Janitza electronics GmbH Vor dem Polstück 1 D-35633 Lahnau Support Tel. (0 64 41) 9642-22 Fax (0 64 41) 9642-30 E-mail: info@janitza.de Internet: http://www.janitza.de

Power Analyser UMG 96 RM-EL

Betriebsanleitung und technische Daten

Inhaltsverzeichnis

Allgemeines	4	Parameter programmieren	38
Eingangskontrolle	6	TCP/IP Konfiguration	39
Lieferumfang UMG 96RM-EL	7	Parameter	42
Lieferbares Zubehör	7	Benutzer-Passwort (Adr. 050)	42
Produktbeschreibung	8	Mittelwert	43
Bestimmungsmäßiger Gebrauch	8	Mittelungsverfahren	43
Leistungsmerkmale UMG 96RM-EL	9	Min- und Maxwerte	44
Messverfahren	10	Energiezähler	44
Bedienungskonzept	10	Netzfrequenz (Adr. 034)	45
Netzanalysesoftware GridVis	10	Oberschwingungen	46
Anschlussvarianten	11	Messwert-Weiterschaltung	47
Montage	12	Messwertanzeigen	47
Installation	14	Energiezähler löschen (Adr. 507)	49
Versorgungsspannung	14	Drehfeldrichtung	49
Spannungsmessung	16	LCD Kontrast (Adr. 035)	50
Strommessung	22	Hintergrundbeleuchtung	50
Ethernet-Schnittstelle	28	Zeiterfassung	51
Bedienung	30	Betriebsstundenzähler	51
Anzeige-Modus	30	Seriennummer (Adr. 754)	52
Programmier-Modus	30	Inbetriebnahme	53
Parameter und Messwerte	32	Versorgungsspannung anlegen	53
Konfiguration	34	Messspannung anlegen	53
Versorgungsspannung anlegen	34	Messstrom anlegen	53
Strom- und Spannungswandler	34	Drehfeldrichtung	54
Stromwandler programmieren	36	Phasenzuordnung prüfen	54
Spannungswandler programmieren	37	Kontrolle der Leistungsmessung	54

Messung überprüfen	54
Überprüfen der Einzelleistungen	54
Überprüfen der Summenleistungen	55
Vergleicher und Grenzwertüberwachung	55
Vergleicher in der Software GridVis	59
Service und Wartung	60
Service	60
Gerätejustierung	60
Kalibrierintervalle	60
Firmwareupdate	61
Fehler-/Warnmeldungen	62
Technische Daten	68
Kenngrößen von Funktionen	72
Tabelle 1 - Parameterliste	74
Zahlenformate	79
Maßbilder	80
Übersicht Messwertanzeigen	82
Konformitätserklärung	88
Anschlussbeispiel	90
Kurzanleitung Grundfunktionen	91
Kurzanleitung TCP/IP-Adressierung	92

Allgemeines

Copyright

Dieses Handbuch unterliegt den gesetzlichen Bestimmungen des Urheberrechtsschutzes und darf weder als Ganzes noch in Teilen auf mechanische oder elektronische Weise fotokopiert, nachgedruckt, reproduziert oder auf sonstigem Wege ohne die rechtsverbindliche, schriftliche Zustimmung von

Janitza electronics GmbH, Vor dem Polstück 1, D 35633 Lahnau, Deutschland,

vervielfältigt oder weiterveröffentlicht werden.

Markenzeichen

Alle Markenzeichen und ihre daraus resultierenden Rechte gehören den jeweiligen Inhabern dieser Rechte.

Haftungsausschluss

Janitza electronics GmbH übernimmt keinerlei Verantwortung für Fehler oder Mängel innerhalb dieses Handbuches und übernimmt keine Verpflichtung, den Inhalt dieses Handbuchs auf dem neuesten Stand zu halten.

Kommentare zum Handbuch

Ihre Kommentare sind uns willkommen. Falls irgend etwas in diesem Handbuch unklar erscheint, lassen Sie es uns bitte wissen und schicken Sie uns eine EMAIL an: info@janitza.de

Bedeutung der Symbole

Im vorliegenden Handbuch werden folgende Piktogramme verwendet:

Gefährliche Spannung!

Lebensgefahr oder schwere Verletzungsgefahr. Vor Beginn der Arbeiten Anlage und Gerät spannungsfrei schalten.

Achtung!

Bitte beachten Sie die Dokumentation. Dieses Symbol soll Sie vor möglichen Gefahren warnen, die bei der Montage, der Inbetriebnahme und beim Gebrauch auftreten können

Hinweis!

Anwendungshinweise

Bitte lesen Sie die vorliegende Bedienungsanleitung sowie alle weiteren Publikationen, die zum Arbeiten mit diesem Produkt (insbesondere für die Installation, den Betrieb oder die Wartung) hinzugezogen werden müssen.

Beachten Sie hierbei alle Sicherheitsvorschriften sowie Warnhinweise. Sollten Sie den Hinweisen nicht folgen, kann dies Personenschäden oder/und Schäden am Produkt hervorrufen.

Jegliche unerlaubte Änderung oder Verwendung dieses Geräts, welche über die angegebenen mechanischen, elektrischen oder anderweitigen Betriebsgrenzen hinausgeht, kann Personenschäden oder/und Schäden am Produkt hervorrufen.

Jegliche solche unerlaubte Änderung begründet "Missbrauch" und/oder "Fahrlässigkeit" im Sinne der Gewährleistung für das Produkt und schließt somit die Gewährleistung für die Deckung möglicher daraus folgender Schäden aus.

Dieses Gerät ist ausschließlich durch Fachkräfte zu betreiben und instandzuhalten. Fachkräfte sind Personen, die aufgrund ihrer einschlägigen Ausbildung und ihrer Erfahrung befähigt sind, Risiken zu erkennen und mögliche Gefährdungen zu vermeiden, die der Betrieb oder die Instandhaltung des Gerätes verursachen kann.

Bei Gebrauch des Gerätes sind zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften zu beachten.

Wird das Gerät nicht gemäß der Betriebsanleitung betrieben, so ist der Schutz nicht mehr sichergestellt und es kann Gefahr von dem Gerät ausgehen.

Leiter aus Einzeldrähten müssen mit Aderendhülsen versehen werden.

Nur Schraubsteckklemmen mit der gleichen Polzahl und der gleichen Bauart dürfen zusammengesteckt werden.

Zu dieser Betriebsanleitung

Diese Betriebsanleitung ist Teil des Produktes.

- Betriebsanleitung vor dem Gebrauch des Gerätes lesen.
- Betriebsanleitung während der gesamten Lebensdauer des Produkts aufbewahren und zum Nachschlagen bereit halten.
- Betriebsanleitung an jeden nachfolgenden Besitzer oder Benutzer des Produktes weitergeben.

Alle zum Lieferumfang gehörenden Schraubklemmen sind am Gerät aufgesteckt.

Eingangskontrolle

Der einwandfreie und sichere Betrieb dieses Gerätes setzt sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung voraus. Wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr möglich ist, so ist das Gerät unverzüglich außer Betrieb zu setzen und gegen unbeabsichtigte Inbetriebnahme zu sichern.

Das Aus- und Einpacken ist mit der üblichen Sorgfalt ohne Gewaltanwendung und nur unter Verwendung von geeignetem Werkzeug vorzunehmen. Die Geräte sind durch Sichtkontrolle auf einwandfreien mechanischen Zustand zu überprüfen.

Es ist anzunehmen, dass ein gefahrloser Betrieb nicht mehr möglich ist, wenn das Gerät z.B.

- sichtbare Beschädigung aufweist,
- trotz intakter Netzversorgung nicht mehr arbeitet,
- längere Zeit ungünstigen Verhältnissen (z.B. Lagerung außerhalb der zulässigen Klimagrenzen ohne Anpassung an das Raumklima, Betauung o.Ä..) oder Transportbeanspruchungen (z.B. Fall aus großer Höhe auch ohne sichtbare äußere Beschädigung o.Ä..) ausgesetzt war.
- Prüfen Sie bitte den Lieferumfang auf Vollständigkeit bevor Sie mit der Installation des Gerätes beginnen.

Lieferumfang UMG 96RM-EL

Anzahl	Art. Nr.	Bezeichnung
1	52.22.040	UMG 96RM-EL
2	29.01.036	Befestigungsklammern.
1	33.03.163	Betriebsanleitung.
1	51.00.116	CD mit folgendem Inhalt. - Programmiersoftware GridVis - Funktionsbeschreibung GridVis
1	10.01.855	Schraubklemme, steckbar, 2-polig (Hilfsenergie)
1	10.01.849	Schraubklemme, steckbar, 4-polig (Spannungsmessung)
1	10.01.871	Schraubklemme, steckbar, 6-polig (Strommessung I1-I3)
1	08.01.505	Patch-Kabel 2m, gedreht, grau (Verbindung UMG 96RM-EL - PC/Switch)

Lieferbares Zubehör

Art. Nr.	Bezeichnung
29.01.907	Dichtung, 96 x 96

Produktbeschreibung

Bestimmungsmäßiger Gebrauch

Das UMG 96RM-EL ist für die Messung und Berechnung von elektrischen Größen wie Spannung, Strom, Leistung, Energie, Oberschwingungen usw. in der Gebäudeinstallation, an Verteilern, Leistungsschaltern und Schienenverteilern vorgesehen.

Das UMG 96RM-EL ist für den Einbau in ortsfesten und wettergeschützten Schalttafeln geeignet. Leitende Schalttafeln müssen geerdet sein. Die Einbaulage ist beliebig.

Messspannungen und Messströme müssen aus dem gleichen Netz stammen.

Die Messergebnisse können angezeigt und über die Ethernet-Schnittstelle ausgelesen und weiterverarbeitet werden.

Die Spannungsmesseingänge sind für die Messung in Niederspannungsnetzen, in welchen Nennspannungen bis 300V Leiter gegen Erde und Stoßspannungen der Überspannungskategorie III vorkommen können, ausgelegt.

Die Strommesseingänge des UMG 96RM-EL werden über externe ../1A oder ../5A Stromwandler angeschlossen.

Die Messung in Mittel- und Hochspannungsnetzen findet grundsätzlich über Strom- und Spannungswandlern statt.

Das UMG 96RM-EL kann in Wohnbereichen und Industriebereichen eingesetzt werden.

Geräte-Kenngrößen

- Einbautiefe: 45mm
- Versorgungsspannung: 20V - 250V (45..65Hz) oder DC 20V - 300V
- Frequenzbereich: 45-65Hz

Geräte-Funktionen

- 3 Spannungsmessungen, 300V
- 3 Strommessungen (über Stromwandler ../5A oder ../1A)
- Ethernet-Schnittstelle

Leistungsmerkmale UMG 96RM-EL

Allgemeines

- Fronttafeleinbaugerät mit den Abmessungen 96x96 mm.
- Anschluss über Schraubsteck-Klemmen
- LC Display mit Hintergrundbeleuchtung
- Bedienung über 2 Tasten
- 3 Spannungsmesseingänge (300V CAT III)
- 3 Strommesseingänge für Stromwandler
- Ethernet-Schnittstelle
- Arbeitstemperaturbereich -10°C .. +55°C
- Speicherung von Min- und Maxwerten (ohne Zeitstempel).

Messunsicherheit

- Wirkenergie, Messunsicherheit Klasse 0,5 für ./5A Wandler
- Wirkenergie, Messunsicherheit Klasse 1 für ../1A Wandler
- Blindenergie, Klasse 2

Messung

- Messung in IT-, TN- und TT-Netzen
- Messung in Netzen mit Nennspannungen bis L-L 480V und L-N 277V
- Messbereich Strom 0 ..5Aeff
- Echte Effektivwertmessung (TRMS)
- Kontinuierliche Abtastung der Spannungsund Strommesseingänge
- Frequenzbereich der Grundschwingung 45Hz .. 65Hz
- Messung der Oberschwingungen 1. bis 40. für ULN und I
- Uln, I, P (Bezug/Lief.), Q (ind./kap.)
- Fourieranalyse 1. bis 40. Oberschwingung für U und I
- 7 Energiezähler für Wirkenergie (Bezug), Wirkenergie (Lieferung), Wirkenergie (ohne Rücklaufsperre), Blindenergie (ind), Blindenergie (kap), Blindenergie (ohne Rücklaufsperre), Scheinenergie, jeweils für L1, L2, L3 und Summe

Messverfahren

Das UMG 96RM-EL misst lückenlos und berechnet alle Effektivwerte über ein 10/12-Perioden-Intervall (200ms). Das Gerät misst den echten Effektivwert (TRMS) der an denn Messeingängen angelegten Spannungen und Ströme.

Bedienungskonzept

Sie können das UMG 96RM-EL über mehrere Wege programmieren und Messwerte abrufen.

- Direkt am Gerät über 2 Tasten.
- Über die Programmiersoftware GridVis.

In dieser Betriebsanleitung wird nur die Bedienung des UMG 96RM-EL über die 2 Tasten beschrieben. Die Programmiersoftware GridVis besitzt eine eigene "Online-Hilfe".

