticated debug and trace
capabilities, while maintaining reason-
able production costs. Different mar-
kets from the automotive industry to
consumer electronics will benefi t from
the extensive debug and code optimi-
zation features of the new concept.

The features in the MCDS-based

concept as described previously are
based on trace message generation,
trace qualifi cation, and trace compres-
sion. These tasks are realized by the
MCDS logic block. Infi neon partners
with IPextreme to make the MCDS
technology available to SoC designers
as IP in order to create an attractive
market for associated tooling, which
benefi ts tool vendors (market size)
and users (tool cost and quality).

MCDS can trace one or more cores
in parallel at run-time and at full oper-
ating speed. Scalable time-stamping
down to cycle level and exact time
correlation between different trace
sources (cross-target) allow accurate
tracing of concurrency-related bugs.
The IP solution supports any type of
processor, bus, or set of signals as
debug targets.

Bus tracing becomes more and
more important in complex SoCs
because a signifi cant amount of trans-
fers cannot be observed at the proces-
sor cores. Figure 3 shows the function-
al blocks of the MCDS in an example
system for two debug targets (cores A
and B). Depending on the target type
(processor, bus, set of signals), the rel-

evant traced information can
be different. For instance,
the instruction pointer can
obviously only be traced at
a processor target. For other
target types, information
such as data, status, process
ID, can be of interest.

Highly confi gurable,
scalable, complex trigger
generation is used for trace
qualifi cation and run con-
trol of the processor debug
targets. Triggers can be
generated internally in the
MCDS block – for example,
by using state machines
based on counters. As fi gure

4 shows, triggers from the debugged
cores can be fed into the MCDS where
they can be combined with internal
or external triggers from other cores
(cross-target). A confi gurable break
and suspend switch allows control of
multiple processors as a group by user-
defi ned combinations of triggers.

Apart from the debugging features
of MCDS, the solution also offers
capabilities for code profi ling and per-
formance optimization. Dedicated per-
formance counters evaluate specifi c
signals from the debug targets. Corre-
sponding trace messages allow analy-
sis of attributes like cache hits/misses,
number of executed instructions,
number of stall cycles, or number of
fi nished bus transactions per emula-
tion clock cycle.

MCDS is already being used in the
automotive industry, where calibra-
tion and corresponding measurement
tasks are performed. For instance,
software variables and program fl ow
are traced over time while certain soft-
ware parameters are being varied.

For debugging complex multicore
SoCs, on-chip trace is the only long-
term sustainable real-time debug
approach. The new MCDS-based
concept, comprising the MCDS logic
block, trace memory, and access logic,
offers the required features. The solu-
tion scales with integration density
and clock frequency trends (Moore’s
Law) and is, therefore, the right solu-
tion for the future.

MCDS is available as an IP-based
solution for multi-processor run con-
trol and trace of all types of proces-
sors, buses, and sets of signals. Using
MCDS does not require an external
emulator box and the trace data can
be transferred through an existing
interface (e.g., JTAG) to avoid adding
high-speed pins. The solution has no
bandwidth bottleneck and effi cient
trace memory usage is given by com-
plex confi gurable trace qualifi cation
and trace compression.

References

1. Robert N. Charette, “Why Software Fails”,

IEEE Spectrum, Sep. 2005, www.spectrum.ieee.

org/sep05/1685

2. A. Mayer et al., „Debug Support for Complex

System-on-Chips“, 2003 Embedded Systems

Conference San Francisco Paper, www.techon-

line.com/learning/techpaper/193103950

3. A. Mayer et al., “Boosting Debugging

Support for Complex Systems on Chip”, IEEE

Computer, Oct. 2006

Multicore
from page 31

Online:
Multicore, compilation are key on
embedded roadmap.

www.eetimes.eu/199203040

EETE-P30-31-32.indd 32 15/05/07 13:41:17