Netzanalysesoftware GridVis

Das UMG 96RM-EL kann mit der zum Lieferumfang gehörenden Netzanalysesoftware GridVis programmiert und ausgelesen werden. Hierfür muss ein PC über Ethernet an das UMG 96RM-EL angeschlossen werden.

Leistungsmerkmale GridVis

- Programmieren des UMG 96RM-EL
- Grafische Darstellung von Messwerten

Anschlussvarianten

Direktanschluss eines UMG 96RM-EL an einen PC über Ethernet:

Anschluss eines UMG 96RM-EL an einen PC über Ethernet.

Montage

Einbauort

Das UMG 96RM-EL ist für den Einbau in ortsfesten und wettergeschützten Schalttafeln geeignet. Leitende Schalttafeln müssen geerdet sein.

Einbaulage

Um eine ausreichende Belüftung zu erreichen muss das UMG 96RM-EL senkrecht eingebaut werden. Der Abstand oben und unten muss mindestens 50mm und seitlich 20mm betragen.

Fronttafelausschnitt

Ausbruchmaß: 92^{+0,8} x 92^{+0,8} mm.

Abb. Einbaulage UMG 96RM-EL (Ansicht von hinten) Befestigung

Das UMG 96RM-EL wird über die seitlich liegenden Befestigungsklammern in der Schalttafel fixiert. Vor dem Einsetzen des Gerätes sind diese zu entfernen. Die Befestigung erfolgt anschließend über das Einschieben und Einrasten der Klammern.

> Abb. Seitenansicht UMG 96RM-EL mit Befestigungsklammer.

Nichteinhaltung der Mindestabstände kann das UMG 96RM-EL bei hohen Umgebungstemperaturen zerstören!

Installation

Versorgungsspannung

Für den Betrieb des UMG 96RM-EL ist eine Versorgungsspannung erforderlich.

Der Anschluss Versorgungsspannung erfolgt auf der Rückseite des Gerätes über Steckklemmen.

Stellen Sie vor dem Anlegen der Versorgungsspannung sicher, dass Spannung und Frequenz mit den Angaben auf dem Typenschild übereinstimmen!

Die Versorgungsspannung muß über eine UL/IEC zugelassene Sicherung (6A, Typ C) angeschlossen werden.

Abb. Anschlussbeispiel der Versorgungsspannung an ein UMG 96RM

- In der Gebäudeinstallation muss ein Trennschalter oder Leistungsschalter für die Versorgungsspannung vorgesehen sein.
- Der Trennschalter muss in der Nähe des Gerätes angebracht und durch den Benutzer leicht zu erreichen sein.
- Der Schalter muss als Trennvorrichtung für dieses Gerät gekennzeichnet sein.
- Spannungen, die über dem zulässigen Spannungsbereich liegen, können das Gerät zerstören.

Spannungsmessung

Sie können das UMG 96RM-EL für die Spannungsmessung in TN-, TT-, und IT-Systemen einsetzen. Die Spannungsmessung im UMG 96RM-EL ist für die Überspannungskategorie 300V CATIII (Bemessungs-Stoßspannung 4kV) ausgelegt.

277V/480V 50/60Hz 11 11 12 240V 13 50/60Hz Ν Ν PF V2)v3 V1 VN AC/DC 4M 4M 4M 4M DC Spannungsmessung UMG 96RM Hilfseneraie

Abb. Prinzipschaltbild - Messung in Dreiphasen-4-Leitersystemen. In Systemen ohne N beziehen sich Messwerte die einen N benötigen auf einen berechneten N.

Abb. Prinzipschaltbild - Messung in Dreiphasen-3-Leitersystemen.

Netz-Nennspannung

Listen der Netze und deren Netz-Nennspannungen in denen das UMG 96RM-EL eingesetzt werden kann.

Dreiphasen-4-Leitersysteme mit geerdetem Neutralleiter.

U_{L-N} / U_{L-L}	
66V / 115V 120V / 208V 127V / 220V 220V / 380V 230V / 400V 240V / 415V	
260V / 440V 277V / 480V	Maximale Nennspannung des Netzes

Abb. Tabelle der für die Spannungsmesseingänge geeigneten Netz-Nennspannungen nach EN60664-1:2003.

Dreiphasen-3-Leitersysteme ungeerdet.

U _{L-L}	
66V	
120V	
127V	
220V	
230V	
240V	
260V	
277V	
347V	
380V	
400V	
415V	Maximala Nonpapannung
440V	dea Netzoa
480V	des neizes

Abb. Tabelle der für die Spannungsmesseingänge geeigneten Netz-Nennspannungen nach EN60664-1:2003.

Spannungsmesseingänge

Das UMG 96RM-EL hat 3 Spannungsmesseingänge (V1, V2, V3).

Überspannung

Die Spannungsmesseingänge sind für die Messung in Netzen, in denen Überspannungen der Überspannungskategorie 300V CATIII (Bemessungs-Stoßspannung 4kV) vorkommen können, geeignet.

Frequenz

Für die Messung und die Berechnung von Messwerten benötigt das UMG 96RM-EL die Netzfrequenz im Spannungsmesspfad L1.

Das UMG 96RM-EL ist für die Messung im Frequenzbereich von 45 bis 65Hz geeignet.

Abb. Anschlussbeispiel für die Spannungsmessung

Beim Anschluss der Spannungsmessung muss folgendes beachtet werden:

- Um das UMG 96RM-EL stromlos und spannungslos zu schalten, ist eine geeignete Trennvorrichtung vorzusehen.
- Die Trennvorrichtung muss in der Nähe des UMG 96RM-EL platziert, für den Benutzer gekennzeichnet und leicht erreichbar sein.
- Verwenden Sie als Überstrom-Schutzeinrichtung und Trennschalter einen UL/IEC zugelassenen Leitungsschutzschalter 10A (Typ C).
- Die Überstrom-Schutzeinrichtung muss einen Nennwert haben, der für den Kurzschlussstrom am Anschlusspunkt bemessen ist.
- Messspannungen und Messströme müssen aus dem gleichen Netz stammen

Achtung!

Spannungen, die die erlaubten Netz-Nennspannungen überschreiten, müssen über Spannungswandler angeschlossen werden.

Achtung!

Das UMG 96RM-EL ist nicht für die Messung von Gleichspannungen geeignet.

Achtung!

Die Spannungsmesseingänge am UMG 96RM-EL sind berührungsgefährlich!

Anschlussschemas, Spannungsmessung

• 3p 4w (Adr. 509= 0), werksseitige Voreinstellung

Abb. System mit drei Außenleitern und Neutralleiter.

• 3p 4u (Adr. 509 = 2)

Abb. System mit drei Außenleitern ohne Neutralleiter. Messwerte die einen N benötigen beziehen sich auf einen berechneten N.

• 3p 4wu (Adr. 509 = 1)

Abb. System mit drei Außenleitern und Neutralleiter. Messung über Spannungswandler.

• 3p 2u (Adr. 509 = 5)

Abb. System mit drei Außenleitern ohne Neutralleiter. Messung über Spannungswandler. Messwerte die einen N benötigen beziehen sich auf einen berechneten N. • 1p 2w1 (Adr. 509 = 4)

Abb. Aus dem Spannungsmesseingängen V2 und V3 abgeleitet Messwerte werden mit Null angenommen und nicht berechnet.

• 1p 2w (Adr. 509 = 6)

Abb. TN-C-System mit Einphasen-Dreileiteranschluss. Aus dem Spannungsmesseingang V3 abgeleitet Messwerte werden mit Null angenommen und nicht berechnet. • 2p 4w (Adr. 509 = 3)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Spannungsmesseingang V2 werden berechnet.

• 3p 1w (Adr. 509 = 7)

Abb. 3 Systeme mit gleichmäßiger Belastung der Phasen. Die nicht angelegten Messwerte L2/L3 bzw. L1/L3 bzw. L1/L2 der jeweiligen Systeme werden berechnet.

Strommessung

Das UMG 96RM-EL ist über die Klemmen I1-I3 für den Anschluss von Stromwandlern mit Sekundärströmen von ../1A und ../5A ausgelegt. Das werkseitig eingestellte Stromwandlerverhältnis liegt bei 5/5A und muss gegebenenfalls an die verwendeten Stromwandler angepasst werden.

Eine Direktmessung ohne Stromwandler ist mit dem UMG 96RM-EL nicht möglich.

Es können nur Wechselströme und keine Gleichströme gemessen werden.

Erdung von Stromwandlern!

lst für die Erdung der Sekundärwicklung ein Anschluss vorgesehen, so muss dieser mit Erde verbunden werden.

Achtung!

Das UMG 96RM-EL ist nicht für die Messung von Gleichspannungen geeignet.

Achtung!

Die Strommesseingänge sind berührungsgefährlich.

Abb. Strommessung (11-13) über Stromwandler (Anschlussbeispiel)

Die aufgesetzte Schraubklemme ist mit den zwei Schrauben am Gerät ausreichend zu fixieren!

Stromrichtung

Die Stromrichtung kann am Gerät oder über die vorhande serielle Schnittstellen für jede Phase einzeln korrigiert werden.

Bei Falschanschluss ist ein nachträgliches Umklemmen der Stromwandler nicht erforderlich.

Erdung von Stromwandlern!

lst für die Erdung der Sekundärwicklung ein Anschluss vorgesehen, so muss dieser mit Erde verbunden werden.

Stromwandleranschlüsse!

Die Sekundäranschlüsse der Stromwandler müssen an diesen kurzgeschlossen sein, bevor die Stromzuleitungen zum UMG 96RM-EL unterbrochen werden! Ist ein Prüfschalter vorhanden, welcher die Stromwandlersekundärleitungen automatisch kurzschließt, reicht es aus, diesen in die Stellung "Prüfen" zu bringen, sofern die Kurzschließer vorher überprüft worden sind.

Offene Stromwandler!

An Stromwandlern die sekundärseitig offen betrieben werden, können hohe berührungsgefährliche Spannungsspitzen auftreten!

Bei "offensicheren Stromwandlern" ist die Wicklungsisolation so bemessen, dass die Stromwandler offen betrieben werden können. Aber auch diese Stromwandler sind berührungsgefährlich, wenn sie offen betrieben werden.

Anschlussschemas, Strommessung

• 3p 4w (Adr. 510 = 0), werksseitige Voreinstellung

Abb. Messung in einem Dreiphasennetz mit ungleichmäßiger Belastung.

• 3p 2i0 (Adr. 510 = 2)

Abb. Die Messwerte für den Strommesseingang 12 werden berechnet.

• 3p 2i (Adr. 510 = 1)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Strommesseingang I2 werden gemessen.

• 3p 3w3 (Adr. 510 = 3)

Abb. Messung in einem Dreiphasennetz mit ungleichmäßiger Belastung. • 3p 3w (Adr. 510 = 4)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für die Strommesseingänge I2 und I3 werden berechnet.

• 1p 2i (Adr. 510 = 6)

Abb. Aus dem Strommesseingang I3 abgeleitete Messwerte werden mit Null angenommen und nicht berechnet.

• 2p 4w (Adr. 510 = 5)

Abb. System mit gleichmäßiger Belastung der Phasen. Die Messwerte für den Strommesseingang I2 werden berechnet.

• 1p 2w (Adr. 510 = 7)

Abb. Aus den Strommesseingängen I2 und I3 abgeleitete Messwerte werden mit Null angenommen und nicht berechnet.

Anschlussschemas, Strommessung

• 3p 1w (Adr. 510 = 8)

Abb. 3 Systeme mit gleichmäßiger Belastung der Phasen. Die nicht angelegten Messwerte I2/ I3 bzw. 11/I3 bzw. 11/I2 der jeweiligen Systeme werden berechnet.

Amperemeter

Wollen Sie den Strom nicht nur mit dem UMG 96RM-EL, sondern auch zusätzlich mit einem Amperemeter messen, so muss das Amperemeter in Reihe zum UMG 96RM-EL geschaltet werden.

Abb. Strommessung mit einem zusätzlichen Amperemeter (Beispiel).

Achtuna!

Das UMG96RM-EL ist nur für eine Strommessung über Stromwandler zugelassen.

Summenstrommessung

Erfolgt die Strommessung über zwei Stromwandler, so muss das Gesamtübersetzungsverhältnis der Stromwandler im UMG 96RM-EL programmiert werden.

Abb. Strommessung über einen Summenstromwandler (Beispiel).

Beispiel: Die Strommessung erfolgt über zwei Stromwandler. Beide Stromwandler haben ein Übersetzungsverhältnis von 1000/5A. Die Summenmessung wird mit einem Summenstromwandler 5+5/5A durchgeführt.

Das UMG 96RM-EL muss dann wie folgt eingestellt werden:

Primärstrom:	1000A + 1000A =	2000A
Sekundärstrom:		5A

Ethernet-Schnittstelle

Die Netzwerkeinstellungen für das Ethernet sind vom Netzwerkadministrator festzulegen und entsprechend am UMG 96RM-EL einzustellen.

Sind die Netzwerkeinstellungen nicht bekannt, darf das UMG 96RM-EL nicht über das Patchkabel in das Netzwerk integriert werden.

Achtung!

Ein Anschluss des UMG96RM-EL an das Ethernet darf nur nach Rücksprache mit dem Netzwerk-Administrator durchgeführt werden!

A

Achtung!

Werkseitig ist das UMG 96RM-EL auf die dynamische Vergabe der IP-Adresse (DHCP-Modus) eingestellt.

Ein Ändern der Einstellungen erfolgt wie unter "TCP/IP-Konfiguration" beschrieben oder z. B. über eine geeignete Ethernet-Verbindung mittels der Software GridVis.

Bedienung

Die Bedienung des UMG 96RM-EL erfolgt über die Tasten 1 und 2 mit folgenden Unterscheidungen:

- kurzes Drücken der Taste 1 bzw. 2: nächster Schritt (+1)
- langes Drücken der Taste 1 bzw. 2: vorheriger Schritt (-1)

Messwerte und Programmierdaten werden auf einer Flüssigkristall-Anzeige dargestellt.

Es wird zwischen dem *Anzeige-Modus* und dem *Programmier-Modus* unterschieden. Durch die Eingabe eines Passwortes hat man die Möglichkeit, ein versehentliches Ändern der Programmierdaten zu verhindern.

Anzeige-Modus

Im Anzeige-Modus kann man mit den Tasten 1 und 2 zwischen den programmierten Messwertanzeigen blättern. Werkseitig sind alle im Profil 1 aufgeführten Messwertanzeigen abrufbar. Pro Messwertanzeige werden bis zu drei Messwerte angezeigt. Die Messwert-Weiterschaltung erlaubt es, ausgewählte Messwertanzeigen abwechselnd nach einer einstellbaren Wechselzeit darzustellen.

Programmier-Modus

Im Programmier-Modus können die für den Betrieb des UMG 96RM-EL notwendigen Einstellungen angezeigt und geändert werden. Betätigt man die Tasten 1 und 2 gleichzeitig für etwa 1 Sekunde, gelangt man über die Passwort-Abfrage in den Programmier-Mode. Wurde kein Benutzer-Passwort programmiert gelangt man direkt in das erste Programmiermenü. Der Programmier-Modus wird in der Anzeige durch den Text "PRG" gekennzeichnet.

Mit der Taste 2 kann jetzt zwischen den folgenden Programmier-Menüs umgeschaltet werden:

- Stromwandler,
- Spannungswandler,
- Parameterliste,
- TCP/IP-Geräteadresse,
- Subnetmaske,
- Gateway-Adresse,
- Dynamische TCP/IP-Adressierung.

Befindet man sich im Programmier-Modus und hat für ca. 60 Sekunden keine Taste betätigt, oder betätigt die Tasten 1 und 2 für etwa 1 Sekunde gleichzeitig, so kehrt das UMG 96RM-EL in den Anzeige-Modus zurück.

Parameter und Messwerte

Alle für den Betrieb des UMG 96RM-EL notwendigen Parameter, wie z.B. die Stromwandlerdaten, und eine Auswahl von häufig benötigten Messwerten sind in der Tabelle abgelegt.

Auf den Inhalt der meisten Adressen kann über die Ethernet-Schnittstelle und über die Tasten am UMG 96RM-EL zugegriffen werden.

Am Gerät können Sie nur die ersten 3 signifikanten Stellen eines Wertes eingeben. Werte mit mehr Stellen können Sie über die GridVis eingeben.

Am Gerät werden immer nur die ersten 3 signifikanten Stellen der Werte angezeigt.

Ausgewählte Messwerte sind in Messwertanzeige-Profilen zusammengefasst und können im Anzeige-Modus über die Tasten 1 und 2 zur Anzeige gebracht werden.

Das aktuelle Messwertanzeigenprofil und das aktuelle Anzeigen-Wechsel-Profil können nur über die Ethernet-Schnittstelle gelesen und verändert werden.

Beispiel Paramteranzeige

Im Display wird als Inhalt der Adresse "036" der Wert "006" angezeigt. Dieser Parameter gibt laut Liste die Helligkeit der Hintergrundbeleuchtung (0=dunkel, 9=hell) wieder.

Beispiel Messwertanzeige

In diesem Beispiel werden im Display des UMG 96RM-EL die Spannungen L gegen N mit je 230V angezeigt.

L1	230.
1.2	220
LZ	C 3 U
L3	230

Tastenfunktionen

Konfiguration

Versorgungsspannung anlegen

Für die Konfiguration des UMG 96RM-EL muss die Versorgungsspannung angeschlossen sein.

Die Höhe der Versorgungsspannung für das UMG 96RM-EL können Sie dem Typenschild entnehmen.

Erscheint keine Anzeige, so muss überprüft werden, ob sich die Betriebsspannung im Nennspannungsbereich befindet.

Strom- und Spannungswandler

Werkseitig ist ein Stromwandler von 5/5A eingestellt. Nur wenn Spannungswandler angeschlossen sind, muss das vorprogrammierte Spannungswandlerverhältnis geändert werden.

Beim Anschluss von Spannungswandlern ist die auf dem Typenschild des UMG 96RM-EL angegebene Messspannung zu beachten!

Achtung!

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

 \bigcirc

Der einstellbare Wert 0 für die primären Stromwandler ergibt keine sinnvollen Arbeitswerte und darf nicht verwendet werden.

Geräte, die auf automatischer Frequenzerkennung stehen, benötigen etwa 5 Sekunden bis die Netzfrequenz ermittelt wurde. In dieser Zeit halten die Messwerte die zugesicherte Messunsicherheit nicht ein.

Vor der Inbetriebnahme sind mögliche produktionsbedingte Inhalte der Energiezähler und der Min-/Maxwerte zu löschen!

\bigcirc

Strom- und Spannungswandler

In der im Lieferumfang enthaltene Software GridVis können die Übersetzungsverhältnisse für jeden Strom- bzw. Spannungsmesseingang einzeln programmiert werden.

Am Gerät ist nur das Übersetzungsverhältnis der jeweiligen Gruppe der Strommesseingänge I1-I3 bzw. der Spannungsmesseingänge V1-V3 einstellbar.

Abb. Anzeige zur Konfiguration der Strom- und Spannungswandler in der Software GridVis.

Stromwandler programmieren

In den Programmier-Modus wechseln

- Ein Wechsel in den Programmier-Modus erfolgt über das gleichzeitige Drücken der Tasten 1 und 2. Wurde ein Benutzer-Passwort programmiert, so erscheint die Passwortabfrage mit "000". Die erste Ziffer des Benutzer-Passwortes blinkt und kann mit der Taste 2 geändert werden. Betätigt man die Taste 2 wird die nächste Ziffer ausgewählt und blinkt. Wurde die richtige Zahlenkombination eingegeben oder war kein Benutzer-Passwort programmiert, gelangt man in den Programmier-Modus.
- Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches f
 ür den Prim
 ärstrom blinkt.

Eingabe Stromwandler-Primärstrom

- Mit Taste 2 die blinkende Ziffer ändern.
- Mit Taste 1 die nächste zu ändernde Ziffer wählen. Die für eine Änderung ausgewählte Ziffer blinkt. Blinkt die gesamte Zahl, so kann das Komma mit Taste 2 verschoben werden.

Eingabe Stromwandler-Sekundärstrom

- Als Sekundärstrom kann nur 1A oder 5A eingestellt werden.
- Mit Taste 1 den Sekundärstrom wählen.
- Mit Taste 2 die blinkende Ziffer ändern.

Programm-Modus verlassen

• Über das gleichzeitige Drücken der Tasten 1 und 2 wird der Programm-Modus verlassen.
Spannungswandler programmieren

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Über die Taste 2 erfolgt das Umschalten auf die Spannungswandler-Einstellung.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches für die Primärspannung blinkt. Analog der Zuordnung des Stromwandlerverhältnisses von Primär- zu Sekundärstrom kann das Verhältnis von Primär- zu Sekundärspannung des Spannungswandlers eingestellt werden.

Parameter programmieren

In den Programmier-Modus wechseln

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Über die Taste 2 erfolgt das Umschalten auf die Spannungswandler-Einstellung. Bei wiederholtem Drücken der Taste 2 wird der erste Parameter der Parameterliste angezeigt.

Parameter ändern

- Die Auswahl mit Taste 1 bestätigen.
- Die zuletzt gewählte Adresse mit dem dazugehörigen Wert wird angezeigt.
- Die erste Ziffer der Adresse blinkt und kann mit Taste 2 verändert werden. Über Taste 1 findet eine Auswahl der Ziffer statt, die wiederum mit Taste 1 verändert werden kann.

Wert ändern

• Ist die gewünschte Adresse eingestellt, wird mit Taste 1 eine Ziffer des Wertes angewählt und mit Taste 2 geändert.

Programm-Modus verlassen

• Über das gleichzeitige Drücken der Tasten 1 und 2 wird der Programm-Modus verlassen.

Abb. Passwortabfrage Wurde ein Passwort gesetzt, kann über die Tasten 1 und 2 dieses eingegeben werden.

Abb. Programmier-Modus Stromwandler Über die Tasten 1 und 2 können Primär- und Sekundärstrom geändert werden (vgl. Seite 36).

Abb. Programmier-Modus Spannungswandler Über die Tasten 1 und 2 können Primär- und Sekundärspannung geändert werden (vgl. Seite 37).

Abb. Programmier-Modus Parameteranzeige Über die Tasten 1 und 2 können die einzelnen Parameter geändert werden (vgl. Seite 32).

TCP/IP Konfiguration

Innerhalb eines Ethernets besitzt jedes Gerät eine eindeutige TCP/IP-Adresse, die manuell oder von einem DHCP-Server vergeben werden kann. Die 4 Byte lange Geräteadresse (Byte 0 bis 3) wird innerhalb der TCP/IP-Konfiguration mit den Angaben zur Subnetzmaske und Gateway ergänzt.

Manuelle Einstellung der TCP/IP-Geräteadresse (Adr)

- Wechseln Sie wie beschrieben in den Programmier-Modus. Die Symbole f
 ür den Programmier-Modus PRG und f
 ür den Stromwandler CT erscheinen.
- Durch ein dreimaliges Drücken der Taste 2 gelangen Sie in die TCP/IP-Einstellungen für die Geräte-Adressierung.
- Wählen Sie mit Taste 1 die gewünschte Ziffer aus. Die Auswahl wird durch ein Blinken der Ziffer dargestellt.
- Über Taste 2 ist die ausgewählte Ziffer einstellbar.
- Wählen Sie mit Taste 1 die nächste Ziffer aus und setzen Sie diese erneut mit Taste 2.
- Ist Byte 0 der TCP/IP-Adresse eingestellt, erfolgt über Taste 1 das Setzen von Byte 1 bis 3 der Adresse. Danach springt die Anzeige wieder auf Byte 0 (keine Ziffer blinkt).

Manuelle Einstellung der Subnetzmaske (SUb)

- Im Programmiermodus gelangen Sie über Taste 2 in die Einstellungen zur Subnetzmaske (Anzeige SUb).
- Wählen Sie mit Taste 1 die gewünschte Ziffer und setzen Sie diese über Taste 2. Wiederholen Sie diesen Schritt für jede Ziffer in Byte 0 bis 3 analog dem Setzen der TCP/IP-Geräteadresse.
- Nach wiederholter Anzeige von Byte 0 (keine Ziffer blinkt) kann die Einstellung zum Gateway erfolgen.

Manuelle Einstellung der Gateway-Adresse (GAt)

- Im Programmiermodus gelangen Sie über Taste 2 in die Einstellungen zur Gateway-Adresse (Anzeige GAt).
- Setzen Sie über die Tasten 1 und 2 die gewünschte Gateway-Adresse in Byte 0 bis 3 analog den vorherigen Beschreibungen.

Damit die manuellen Einstellungen der TCP/IP-Geräteadresse, Subnetzmaske und Gateway-Adresse nicht von einem DHCP-Server überschrieben werden, muss zusätzlich eine Deaktivierung der dynamischen IP-Vergabe erfolgen. Setzen Sie hierzu den Parameter "dyn IP" wie unter "Dynamische IP-Vergabe" beschrieben auf den Wert 0 oder 3 (siehe Tabelle "Konfiguration IP-Modus"). Dynamische IP-Vergabe (dyn IP)

Durch die dynamische Vergabe der TCP/IP-Einstellungen (Geräte-/Gateway-Adresse und Subnetzmaske) ist eine vollautomatische Einbindung des Gerätes in ein bestehendes Netzwerk mit DHCP-Server möglich. Beim Start des Gerätes werden die TCP/IP-Einstellungen vom DHCP-Server automatisch vergeben; somit entfällt eine manuelle Konfiguration.

- Starten Sie wie beschrieben den Programmier-Modus. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Wechseln Sie durch mehrmaliges Drücken der Taste 2 zur Anzeige der dynamischen IP-Vergabe (dYn IP).
- Aktivieren Sie mit Taste 1 den Parameter (1. Ziffer blinkt) und wählen Sie anschließend über Taste 1 die letzte Ziffer aus (Ziffer blinkt). Setzen Sie über Taste 2 den Parameter auf 2 oder 5 gemäß der Tabelle "Konfiguration IP-Modus").
- Bestätigen Sie mit Taste 1 den Parameter und verlassen Sie den Programmiermodus oder warten Sie ca. 60 Sekunden.

Ein Auslesen der IP-Adressen erfolgt über den Programmiermodus analog der manuellen Einstellungen.

Änderungen werden erst nach dem Verlassen des Programmiermodus aktiv.

UMG 96RM-EL

68E 0. 192

Abb. Subnetzmaske (Sub), Byte 0. Wert 255

Abb. Gateway (GAt), Byte 0, Wert 192

Abb. Parameter-Einstellung zur dynamische Vergabe (DHCP) einer TCP/IP-Adresse

dyn 1 P 000 4

Abb. Parameter-Einstellung zur Vergabe einer festen TCP/IP-Adresse

Achtung!

Ein Anschluss des UMG96RM-EL an das Ethernet darf nur nach Rücksprache mit dem Netzwerk-Administrator durchgeführt werden!

 $\widehat{\mathcal{T}}$

die dynamische Vergabe der IP-Adresse (DHCP-Modus) eingestellt. Ein Ändern der Einstellungen erfolgt wie unter "TCP/IP-Konfiguration" beschrieben

Werkseitig ist das UMG 96RM-EL auf

oder z. B. über eine geeignete Ethernet-Verbindung mittels der Software GridVis.

0-

Wird das Schlüssel-Symbol angezeigt, ist die dynamische IP-Vergabe aktiv. Geräte-/Gateway-Adresse und Subnetzmaske werden vom DHCP-Server bereitgestellt und automatisch übernommen!

Tab	Tabelle Konfiguration IP-Modus				
0	feste IP-Adresse				
1	BootP				
2	DHCP				
3	Feste IP mit ARP-Probe und Gratuitous-ARP				
4	BootP mit ARP-Probe und Gratuitous-ARP				
5	DHCP mit ARP-Probe und Gratuitous-ARP				

Parameter

Benutzer-Passwort (Adr. 050)

Um ein versehentliches Ändern der Programmierdaten zu erschweren, kann ein Benutzer-Passwort programmiert werden. Erst nach Eingabe des korrekten Benutzer-Passwortes, ist ein Wechsel in die nachfolgenden Programmier-Menüs möglich.

Werkseitig ist kein Benutzer-Passwort vorgegeben. In diesem Fall wird das Passwort-Menü übersprungen und man gelangt sofort in das Stromwandler-Menü.

Wurde ein Benutzer-Passwort programmiert, so erscheint das Passwort-Menü mit der Anzeige "000". Die erste Ziffer des Benutzer-Passwortes blinkt und kann mit der Taste 2 geändert werden. Betätigt man Taste 1 wird die nächste Ziffer angewählt und blinkt. Erst wenn die richtige Zahlenkombination eingegeben wurde, gelangt man in das Programmier-Menü für den Stromwandler.

Passwort vergessen

Ist Ihnen das Passwort nicht mehr bekannt, so können Sie das Passwort nur noch über die PC-Software Grid-Vis löschen.

Verbinden Sie hierzu das UMG96RM-EL über die Ethernet- Schnittstelle mit dem PC. Weitere Informationen finden Sie in der Hilfe der GridVis.

Mittelwert

Für die Strom-, Spannungs- und Leistungsmesswerte werden Mittelwerte über einen einstellbaren Zeitraum gebildet. Die Mittelwerte sind mit einem Querstrich über dem Messwert gekennzeichnet.

Die Mittelungszeit kann aus einer Liste mit 9 festen Mittelungszeiten ausgewählt werden.

Mittelungszeit Strom (Adr. 040) Mittelungszeit Leistung (Adr. 041) Mittelungszeit Spannung (Adr. 042)

Einstellung	Mittelungszeit/Sek.
0	5
1	10
2	15
3	30
4	60
5	300
6	480 (Werkseinstellung)
7	600
8	900

Mittelungsverfahren

Das verwendete exponentielle Mittelungsverfahren erreicht nach der eingestellten Mittelungszeit mindestens 95% des Messwertes.

Min- und Maxwerte

Alle 10/12 Perioden werden alle Messwerte gemessen und berechnet. Zu den meisten Messwerten werden Min- und Maxwerte ermittelt.

Der Minwert ist der kleinste Messwert, der seit der letzten Löschung ermittelt wurde. Der Maxwert ist der größte Messwert, der seit der letzten Löschung ermittelt wurde. Alle Min- und Maxwerte werden mit den dazugehörigen Messwerten verglichen und bei Unter- bzw. Überschreitung überschrieben.

Die Min- und Maxwerte werden alle 5 Minuten in einem EEPROM ohne Datum und Uhrzeit gespeichert. Dadurch können durch einen Betriebsspannungsausfall nur die Min- und Maxwerte der letzten 5 Minuten verloren gehen.

Min- und Maxwerte löschen (Adr.506)

Wird auf die Adresse 506 eine "001" geschrieben, werden alle Min- und Maxwerte gleichzeitig gelöscht. Eine Ausnahme bildet der Maxwert des Strommittelwertes. Der Maxwert des Strommittelwertes kann auch direkt im Anzeigenmenü durch langes Drücken der Taste 2 gelöscht werden.

Energiezähler

Das UMG 96RM-EL hat Energiezähler für Wirkenergie, Blindenergie und Scheinenergie.

Ablesen der Wirkenergie

Summe Wirkenergie

Die in diesem Beispiel angezeigte Wirkenergie beträgt: 12 345 678 kWh ι 12 - Ο 12 κπ 12 - Ο 12 κπ 13 - Ο 12 κπ 13 - Ο 12 κπ 13 - Ο 12 κπ 14 - Γ 15 - Γ 16 - Γ 18 - Γ

Die in diesem Beispiel angezeigte Wirkenergie beträgt: 134 178 kWh

kWh Σ

Netzfrequenz (Adr. 034)

Für die automatische Ermittlung der Netzfrequenz muss am Spannungsmesseingang V1 eine Spannung L1-N von größer 10Veff anliegen.

Aus der Netzfrequenz wird dann die Abtastfrequenz für die Strom- und Spannungseingänge berechnet.

Fehlt die Messspannung, so kann keine Netzfrequenz ermittelt und damit keine Abtastfrequenz berechnet werden. Es kommt die quittierbare Fehlermeldung "500". Spannung, Strom und alle anderen sich daraus ergebenden Werte werden auf Basis der letzten Frequenzmessung bzw. aufgrund von möglichen Leitungskopplungen berechnet und weiterhin angezeigt. Diese ermittelten Messwerte unterliegen jedoch nicht mehr der angegebenen Genauigkeit.

lst eine erneute Messung der Frequenz möglich, wird die Fehlermeldung nach ca. 5 Sekunden nach Wiederkehr der Spannung automatisch ausgeblendet.

Der Fehler wird nicht angezeigt, wenn eine Festfrequenz eingestellt ist.

Einstellbereich: 0, 45...65

0 = Automatische Frequenzbestimmung.

Die Netzfrequenz wird aus der Messpannung ermittelt.

45..65 = Festfrequenz

Die Netzfrequenz wird fest vorgewählt.

Oberschwingungen

Oberschwingungen sind das ganzzahlige Vielfache einer Grundschwingung.

Beim UMG 96RM-EL muss die Grundschwingung der Spannung im Bereich 45 bis 65Hz liegen. Auf diese Grundschwingung beziehen sich die berechneten Oberschwingungen der Spannungen und der Ströme.

Oberschwingungen bis zum 40fachen der Grundschwingung werden erfasst.

Die Oberschwingungen für die Ströme werden in Ampere und die Oberschwingungen der Spannungen in Volt angegeben.

Abb. Anzeige der 15. Oberschwingung des Stromes in der Phase L3 (Beispiel).

Oberschwingungen werden nicht in der werksseitigen Voreinstellung angezeigt.

Oberschwingungsgehalt THD

THD ist das Verhältnis des Effektivwertes der Oberschwingungen zum Effektivwert der Grundschwingung.

Oberschwingungsgehalt des Stromes THDI:

$$THD_{i} = \frac{1}{\left|I_{fund}\right|} \sqrt{\sum_{n=2}^{M} \left|I_{n.Harm}\right|^{2}}$$

Oberschwingungsgehalt der Spannung THDU:

$$\textit{THD}_{U} = \frac{1}{\left|U_{\textit{fund}}\right|} \sqrt{\sum_{n=2}^{M} \left|U_{n.\textit{Harm}}\right|^2}$$

Abb. Anzeige des Oberschwingungsgehalt THD der Spannung aus der Phase L3 (Beispiel).

Messwert-Weiterschaltung

Alle 10/12 Perioden werden alle Messwerte berechnet und sind einmal in der Sekunde in den Messwertanzeigen abrufbar. Für den Abruf der Messwertanzeigen stehen zwei Methoden zur Verfügung:

- Die automatisch wechselnde Darstellung von ausgewählten Messwertanzeigen, hier als Messwert-Weiterschaltung bezeichnet.
- Die Auswahl einer Messwertanzeige über die Tasten 1 und 2 aus einem vorgewählten Anzeigen-Profil.

Beide Methoden stehen gleichzeitig zur Verfügung. Die Messwert-Weiterschaltung ist dann aktiv, wenn mindestens eine Messwertanzeige und mit einer Wechselzeit größer 0 Sekunden programmiert ist.

Wird eine Taste betätigt, so kann in den Messwertanzeigen des gewählten Anzeigen-Profiles geblättert werden. Wird für etwa 60 Sekunden keine Taste betätigt, so erfolgt die Umschaltung in die Messwert-Weiterschaltung und es werden nacheinander die Messwerte aus dem gewählten Anzeigen-Wechsel-Profil programmierten Messwertanzeigen zur Anzeige gebracht.

Wechselzeit (Adr. 039)

Einstellbereich : 0 .. 60 Sekunden

Sind 0 Sekunden eingestellt, so erfolgt kein Wechsel zwischen den für die Messwert-Weiterschaltung ausgewählten Messwertanzeigen.

Die Wechselzeit gilt für alle Anzeigen-Wechsel-Profile.

Anzeigen-Wechsel-Profil (Adr. 038)

Einstellbereich: 0..3

- 0 Anzeigen-Wechsel-Profil 1, vorbelegt.
- 1 Anzeigen-Wechsel-Profil 2, vorbelegt.
- 2 Anzeigen-Wechsel-Profil 3, vorbelegt.
- 3 Anzeigen-Wechsel-Profil kundenspezifisch.

Messwertanzeigen

Nach einer Netzwiederkehr zeigt das UMG 96RM-EL die erste Messwerttafel aus dem aktuellen Anzeigen-Profil an. Um die Auswahl der anzuzeigenden Messwerte übersichtlich zu halten, ist werkseitig nur eine Teil der zur Verfügung stehenden Messwerte für den Abruf in der Messwertanzeige vorprogrammiert. Werden andere Messwerte in der Anzeige des UMG 96RM-EL gewünscht, so kann ein anderes Anzeigen-Profil gewählt werden.

Anzeigen-Profil (Adr. 037)

Einstellbereich: 0..3

- 0 Anzeigen-Profil 1, fest vorbelegt.
- 1 Anzeigen-Profil 2, fest vorbelegt.
- 2 Anzeigen-Profil 3, fest vorbelegt.
- 3 Anzeigen-Profil kundenspezifisch.

Die kundenspezifischen Profile (Anzeigen-Wechsel-Profil und Anzeigen-Profil) können nur über die Software GridVis programmiert werden.

Profil-Einstellung

In der im Lieferumfang enthaltenen Software GridVis sind die Profile (Anzeigen-Wechsel-Profil und Anzeigen-Wechsel-Profil) anschaulich dargestellt. Innerhalb der Software sind über die Geräte-Konfiguration die Profile einstellbar; kundenspezifische Anzeigen-Profile sind zusätzlich programmierbar.

Für die Verwendung der Software GridVis ist eine Verbindung zwischen UMG 96RM-EL und PC erforderlich

Abb. Anzeige der Profil-Einstellung in der Software GridVis.

Energiezähler löschen (Adr. 507)

Die Wirk-, Schein- und Blindenergiezähler können nur gemeinsam gelöscht werden.

Um den Inhalt der Energiezähler zu löschen, muss die Adresse 507 mit "001" beschrieben werden.

 $\langle \mathcal{P} \rangle$

Vor der Inbetriebnahme sind mögliche produktionsbedingte Inhalte der Energiezähler und der Min-/Maxwerte zu löschen!

Durch das Löschen der Energiezähler gehen diese Daten im Gerät verloren.
 Um einen möglichen Datenverlust zu vermeiden, sollten Sie diese Messwerte vor dem Löschen mit der GridVis Software auslesen und abspeichern.

Drehfeldrichtung

Die Drehfeldrichtung der Spannungen und die Frequenz der Phase L1 werden in einer Anzeige dargestellt.

Die Drehfeldrichtung gibt die Phasenfolge in Drehstromnetzen an. Üblicherweise liegt ein "rechtes Drehfeld" vor. Im UMG 96RM-EL wird die Phasenfolge an den Spannungsmesseingängen geprüft und angezeigt. Eine Bewegung der Zeichenkette im Uhrzeigersinn bedeutet ein "rechtes Drehfeld" und eine Bewegung entgegen dem Uhrzeigersinn bedeutet ein "linkes Drehfeld".

Die Drehfeldrichtung wird nur dann bestimmt, wenn die Mess- und Betriebsspannungseingänge vollständig angeschlossen sind. Fehlt eine Phase oder werden zwei gleiche Phasen angeschlossen, so wird die Drehfeldrichtung nicht ermittelt und die Zeichenkette steht in der Anzeige.

Abb. Anzeige der Netzfrequenz (50.0) und der Drehfeldrichtung

Abb. Keine Drehfeldrichtung feststellbar.

LCD Kontrast (Adr. 035)

Die bevorzugte Betrachtungsrichtung für die LCD Anzeige ist von "unten". Der LCD Kontrast der LCD Anzeige kann durch den Anwender angepasst werden. Die Kontrasteinstellung ist im Bereich von 0 bis 9 in 1er Schritten möglich.

> 0 = Zeichen sehr hell 9 = Zeichen sehr dunkel

Werksseitige Voreinstellung: 5

Hintergrundbeleuchtung

Die Hintergrundbeleuchtung ermöglicht bei schlechten Sichtverhältnissen eine gute Lesbarkeit der LCD Anzeige. Die Helligkeit kann durch den Anwender in einem Bereich von 0 bis 9 in 1er Schritten gesteuert werden.

Das UMG 96RM besitzt zwei unterschiedliche Arten der Hintergrundbeleuchtung:

- Betriebsbeleuchtung und
- Standby-Beleuchtung

Betriebsbeleuchtung (Adr. 036):

Die Betriebsbeleuchtung wird durch einen Tastendruck oder beim Neustart aktiviert.

Standby-Beleuchtung (Adr. 747)

Die Aktivierung dieser Hintergrundbeleuchtung erfolgt nach einem frei wählbaren Zeitraum (Adr. 746). Wird innerhalb dieses Zeitraums keine Taste betätigt, so schaltet das Gerät in die Standby-Beleuchtung um.

Erfolgt ein Drücken der Tasten 1 - 3 wechselt das Gerät in die Betriebsbeleuchtung und der definierte Zeitraum wird neu gestartet.

Sind die Helligkeitswerte beider Beleuchtungsarten gleich, ist kein Wechsel zwischen der Hintergrund- und Standby-Beleuchtung zu erkennen.

Adr.	Beschreibung	Einstell- bereich	Vorein- stellung
036	Helligkeit bei Betriebsbeleuchtung	09	6
746	Zeitraum nach dem in die Standby-Beleuch- tung gewechselt wird	60 9999 Sek.	900 Sek.
747	Helligkeit bei Standby-Beleuchtung	09	0

0 = minimale Helligkeit, 9 = maximale Helligkeit

Zeiterfassung

Das UMG 96RM-EL erfasst die Betriebsstunden und die Gesamtlaufzeit jedes Vergleichers, wobei die Zeit

- der Betriebsstunden mit einer Auflösung von 0,1h gemessen und in Stunden angezeigt wird bzw.
- der Gesamtlaufzeit der Vergleicher in Sekunden dargestellt wird (beim Erreichen von 999999s erfolgt die Anzeige in Stunden).

Für die Abfrage über die Messwertanzeigen sind die Zeiten mit den Ziffern 1 bis 6 gekennzeichnet:

keine = Betriebsstundenzähler

- 1 = Gesamtlaufzeit, Vergleicher 1A
- 2 = Gesamtlaufzeit, Vergleicher 2A
- 3 = Gesamtlaufzeit, Vergleicher 1B
- 4 = Gesamtlaufzeit, Vergleicher 2B
- 5 = Gesamtlaufzeit, Vergleicher 1C
- 6 = Gesamtlaufzeit, Vergleicher 2C

In der Messwertanzeige können maximal 99999.9 h (=11,4 Jahre) dargestellt werden.

Betriebsstundenzähler

Der Betriebsstundenzähler misst die Zeit in der das UMG 96RM-EL Messwerte erfasst und anzeigt.

Die Zeit der Betriebsstunden wird mit einer Auflösung von 0,1h gemessen und in Stunden angezeigt. Der Betriebsstundenzähler kann nicht zurückgesetzt werden.

Gesamtlaufzeit Vergleicher

Die Gesamtlaufzeit eines Vergleichers ist die Summe aller Zeiten für die eine Grenzwertverletzung im Vergleicherergebnis stand.

Die Gesamtlaufzeiten der Vergleicher kann nur über die Software GridVis zurückgesetzt werden. Die Rücksetzung erfolgt für alle Gesamtlaufzeiten.

Abb. Messwertanzeige Betriebsstundenzähler Das UMG 96RM-EL zeigt im Betriebsstundenzähler die Zahl 140,8h an. Das entspricht 140 Stunden und 80 Industrieminuten. 100 Industrieminuten entsprechen 60 Minuten. In diesem Beispiel entsprechen danach die 80 Industrieminuten 48 Minuten.

Seriennummer (Adr. 754)

Die vom UMG 96RM-EL angezeigte Seriennummer ist 6 stellig und ist ein Teil der auf dem Typenschild angezeigten Seriennummer.

Die Seriennummer kann nicht geändert werden.

Software Release (Adr. 750)

Die Software für das UMG 96RM-EL wird kontinuierlich verbessert und erweitert. Der Softwarestand im Gerät wird mit einer 3-stelligen Nummer, der Software Release, gekennzeichnet. Die Software Release kann vom Benutzer nicht geändert werden.

Inbetriebnahme

Versorgungsspannung anlegen

- Die Höhe der Versorgungsspannung für das UMG 96RM-EL ist dem Typenschild zu entnehmen.
- Nach dem Anlegen der Versorgungsspannung schaltet das UMG 96RM-EL auf die erste Messwertanzeige um.
- Erscheint keine Anzeige, so muss überprüft werden, ob die Versorgungsspannung im Nennspannungsbereich liegt.

Messspannung anlegen

- Spannungsmessungen in Netzen mit Nennspannungen über 300VAC gegen Erde müssen über Spannungswandler angeschlossen werden.
- Nach dem Anschluss der Messspannungen müssen die vom UMG 96RM-EL angezeigten Messwerte für die Spannungen L-N und L-L mit denen am Spannungsmesseingang übereinstimmen.

Achtung!

Spannungen und Ströme die außerhalb des zulässigen Messbereiches liegen können zu Personenschäden führen und das Gerät zerstören.

Messstrom anlegen

Das UMG 96RM-EL ist für den Anschluss von ../1A und ../5A Stromwandlern ausgelegt.

Über die Strommesseingänge können nur Wechselströme und keine Gleichströme gemessen werden.

Schließen Sie alle Stromwandlerausgänge außer einem kurz. Vergleichen Sie die vom UMG 96RM-EL angezeigten Ströme mit dem angelegten Strom.

Der vom UMG 96RM-EL angezeigte Strom muss unter Berücksichtigung des Stromwandlerübersetzungsverhältnisses mit dem Eingangsstrom übereinstimmen.

In den kurzgeschlossenen Strommesseingängen muss das UMG 96RM-EL ca. null Ampere anzeigen.

Das Stromwandlerverhältnis ist werkseitig auf 5/5A eingestellt und muss gegebenenfalls an die verwendeten Stromwandler angepasst werden.

Achtung!

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

$\underline{\mathbb{N}}$

Achtung!

Das UMG 96RM-EL ist nicht für die Messung von Gleichspannungen geeignet.

Drehfeldrichtung

Überprüfen Sie in der Messwertanzeige des UMG 96RM-EL die Richtung des Spannungs-Drehfeldes. Üblicherweise liegt ein "rechtes" Drehfeld vor.

Phasenzuordnung prüfen

Die Zuordnung Außenleiter zu Stromwandler ist dann richtig, wenn man einen Stromwandler sekundärseitig kurzschließt und der vom UMG 96RM-EL angezeigte Strom in der dazugehörigen Phase auf 0A sinkt.

Kontrolle der Leistungsmessung

Schließen Sie alle Stromwandlerausgänge, außer einem kurz und überprüfen Sie die angezeigten Leistungen. Das UMG 96RM-EL darf nur eine Leistung in der Phase mit dem nicht kurzgeschlossenen Stromwandlereingang anzeigen. Trifft dies nicht zu, überprüfen Sie den Anschluss der Messspannung und des Messstromes.

Stimmt der Betrag der Wirkleistung, aber das Vorzeichen der Wirkleistung ist negativ, so kann das zwei Ursachen haben:

- Die Anschlüsse S1(k) und S2(l) am Stromwandler sind vertauscht.
- Es wird Wirkenergie ins Netz zurückgeliefert.

Messung überprüfen

Sind alle Spannungs- und Strommesseingänge richtig angeschlossen, so werden auch die Einzel- und Summenleistungen richtig berechnet und angezeigt.

Überprüfen der Einzelleistungen

lst ein Stromwandler dem falschen Außenleiter zugeordnet, so wird auch die dazugehörige Leistung falsch gemessen und angezeigt.

Die Zuordnung Außenleiter zu Stromwandler am UMG 96RM-EL ist dann richtig, wenn keine Spannung zwischen dem Aussenleiter und dem dazugehörigen Stromwandler (primär) anliegt.

Um sicherzustellen, dass ein Außenleiter am Spannungsmesseingang dem richtigen Stromwandler zugeordnet ist, kann man den jeweiligen Stromwandler sekundärseitig kurzschließen. Die vom UMG 96RM-EL angezeigte Scheinleistung muss dann in dieser Phase Null sein.

Wird die Scheinleistung richtig angezeigt aber die Wirkleistung mit einem "-" Vorzeichen, dann sind die Stromwandlerklemmen vertauscht oder es wird Leistung an das Energieversorgungsunternehmen geliefert.

Überprüfen der Summenleistungen

Werden alle Spannungen, Ströme und Leistungen für die jeweiligen Außenleiter richtig angezeigt, so müssen auch die vom UMG 96RM-EL gemessenen Summenleistungen stimmen. Zur Bestätigung sollten die vom UMG 96RM-EL gemessenen Summenleistungen mit den Arbeiten der in der Einspeisung sitzenden Wirk- und Blindleistungszähler verglichen werden.

Vergleicher und Grenzwertüberwachung

Zur Überwachung von Grenzwerten stehen zwei Vergleichergruppen (1 - 2) mit je 3 Vergleichern (A - C) zur Verfügung. Die Ergebnisse der Vergleicher A bis C können UND oder ODER verknüpft werden.

Jedem Vergleichergruppen-Ausgang kann zusätzlich die Funktion "Display-Blinken" zugeordnet werden. Hierbei erfolgt bei einem aktiven Vergleicher-Ausgang ein Wechsel der Hintergrundbeleuchtung zwischen maximaler und minimaler Helligkeit (Adr. 145).

Blockschaltbild: Verwendung der Vergleichergruppe 1

Beispiel: Stromüberwachung im N

Wird der Strom im N für 60 Sekunden größer als 100A, so soll das Ergebnis der Vergleichergruppe 1 für mindestens 2 Minuten gesetzt werden.

Folgende Programmierungen müssen vorgenommen werden:

1. Vergleichergruppe 1

Wir wählen für die Grenzwertüberwachung die Vergleichergruppe 1. Da nur ein Grenzwert überwacht wird, wählen wir den Vergleicher A und programmieren diesen wie folgt:

Die Adresse des zu überwachenden Messwertes von Vergleicher A:

Adr. 110 = 866 (Adresse des Strom im N)

Die Messwerte für die Vergleicher B und C werden mit 0 belegt.

Adr. 116 = 0 (Der Vergleicher ist inaktiv) Adr. 122 = 0(Der Vergleicher ist inaktiv)

Der einzuhaltende Grenzwert. Adr. 108 = 100 (100A)

Für eine Mindesteinschaltzeit von 2 Minuten soll das

Ergebnis der Vergleichergruppe 1 bei einer Überschreitung des Grenzwertes gesetzt werden.

Adr. 111 = 120 Sekunden

Für die Vorlaufzeit von 60Sekunden soll Überschreitung mindestens anliegen.

Adr. 112 = 60 Sekunden

Den Operator für den Vergleich zwischen Messwert und Grenzwert.

Adr. 113 = 0 (entspricht >=)

2. Vergleicher verknüpfen

Die Vergleicher B und C wurden nicht gesetzt und sind gleich Null.

Durch die ODER-Verküpfung der Vergleicher A, B und C wird als Vergleicherergebnis das Ergebnis von Vergleicher A ausgegeben.

Adr. 107 = 0 (ODER verknüpfen)

Ergebnis

Wird der Strom im N für mehr als 60 Sekunden größer als 100A, so ist das Ergebnis der Vergleichergruppe 1 für mindestens 2 Minuten gesetzt. Vergleichergruppe 1

• Messwert (Adr. 110,116,122,129,135,141) Im Messwert steht die Adresse des zu überwachenden Messwertes.

Messwert = 0 der Vergleicher ist inaktiv.

• Grenzwert (Adr. 108,114,120,127,133,139) In den Grenzwert schreiben Sie den Wert der mit dem Messwert verglichen werden soll.

• Mindesteinschaltzeit (Adr. 111,117,123,130,136,142) Für die Dauer der Mindesteinschaltzeit bleibt das Verknüpfungsergebnis (Bsp. Adr.610) erhalten. Einstellbereich: 1 bis 32000 Sekunden

• Vorlaufzeit (Adr. 112,118,124,131,137,143)

Für mindestens die Dauer der Vorlaufzeit muss eine Grenzwertverletzung vorliegen, dann erst wird das Vergleicherergebnis geändert.

Der Vorlaufzeit können Zeiten im Bereich 1 bis 32000 Sekunden zugewiesen werden.

• Operator (Adr.113,119,125,132,138,144)

Für den Vergleich von Messwert und Grenzwert stehen zwei Operatoren zur Verfügung. Operator = 0 entspricht größer gleich (>=)

Operator = 1 entspricht kleiner (<)

- Vergleicherergebnis (Adr.610,611,612,613,614,615) Das Ergebnis aus dem Vergleich zwischen Messwert und Grenzwert steht im Vergleicherergebnis. Dabei entspricht:
 - 0 = Es liegt keine Grenzwertverletzung vor.
 - 1 = Es liegt eine Grenzwertverletzung vor.

· Gesamtlaufzeit

Die Summe aller Zeiten für die eine Grenzwertverletzung im Vergleicherergebnis stand.

• Verknüpfen (Adr. 107,126)

Die Ergebnisse der Vergleicher A, B und C UND oder ODER verknüpfen.

Gesamtverknüpfungsergebnis (Adr.616,617)
 Die verknüpften Vergleicherergebnisse der Vergleicher
 A, B und C stehen im Gesamtverknüpfungsergebnis.

UMG 96RM-EL

Abb: Grenzwertüberschreitung

Vergleicher in der Software GridVis

Einstellungen zu den einzelnen Vergleicher können zusätzlich über die Software GridVis im Menü zur Gerätekonfiguration vorgenommen werden.

<u>.</u>	iridVis-3.0.3-SNAPSHOT(20	12-07-06_07-41-22) [Proje	ect]	- 0 ×			
Date	Datei Bearbeiten Ansicht Extras Fenster Hilfe						
-							
	Konfiguration(UMG96RM-E	RCM-1700-9209) 8					
Iste	6 6	I 0		0			
l e	Ubertragen Ubertrag	gen an Erneut laden	Werkseinstellungen Speichere in Datei	Lade von Datei			
pau	Identität	Vergleicher auswählen Ver	gleichergruppe 2	- -			
t,	Wandler	Manufathian A					
8	Phasenzuordnung	vergleicher A	[to to the stand we have				
9	Anschlussvarianten	Modus	obernalb schweiwert				
-57	Nominalwerte	Zugeordneter Messwert	Spannung effektiv L1	Wert auswählen			
*	Ereignisse DCM Einstellungen		Aktueler Messwert				
8	Mittalupgaraitag	Schwelle	bao				
4	Aufzeichnungszeiten	bumble					
- ke	7eit	Vergleicher B					
Loj	Ein-/Ausgang-Konfiguration	Modus	unterhalb Schwellwert 🗸				
E.	Vergleicher	Zugeordneter Messwert	Spannung effektiv L1	Wert auswählen			
	Serielle Schnittstelle		Aktueller Messwert	_]@			
	IP-Konfiguration	Crhwelle	810				
	Anzeigekonfiguration	Samole	210				
	Bacnet	Vergleicher C					
	SNMP	Modus	nicht benutzt				
	Benennung der Eingänge	Zugeordneter Messwert	Nicht gesetzt	Wert auswählen			
				-			
		Schwelle	0,0	•			
	03.09.2012 13:10:01 MESZ (GMT+02:00)						

Abb.: Software GridVis, Konfigurationsmenü

Service und Wartung

Das Gerät wird vor der Auslieferung verschiedenen Sicherheitsprüfungen unterzogen und mit einem Siegel gekennzeichnet. Wird ein Gerät geöffnet, so müssen die Sicherheitsprüfungen wiederholt werden. Eine Gewährleistung wird nur für ungeöffnete Geräte übernommen.

Instandsetzung und Kalibration

Instandsetzungsarbeiten und Kalibration können nur vom Hersteller durchgeführt werden.

Frontfolie

Die Reinigung der Frontfolie kann mit einem weichen Tuch und haushaltsüblichen Reinigungsmitteln erfolgen. Säuren und säurehaltige Mittel dürfen zum Reinigen nicht verwendet werden.

Entsorgung

Das UMG 96RM-EL kann als Elektronikschrott gemäß den gesetzlichen Bestimmungen der Wiederverwertung zugeführt werden.

Service

Sollten Fragen auftreten, die nicht in diesem Handbuch beschrieben sind, wenden Sie sich bitte direkt an den Hersteller.

Für die Bearbeitung von Fragen benötigen wir von Ihnen unbedingt folgende Angaben:

- Gerätebezeichnung (siehe Typenschild),
- Seriennummer (siehe Typenschild),
- Software Release (siehe Messwertanzeige),
- Messspannung und Versorgungsspannung,
- genaue Fehlerbeschreibung.

Gerätejustierung

Die Geräte werden vor Auslieferung vom Hersteller justiert - eine Nachjustierung ist bei Einhaltung der Umgebungsbedingungen nicht notwendig.

Kalibrierintervalle

Nach jeweils ca. 5 Jahren wird eine Neukalibrierung vom Hersteller oder von einem akkreditiertem Labor empfohlen.

Firmwareupdate

Ist das Gerät über Ethernet mit einem Computer verbunden, so kann über die Software GridVis die Gerätefirmware aktualisiert werden.

Über die Auswahl einer geeigneten Updatedatei (Menü *Extras/Gerät aktualisieren*) und des Gerätes erfolgt die Übertragung der neuen Firmware.

Abb. Firmwareupdate-Assistent der Software GridVis

Fehler-/Warnmeldungen

Das UMG 96RM-EL kann im Display drei verschiedene Fehlermeldungen anzeigen:

- Warnungen,
- schwerwiegende Fehler und
- Messbereichsüberschreitungen.

Bei Warnungen und schwerwiegenden Fehlern wird die Fehlermeldung durch das Symbol "EEE" gefolgt mit einer Fehlernummer dargestellt.

Die dreistellige Fehlernummer setzt sich aus der Fehlerbeschreibung und - falls vom UMG 96RM-EL feststellbar einer oder mehreren Fehlerursachen zusammen.

Abb. Fehlermeldung

Beispiel Fehlermeldung 911:

Die Fehlernummer setzt sich aus dem schwerwiegenden Fehler 910 und der internen Fehlerursache 0x01 zusammen.

In diesem Beispiel ist ein Fehler beim Lesen der Kalibrierung aus dem EE-PROM aufgetreten. Das Gerät muss zur Überprüfung an den Hersteller geschickt werden.

888

Warnungen

Warnungen sind weniger schwerwiegende Fehler und müssen mit der Taste 1 oder Taste 2 quittiert werden. Die Erfassung und Anzeige von Messwerten läuft weiter. Dieser Fehler wird nach jeder Spannungswiederkehr neu angezeigt.

Abb. Warnmeldung mit Nummer 500 (Netzfrequenz)

Fehler	Fehlerbeschreibung
EEE 500	Die Netzfrequenz konnte nicht ermittelt werden. Mögliche Ursachen: Die Spannung an L1 ist zu klein. Die Netzfrequenz liegt nicht im Bereich 45 bis 65Hz. Lösung: Netzfrequenz überprüfen. Festfrequenz am Gerät wählen.

Fehler	Fehlerbeschreibung
EEE Es wurde ein Fehler in den Daten der	
810	guration festgestellt.
	Wird dieser Fehler angezeigt, wurde
	die Konfiguration auf die Default-Werte
	(Werkseinstellung) zurückgesetzt und neu
	abgespeichert. Das Gerät muss gegebe-
	nenfalls neu konfiguriert werden!

Schwerwiegende Fehler

Beim Auftreten eines schwerwiegenden Fehlers muss das Gerät zur Überprüfung an den Hersteller geschickt werden.

Fehler	Fehlerbeschreibung
EEE	Fehler beim Lesen der Kalibrierung.
910	

Interne Fehlerursachen:

Das UMG 96RM-EL kann in einigen Fällen die Ursache für einen internen schwerwiegenden Fehler feststellen und mit folgendem Fehlercode melden.

Fehler	Fehlerbeschreibung
0x01	EEPROM antwortet nicht.
0x02	Adressbereichsüberschreitung.
0x04	Checksummenfehler.
0x08	Fehler im internen I2C-Bus.

UMG 96RM-EL

Messbereichsüberschreitung

Messbereichsüberschreitungen werden so lange sie vorliegen angezeigt und können nicht quittiert werden. Eine Messbereichsüberschreitung liegt dann vor, wenn mindestens einer der drei Spannungs- oder Strommesseingänge ausserhalb seines spezifizierten Messbereiches liegt.

Mit den Pfeilen "nach oben" wird die Phase markiert in welcher die Messbereichsüberschreitung aufgetreten ist. Die Symbole "V" und "A" zeigen, ob die Messbereichsüberschreitung im Strom- oder Spannungspfad aufgetreten ist.

Grenzwerte für Messbereichsüberschreitung: I = 7 Aeff U_{L-N} = 520 V_{L-N} Beispiele

Parameter Messbereichsüberschreitung

Eine weiterführende Fehlerbeschreibung wird kodiert im Parameter Messsbereichsüberschreitung (Adr. 600) nach folgendem Format abgelegt:

_											
		0х	F	F	F	F	F	F	F	F	
	Phase 1:			1		1					
	Phase 2:			2		2					
	Phase 3:			4		4					
				trom:		L-N					
				S		\Box					

Beispiel: Fehler in Phase 2 im Strompfad:

0xF2FFFFFF

Beispiel: Fehler in Phase 3 im Spannungspfad UL-N:

0xFFF4FFFF

Vorgehen im Fehlerfall

Fehlermöglichkeit	Ursache	Abhilfe	
Keine Anzeige	Externe Sicherung für die Versorgungsspannung hat ausgelöst.	Sicherung ersetzen.	
Keine Stromanzeige	Messspannung nicht angeschlossen.	Messspannung anschließen.	
	Messstrom nicht angeschlossen.	Messstrom anschließen.	
Angezeigter Strom ist zu groß oder	Strommessung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.	
zu kieln.	Stromwandlerfaktor falsch programmiert.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmieren.	
	Der Stromscheitelwert am Messeingang wurde durch Stromoberschwingungen überschritten.	Stromwandler mit einem größeren Stromwandler- Übersetzungsverhältnis einbauen.	
	Der Strom am Messeingang wurde unterschrit- ten.	Stromwandler mit einem kleineren Stromwandler- Übersetzungsverhältnis einbauen.	
Angezeigte Spannung ist zu klein	Messung in der falschen Phase.	Anschluss überprüfen und ggf. korrigieren.	
oder zu groß.	Spannungswandler falsch programmiert.	Spannungswandler-Übersetzungsverhältnis am Spannungswandler ablesen und programmieren.	
Angezeigte Spannung ist zu klein.	Messbereichsüberschreitung.	Spannungswandler verwenden.	
	Der Spannungsscheitelwert am Messeingang wurde durch Oberschwingungen überschritten.	Achtung! Es muss sichergestellt sein, dass die Messeingänge nicht überlastet werden.	
Phasenverschiebung ind/kap.	Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.	
Wirkleistung Bezug / Lieferung ist vertauscht.	Mindestens ein Stromwandleranschluss ist vertauscht.	Anschluss überprüfen und ggf. korrigieren.	
	Ein Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.	

Fehlermöglichkeit	Ursache	Abhilfe	
Wirkleistung zu klein oder zu groß.	Das programmierte Stromwandler-Übersetzungs- verhältnis ist falsch.	Stromwandler-Übersetzungsverhältnis am Stromwandler ablesen und programmieren	
	Der Strompfad ist dem falschen Spannungspfad zugeordnet.	Anschluss überprüfen und ggf. korrigieren.	
	Das programmierte Spannungswandler-Überset- zungsverhältnis ist falsch.	Spannungswandler-Übersetzungsverhältnis am Spannungswandler ablesen und programmieren.	
"EEE" im Display	Siehe Fehlermeldungen.		
Keine Verbindung zum Gerät.	- Falsche IP-Geräteadresse. - Falscher Adressierungsmodus - Netzwerkkabel defekt	 IP-Geräteadresse korrigieren. Modus zur Vergabe der IP-Adresse korrigieren Netzwerkkabel ersetzen 	
Trotz obiger Maßnahmen funktioniert das Gerät nicht.	Gerät defekt.	Gerät zur Überprüfung an den Hersteller mit einer genauen Fehlerbeschreibung einschicken.	

Technische Daten

Allgemein	
Nettogewicht (mit aufgesetzten Steckverbindern)	ca. 300g
Verpackungsgewicht (inkl. Zubehör)	ca. 600g
Lebensdauer der Hintergrundbeleuchtung	40000h (Hintergrundbeleuchtung reduziert sich über diese Dauer auf ca. 50%)

Transport und Lagerung Die folgenden Angaben gelten für Geräte, die in der Originalverpackung transportiert bzw. gelagert werden.			
Freier Fall 1m			
Temperatur	K55 (-25°C bis +70°C)		
Relative Luftfeuchte	0 bis 90 % RH		

Umgebungsbedingungen im Betrieb			
Das UMG 96RM-EL ist für den wettergeschützten, ortsfesten Einsatz vorgesehen. Schutzklasse II nach IEC 60536 (VDE 0106, Teil 1).			
Bemessungstemperaturbereich	K55 (-10°C +55°C)		
Relative Luftfeuchte	0 bis 75 % RH		
Betriebshöhe	0 2000m über NN		
Verschmutzungsgrad	2		
Einbaulage	beliebig		
Lüftung	eine Fremdbelüftung ist nicht erforderlich.		
Fremdkörper- und Wasserschutz - Front - Rückseite - Front mit Dichtung	IP40 nach EN60529 IP20 nach EN60529 IP42 nach EN60529		

Versorgungsspannung		
Installations Überspannungskategorie	300V CAT II	
Absicherung der Versorgungsspannung (Sicherung)	6A, Typ C (zugelassen nach UL/IEC)	
Nennbereich	20V - 250V (4565Hz) oder DC 20V - 300V	
Arbeitsbereich	+-10% vom Nennbereich	
Leistungsaufnahme	max. 5,5VA / 2W	

Anschlussvermögen der Klemmstellen (Versorgungsspannung) Anschließbare Leiter. Pro Klemmstelle darf nur ein Leiter angeschlossen werden!			
Eindrähtige, mehrdrähtige, feindrähtige 0,2 - 2,5mm², AWG 26 - 12			
Stiftkabelschuhe, Aderendhülsen	0,2 - 2,5mm ²		
Anzugsdrehmoment	0,4 - 0,5Nm		
Abisolierlänge	7mm		

UMG 96RM-EL

Spannungsmessung			
Dreiphasen 4-Leitersysteme mit Nennspannungen bis	277V/480V (+-10%)		
Dreiphasen 3-Leitersysteme, ungeerdet, mit Nennspannungen bis	IT 480V (+-10%)		
Überspannungskategorie	300V CAT III		
Bemessungsstoßspannung	4kV		
Messbereich L-N	0 ¹⁾ 300Vrms (max. Überspannung 520Vrms)		
Messbereich L-L	0 ¹⁾ 520Vrms (max. Überspannung 900Vrms)		
Auflösung	0,01V		
Crest-Faktor	2,45 (bezogen auf den Messbereich)		
Impedanz	4MOhm/Phase		
Leistungsaufnahme	ca. 0,1VA		
Abtastfrequenz	21,33kHz (50Hz), 25,6 kHz (60Hz) je Messkanal		
Frequenz der Grundschwingung - Auflösung	45Hz 65Hz 0,01Hz		

¹⁾ Das UMG 96RM-EL kann nur dann Messwerte ermitteln, wenn an mindestens einem Spannungsmesseingang eine Spannung L-N von größer 10Veff oder eine Spannung L-L von größer 18Veff anliegt.

Strommessung		
Nennstrom	5A	
Messbereich	0 6Arms	
Crest-Faktor	1,98	
Auflösung	0,1mA (Display 0,01A)	
Überspannungskategorie	300V CAT II	
Bemessungsstoßspannung	2kV	
Leistungsaufnahme	ca. 0,2 VA (Ri=5mOhm)	
Überlast für 1 Sek.	120A (sinusförmig)	
Abtastfrequenz	21,33kHz (50Hz), 25,6 kHz (60Hz) je Messkanal	

Anschlussvermögen der Klemmstellen (Spannungs- und Strommessung) Anschließbare Leiter. Pro Klemmstelle darf nur ein Leiter angeschlossen werden!			
Strom Spannung			
Eindrähtige, mehrdrähtige, feindrähtige	0,2 - 2,5mm ² , AWG 26-12	0,08 - 4,0mm ² , AWG 28-12	
Stiftkabelschuhe, Aderendhülsen	0,2 - 2,5mm²	0,2 - 2,5mm²	
Anzugsdrehmoment	0,4 - 0,5Nm	0,4 - 0,5Nm	
Abisolierlänge	7mm	7mm	

Ethernet-Anschluss	
Anschluss	RJ45
Protokolle	TCP/IP, DHCP-Client (BootP), Modbus/TCP (Port 502), ICMP (Ping), Modbus RTU over Ethernet (Port 8000)

Kenngrößen von Funktionen

Funktion	Symbol	Genau	igkeitsklasse	Messbereich	Anzeigebereich
Gesamt-Wirkleistung	Р	0,55)	(IEC61557-12)	0 5,4kW	0 W 999 GW *
Gesamt-Blindleisung	QA, Qv	1	(IEC61557-12)	0 5,4 kvar	0 varh 999 Gvar *
Gesamt-Scheinleistung	SA, Sv	0,55)	(IEC61557-12)	0 5,4 kVA	0 VA 999 GVA *
Gesamt-Wirkenergie	Ea	0,5S ^{5) 6)}	(IEC61557-12)	0 5,4 kWh	0 Wh 999 GWh *
Gesamt-Blindenergie	ErA, ErV	1	(IEC61557-12)	0 5,4 kvarh	0 varh 999 Gvarh *
Gesamt-Scheinenergie	EapA, EapV	0,55)	(IEC61557-12)	0 5,4 kVAh	0 VAh 999 GVAh *
Frequenz	f	0,05	(IEC61557-12)	45 65 Hz	45,00 Hz 65,00 Hz
Phasenstrom	I	0,2	(IEC61557-12)	0 6 Arms	0 A 999 kA
Neutralleiterstrom gemessen	IN	-		-	-
Neutralleiterstrom berechnet	INc	1,0	(IEC61557-12)	0,03 25 A	0,03 A 999 kA
Spannung	U L-N	0,2	(IEC61557-12)	10 300 Vrms	0 V 999 kV
Spannung	U L-L	0,2	(IEC61557-12)	18 520 Vrms	0 V 999 kV
Leistungsfaktor	PFA, PFV	0,5	(IEC61557-12)	0,00 1.00	0,00 1,00
Kurzzeit-Flicker, Langzeitflicker	Pst, Plt	-		-	-
Spannungseinbrüche (L-N)	Udip	-		-	-
Spannungsüberhöhungen (L-N)	Uswl	-		-	-
Transiente Überspannungen	Utr	-		-	-
Spannungsunterbrechnungen	Uint	-		-	-
Spannungsunsymmetrie (L-N) ¹⁾	Unba	-		-	-
Spannungsunsymmetrie (L-N) ²⁾	Unb	-		-	-
Spannungsoberschwingungen	Uh	Kl. 1	(IEC61000-4-7)	bis 2,5 kHz	0 V 999 kV
THD der Spannung 3)	THDu	1,0	(IEC61557-12)	bis 2,5 kHz	0 % 999 %
THD der Spannung ⁴⁾	THD-Ru	-		-	-
Funktion	Symbol	Genauigkeitsklasse	Messbereich	Anzeigebereich	
------------------------	--------	----------------------	-------------	----------------	
Strom-Oberschwingungen	lh	Kl. 1 (IEC61000-4-7)	bis 2,5 kHz	0 A 999 kA	
THD des Stromes 3)	THDi	1,0 (IEC61557-12)	bis 2,5 kHz	0 % 999 %	
THD des Stromes 4)	THD-Ri	-	-	-	
Netzsignalspannung	MSV	-	-	-	

*

1) Bezug auf die Amplitude.

2) Bezug auf Phase und auf Amplitude.

Bezug auf die Grundschwingung.

- Bezug auf den Effektivwert.
- 5) Genauigkeitsklasse 0,5 mit ../5A Wandler. Genauigkeitsklasse 1 mit ../1A Wandler.

6) Genauigkeitsklasse 0,5S nach IEC62053-22

Beim Erreichen der max. Gesamt-Arbeitswerte springt die Anzeige auf 0 W zurück.

Parameter- und Adressenliste

In dem Auszug der folgenden Parameterliste stehen Einstellungen, die für den korrekten Betrieb des UMG 96RM-EL notwendig sind, wie z.B. Stromwandler und Geräteadresse. Die Werte in der Parameterliste können beschrieben und gelesen werden.

In dem Auszug der Messwertliste sind die gemessenen und berechneten Messwerte, Zustandsdaten der Ausgänge und protokollierte Werte zum Auslesen abgelegt. Eine gesamte Übersicht der Parameter und Messwerte sowie Erklärungen zu ausgewählten Messwerten sind im Dokument "Modbus-Adressenliste" auf der CD oder im Internet abgelegt.

Tabelle [•]	1 -	Param	eterliste
----------------------	-----	-------	-----------

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
10	FLOAT	RD/WR	A	Stromwandler I1, primär	01000000 (*2)	5
12	FLOAT	RD/WR RD/WR	A V	Stromwandler II, sek. Spannungswandler V1, prim.	01000000 ^(*2)	400
16 18	FLOAT FLOAT	RD/WR RD/WR	V A	Spannungswandler V1, sek. Stromwandler I2, primär	100, 400 01000000 ^(*2)	400 5
20	FLOAT	RD/WR	А	Stromwandler I2, sek.	15	5
22 24	FLOAT FLOAT	RD/WR	V	Spannungswandler V2, prim.	01000000	400 400
26	FLOAT	RD/WR	A	Stromwandler 13, primär	01000000	5
28	FLOAT	RD/WR	А	Stromwandler I3, sek.	15	5
30	FLOAT	RD/WR	V	Spannungswandler V3, prim.	01000000	400
32	FLOAT	RD/WR	V	Spannungswandler V3, sek.	100, 400	400

^(*1) Die Werte 0 und 248 bis 255 sind reserviert und dürfen nicht verwendet werden.

⁽²⁾ Der einstellbare Wert 0 ergibt keine sinnvollen Arbeitswerte und darf nicht verwendet werden.

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
34	SHORT	RD/WR	Hz	Frequenzermittlung	0, 45 65	0
35	SHORT	RD/WR	-	Kontrast der Anzeige	09	5
36	SHORT	RD/WR	-	0 (dunkel), 9 (hell)	09	6
37	SHORT	RD/WR	-	Anzeigen-Profil 0=vorbelegtes Anzeigen-Profil 1=vorbelegtes Anzeigen-Profil 2=vorbelegtes Anzeigen-Profil 3=frei wählbares Anzeigen-Profil	03	0
38	SHORT	RD/WR	-	Anzeigen-Wechsel-Profil 02=vorbelegte Anzeigen- Wechsel-Profile 3=frei wählbares Anzeigen-Wechsel-Profil	03	0
39 40 41 42	SHORT SHORT SHORT SHORT	RD/WR RD/WR RD/WR RD/WR	S - - -	Wechselzeit Mittelungszeit, I Mittelungszeit, P Mittelungszeit, U	0 60 0 8* 0 8* 0 8*	0 6 6
45	USHORT	RD/WR	mA	Ansprechschwelle Strommessung I1 I3	0 200	5
50	SHORT	RD/WR	-	Passwort	0999	0 (Kein Passwort)
107	SHORT	RD/WR	-	Ergebnis der Vergleichergruppe 1; A, B, C verknüpfen (1=und, 0=oder)	0,1	0

* 0 = 5Sek.; 1 = 10Sek.; 2 = 15Sek.; 3 = 30Sek.; 4 = 1Min.; 5 = 5Min.; 6 = 8Min.; 7 = 10Min.; 8 = 15Min.

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
108 110	FLOAT SHORT	RD/WR RD/WR	-	Vergleicher 1A, Grenzwert Veraleicher 1A.	-10 ¹² -1+10 ¹² -1	0
				Adresse des Messwertes	032000	0
111	SHORT	RD/WR	S	Vergleicher 1A,		
112	SHORT	BDW/B	e .	Mindesteinschaltzeit	032000	0
113	SHORT	RD/WR	-	Vergleicher 1A, Vonaulzeit Vergleicher 1A, Operator	0,1	0
114	FLOAT	RD/WR	-	Vergleicher 1B, Grenzwert	-10 ¹² -1+10 ¹² -1	0
110	SHUNI		-	Adresse des Messwertes	0.32000	0
117	SHORT	RD/WR	s	Vergleicher 1B,	002000	0
				Mindesteinschaltzeit	032000	0
118	SHORT	RD/WR	S	Vergleicher 1B, Vorlaufzeit	032000	0
119	SHORT	RD/WR	-	Vergleicher 1B, Operator ">="=0 "<"=1	0,1	0
120	FLOAT	RD/WR	-	Vergleicher 1C, Grenzwert	-10 ¹² -1+10 ¹² -1	0
122	SHORT	RD/WR	-	Vergleicher 1C,	0.00000	
123	SHORT	BD/WB	\$	Vergleicher 1C	032000	0
120	onorm	110,000	0	Mindesteinschaltzeit	032000	0
124	SHORT	RD/WR	S	Vergleicher 1C, Vorlaufzeit	032000	0
125	SHORT	RD/WR	-	Vergleicher 1C, Operator ">="=0 "<"=1	0,1	0
126	SHORT	RD/WR	-	Ergebnis der Vergleichergruppe 2; A, B, C verknüpfen (1=und, 0=oder)	0,1	0
127	FLOAT	RD/WR	-	Vergleicher 2A, Grenzwert	-10 ¹² -1+10 ¹² -1	0
129	SHORT	RD/WR	-	Vergleicher 2A,	0,00000	0
130	SHORT	BD/WB	e	Auresse des messwertes	032000	0
100	onom		0	Mindesteinschaltzeit	032000	0

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
131 132	SHORT SHORT	RD/WR RD/WR	s -	Vergleicher 2A, Vorlaufzeit Vergleicher 2A, Operator ">="=0 ,<"=1	032000 0,1	0 0
133 135	FLOAT SHORT	RD/WR RD/WR	-	Vergleicher 2B, Grenzwert Vergleicher 2B,	-10 ¹² -1+10 ¹² -1	0
136	SHORT	RD/WR	s	Adresse des Messwertes Vergleicher 2B, Mindesteinschaltzeit	032000	0
137 138	SHORT SHORT	RD/WR RD/WR	S -	Vergleicher 2B, Vorlaufzeit Vergleicher 2B, Operator 	032000 032000 0,1	0
139 141	FLOAT SHORT	RD/WR RD/WR	-	Vergleicher 2C, Grenzwert Vergleicher 2C,	-10 ¹² -1+10 ¹² -1	0
142	SHORT	RD/WR	s	Adresse des Messwertes Vergleicher 2C, Mindesteinschaltzeit	032000	0
143 144	SHORT SHORT	RD/WR RD/WR	S -	Vergleicher 2C, Vorlaufzeit Vergleicher 2C, Operator $_{2}=$ = 0 ,<* = 1	032000 032000 0,1	0
145	SHORT	RD/WR	-	"Display-Blinken" Bit 1 = 1/0: aktiv/deaktiv für Vergleichergruppen-Ausgang 1 Bit 2 = 1/0: aktiv/deaktiv für Vergleichergruppen-Ausgang 2	0-3	0
500 501 502 503 504 505	SHORT SHORT SHORT SHORT SHORT SHORT	RD/WR RD/WR RD/WR RD/WR RD/WR RD/WR		Anschlussbelegung, I L1 Anschlussbelegung, I L2 Anschlussbelegung, I L3 Anschlussbelegung, U L1 Anschlussbelegung, U L2 Anschlussbelegung, U L3	$\begin{array}{c} -30+3 \ ^{1)} \\ -30+3 \ ^{1)} \\ -30+3 \ ^{1)} \\ 03 \ ^{1)} \\ 03 \ ^{1)} \\ 03 \ ^{1)} \\ 03 \ ^{1)} \end{array}$	+1 +2 +3 1 2 3
506	SHORT	RD/WR	-	Min- und Maxwerte löschen	01	0

¹⁾ 0 = der Strom- oder Spannungspfad wird nicht gemessen.

Adresse	Format	RD/WR	Einheit	Bemerkung	Einstellbereich	Voreinstellung
507 508	SHORT SHORT	RD/WR RD/WR	-	Energiezähler löschen EEPROM beschreiben erzwingen.	01 01	0 0
Hinweis	: Energiewer	te und Min-Ma	xwerte werde	en alle 5 Minuten in den EEPROM gesch	rieben.	
509 510 511	SHORT SHORT SHORT	RD/WR RD/WR BD/WB	-	Anschlußbild Spannung Anschlußbild Strom Belevante Spannung für	08 ¹⁾ 08	0 0
011	onorm			THD und FFT	0, 1	0
Im Disp	lay können d	ie Spannunger	l n für THD und	d FFT als L-N oder als L-L Werte angeze	igt werden. 0=LN, 1=LL	
600	UINT	RD/WR	-	Messbereichsüberschreitung	00xFFFFFFFF	
610 611 612 613 614 615 616 617	SHORT SHORT SHORT SHORT SHORT SHORT SHORT	RD RD RD RD RD RD RD		Vergleicherergebnis 1 Ausgang A Vergleicherergebnis 1 Ausgang B Vergleicherergebnis 1 Ausgang C Vergleicherergebnis 2 Ausgang A Vergleicherergebnis 2 Ausgang B Vergleicherergebnis 2 Ausgang C Verknüpfungsergebnis Vergleichergru Verknüpfungsergebnis Vergleichergru	ope 1 ope 2	
750 754 756	SHORT SERNR SERNR	RD RD RD	-	Software Release Seriennummer Produktionsnummer		
746 747	SHORT	RD/WR RD/WR	s s	Zeitraum nach dem in die Standby- Beleuchtung gewechselt wird Helligkeit der Standby-Beleuchtung	60 9999 0 9	900 0

Zahlenformate

Тур	Größe	Minimum	Maximum
short	16 bit	-2 ¹⁵	2 ¹⁵ -1
ushort	16 bit	0	2 ¹⁶ -1
int	32 bit	-2 ³¹	2 ³¹ -1
uint	32 bit	0	2 ³² -1
float	32 bit	IEEE 754	IEEE 754

Hinweis zum Speichern von Messwerten und Konfigurationsdaten:

- Folgende Messwerte werden spätestens alle 5 Minuten gespeichert:
 - Komparatortimer
 - S0-Zählerstände
 - Min. / Max. / Mittelwerte
 - Energiewerte
- Konfigurationsdaten werden sofort gespeichert !

Maßbilder

Alle Angaben in mm.

Rückansicht

Ansicht von unten

Seitenansicht

Ausbruchmaß

Übersicht Messwertanzeigen

Markierten Menüs werden mit der werkseitigen Voreinstellung nicht angezeigt.

Markierten Menüs werden mit der werkseitigen Voreinstellung nicht angezeigt.

Gerade und ungerade Oberschwingungen bis zur 40. Ordnung sind über die Software GridVis abrufbar und können innerhalb der Software visualisiert werden.

Markierten Menüs werden mit der werkseitigen Voreinstellung nicht angezeigt.

Konformitätserklärung

Das Produkt erfüllt folgende EG-Richtlinien:	
2004/108/EG	Elektromagnetische Verträglichkeit von Betriebsmitteln.
2006/95/EG	Elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen.
Berücksichtigte Normen:	
Störfestigkeit IEC/EN 61326-1:2013 IEC/EN 61000-4-2:2009 IEC/EN 61000-4-3:2011 IEC/EN 61000-4-3:2011, EMV-ILA V01-03 IEC/EN 61000-4-4:2013, EMV-ILA V01-03 IEC/EN 61000-4-5:2007, EMV-ILA V01-03 IEC/EN 61000-4-6:2009, EMV-ILA V01-03 IEC/EN 61000-4-8:2010 IEC/EN 61000-4-11:2005, EMV-ILA V01-03	Klasse A: Industriebereich Entladung statischer Elektrizität Elektromagn. Felder 80-1000MHz Elektromagn. Felder 1000-2700MHz Schnelle Transienten Stoßspannungen Leitungsgeführte HF-Störungen 0,15-80MHz Netzfrequente Magnetfelder Spannungseinbrüche, Kurzzeitunterbrechungen, Spannungsschwankungen und Frequenzänderung
Störaussendung IEC/EN 61326-1:2013 IEC/CISPR11/EN 55011:2011 IEC/CISPR11/EN 55011:2011 EMV-ILA V01-03 EMV-ILA V01-03 Gerätesicherheit IEC/EN 61010-1:2011 IEC/EN 61010-2-030:2011	Klasse B: Wohnbereich Funkstörfeldstärke 30-1000MHz Funkstörspannung 0,15-30MHz Funkstörspannung 9-150kHz Flicker Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte - Teil 1: Allgemeine Anforderungen Besondere Bestimmungen für Prüf- und Messstromkreise

Anschlussbeispiel

- ¹⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung (6A Typ C)
- ²⁾ UL/IEC zugelassene Überstrom-Schutzeinrichtung (10A Typ C)
- ³⁾ Kurzschlussbrücken (extern)

Kurzanleitung Grundfunktionen

Stromwandlereinstellung ändern

In den Programmier-Modus wechseln:

- Ein Wechsel in den Programmier-Modus erfolgt über das gleichzeitige Drücken der Tasten 1 und 2 für ca.
 1 Sekunde. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.
- Mit Taste 1 wird die Auswahl bestätigt.
- Die erste Ziffer des Eingabebereiches f
 ür den Prim
 ärstrom blinkt.

Primärstrom ändern

- Mit Taste 2 die blinkende Ziffer ändern.
- Mit Taste 1 die nächste zu ändernde Ziffer wählen. Die für eine Änderung ausgewählte Ziffer blinkt. Blinkt die gesamte Zahl, so kann das Komma mit Taste 2 verschoben werden.

Sekundärstrom ändern

- Als Sekundärstrom kann nur 1A oder 5A eingestellt werden.
- Mit Taste 1 den Sekundärstrom wählen.
- Mit Taste 2 die blinkende Ziffer ändern.

Programmier-Modus verlassen

• Der Wechsel in den Anzeige-Modus erfolgt durch ein erneutes gleichzeitiges Drücken der Tasten 1 und 2 für ca. 1 Sekunde.

Messwerte abrufen

In den Anzeige-Modus wechseln:

- Sollte der Programmier-Modus noch aktiv sein (Darstellung der Symbole PRG und CT im Display), wird über das gleichzeitige Drücken für ca. 1 Sekunde der Tasten 1 und 2 in den Anzeige-Modus gewechselt.
- Eine Messwertanzeige, z. B. für die Spannung, erscheint

Tastensteuerung

- Über Taste 2 erfolgt ein Wechsel der Messwertanzeigen für Strom, Spannung, Leistung usw.
- Über Taste 1 erfolgt ein Wechsel der zum Messwert gehörenden Mittelwerte, Maxwerte usw.

Kurzanleitung TCP/IP-Adressierung

Manuelle TCP/IP-Einstellungen

In den Programmier-Modus wechseln:

 Ein Wechsel in den Programmier-Modus erfolgt über das gleichzeitige Drücken der Tasten 1 und 2 für ca.
 1 Sekunde. Die Symbole für den Programmier-Modus PRG und für den Stromwandler CT erscheinen.

TCP/IP-Adresse einstellen (Adr)

- Mit Taste 2 bis zur Anzeige "Adr" wechseln
- Mit Taste 1 erste Ziffer der Adresse (Byte 0) aktivieren (Ziffer blinkt). Über Taste 2 Ziffer einstellen.
- Nächste Ziffer über Taste 1 wählen (Ziffer blinkt) und über Taste 2 gewünschte Ziffer einstellen.
- Ist Byte 0 der Adresse eingestellt, erfolgt über Taste 1 das Setzen von Byte 1 bis 3. Danach springt die Anzeige wieder auf Byte 0 (keine Ziffer blinkt).

Subnetzmaske (SUb)

 Über Taste 2 in den Bereich der Subnetzmaske wechseln und diese mit Taste 1 und 2 analog der Adressen-Einstellung setzen.

Gateway-Adresse einstellen (GAt)

 Mit Taste 2 und 1 das Gateway analog der Adressen-Einstellung setzen.

Dynamische IP-Vergabe deaktivieren (vgl. Seite 41)

 Setzen Sie den Parameter dYn IP auf den Modus "feste IP-Adresse"

Programmiermodus verlassen

• Duch gleichzeitiges Drücken der Tasten 1 und 2 den Modus verlassen oder 60 Sekunden warten.

Dynamische IP-Vergabe (dyn) aktivieren/deaktivieren

Geräte-/Gateway-Adresse und Subnetzmaske werden von einem DHCP-Server vergeben und ermöglichen eine automatische Einbindung des Gerätes in das bestehende Netz.

- Im Programmiermodus durch mehrmaliges Drücken der Taste 2 zur Anzeige mit der Bezeichnung "dYn IP" wechseln und mit Taste 1 den Parameter aktivieren.
- Mit Taste 1 die Parameterziffer wählen und mit Taste 2 den Wert setzen (z.B. 000=feste IP-Adresse, 002 = aktivierter DHCP-Modus)
- Programmiermodus verlassen.