Real-Time Battery Modeling in Hil testing of Battery Management Systems
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Demand growth for rechargeable batteries in products like portable electronic devices, electrified
vehicles (EVs), and decentralized power utilities (smart grids) is nothing short of robust. With forecasted
annual growth pegged at 8% by the Freedonia Group, the global battery market will reach almost $74
billion this year. Rechargeable batteries will account for about 82% of that, or $60 billion, according to

market researcher Frost & Sullivan.

This strong growth has brought numerous major electronics companies into the market, offering
products that target a range of applications: from small and light-weight power for hand-held devices to
batteries the size of shipping containers for utilities. It has also led to a significant increase in research
investment into battery technologies that address many of the technical challenges facing the industry,
ranging from increasing specific energy (capacity of a cell in watt-hours per kilogram, W/Kg), to thermal
stability, battery life extension through Battery Management Systems (BMS), and on to final disposal of

spent cells.
Technical Challenges in Large Systems

As battery systems get larger, monitoring and controlling them becomes increasingly complex. Issues
such as charging and discharging the cell array in a way that minimizes charge times while maximizing
energy efficiency and battery life must all be considered when developing Battery Management Systems

(BMS) for these products.

In particular, testing the BMS poses major challenges: they are costly to put together, any faults in the
BMS design can cause catastrophic damage to very expensive test units, and often it may not be
possible to test for all scenarios, such as balancing across the cells, leading to uncertainty around the

test results.

An attractive solution to these challenges is to use virtual batteries - mathematical models of battery
cells that are capable of displaying the same dynamic behavior as real ones - for early-stage testing of
the BMS. Not only have these models proven to be highly accurate, they are computationally efficient
and are able to achieve the execution implementation required to deliver real-time performance for

batteries containing hundreds of cells on real-time platforms.



Maplesoft, a developer of battery modeling technology, recently partnered with ControlWorks, Inc. of
South Korea to develop a turn-key BMS system for one of the largest producers of consumer electronics
products in the world. This project focused on a large electrical storage system for the Smart Grid and
UPS markets. The end result was a battery model capable of being configured to represent a stack of up
to 144 cells that can be connected in any combination of parallel and series networks. Fault modes were
also required, such as individual cells shorting or opening, as well incorporating variations in charge

capacity from cell to cell, and degradation of capacity over the life of the cells.
Approaches to developing high-fidelity battery models

There are two main approaches to battery modeling. The first is to use equivalent electrical circuits that
reflect charge capacity and internal resistance through the use of standard electrical components to
represent these properties. These equivalent-circuit models are conceptually simple and
computationally light, while capable of capturing many of the non-linear behaviors within the cell.
However, their scope of operation is somewhat limited and it is not easy to map the components of the

model to the physical aspects of the real cell.

The other method is to use electrochemistry-based battery models — those that include the details of
the underlying physics within the reaction between the electrodes and electrolytes. These have been
shown to be highly accurate predictors of the overall charge/discharge characteristics of a cell. This
physical behavior can be represented by a system of well-documented partial differential equations
(PDE), such as those developed by Newman. Solving these PDEs, however, can only be achieved through
the use of computationally intensive techniques such as finite-element (FE) and computational fluid
dynamics (CFD). These approaches make them unsuitable for system-level modeling since they can take

hours to compute behavior over a few seconds.

In the last few years a new technique has been developed. This compromise approach provides real-
time performance while almost completely maintaining the accuracy of the full physics models. This
uses a rigorous PDE discretization technique to simplify the model to a set of ordinary differential
equations (ODE) that can be readily solved by system-level tools like MapleSim. The advanced model
optimization techniques employed in MapleSim also allow the resulting model code to be very fast and

capable of running in real-time.

Using these physics-based models, it is possible to implement battery models that predict the

charge/discharge rates, state of charge (SoC), heat generation and state of health (SoH) through a wide



range of loading cycles within complex, multi-domain system models. This approach provides the

performance needed for system-level studies, with minimal loss in model fidelity.

Furthermore, the underlying foundation for model formulation and integration in MapleSim is based on
the conservation of energy. Where there are inherent inefficiencies in the model, lost energy is
computed as well as the effective (or “useful”) energy. This means that the user can allow for energy
loss through heat (in large applications that proportion is very close to 100%), making these models
useful for performing thermal studies to determine component sizes in cooling systems required to

control battery temperature.

This is critically important when battery State of Health (SoH) must be considered, as the temperature of
operation of each cell has a very significant effect on the degradation of its performance. If not carefully
controlled, this can lead to reduced operational life or, in extreme cases, destruction through thermal
runaway, a common problem in many battery-powered systems. This can be caused by unforeseen
loading cycles, or a compromised cooling system compromise. As the battery heats up, its efficiency
decreases, causing even more energy loss. Left unchecked, this vicious cycle causes the battery

temperature to increase to dangerous levels, ending in failure or, in extreme cases, fire or explosion.
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Figure 1: Simulation of thermal runaway using the Li-lon model from the MapleSim Battery Library

Modeling State of Health (SoH)

Within the MapleSim Battery Library, SoH or capacity fading — during both storage and cycling - is
incorporated in both the electrochemical and equivalent circuit models. Studies have shown that the
primary cause of capacity fade in the cell is the growth of the Solid Electrolyte Interface (SEI) film

between the electrodes and electrolyte. This is caused by the chemical reaction between the two, very



similar to corrosion. When the battery is new, the reaction is quite vigorous and an initial SEI forms,

slowing down the reaction and protecting the electrode surfaces during battery operation.
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Figure 2: Life model (SEI formation on the anode during charge), and implementation in MapleSim

As the battery ages, however, the SEl slowly thickens in a predictable manner, gradually reducing
battery capacity and increasing internal resistance throughout its operational life. The formation of the
SEl is dependent on several factors, such as the number and the depth of charge/discharge cycles, as
well as applied current, time in storage and temperature. These vary considerably depending on the
electrode/electrolyte chemistries used. In order to factor the SoH into the battery models, these
properties are implemented in the battery library as parameters and look-up tables, depending on the

chemistries selected.

Battery. Batiery.v Cycles.value
o o— — — o o — 6 -
] | | | | |
20f || | 41 A (M — S )
\ ]/ | [ I\
T | 249 i E —
gl L] Easl A EN i
Soof—f—1 | 381 ) ]
sab\f
20 f W
sobd 1| |
0 10000 20000 30000 0 10000 20000 30000 0 1000 20000 30000
f f f
‘Depth of Discharge. DOD ‘Resistance of SE layer'.Ohm “State of Health' SOH
e e e s e me e P 1
] " A | ooocs ) Zoss|N
Zort | A ¥ . Foos|\
206, A — 2097
205 3096,
Zoa Zo9s S
Z03 So94 —
20 g N
Zoaff \ Foo3 —
%L ! ! | ! 092 :
0 10000 20000 30000 10000 20000 30000 0 1000 20000 30000
'
Tem “Thickness of SEl layerm
330 ' TR &
r E
\ I\ gs.x10
% \ )
Sa0f ) f Zaxio?
g Zaxi0*
£310, Z 5
2 B2x10
v\l L1 x0vf/
2 300 £
on b \ | I I
0 10000 20000 30000 0 10000 20000 30000 0 1000 20000 30000
¢ f '




Figure 3: Results from Li-lon simulation, showing effect of SEI on cell degradation

Cell-charge Variance and Charge Balancing

A common problem with batteries with large numbers of cells is that all cells are not created equally.
Slight variances in cell make-up during manufacture can accelerate degradation of a cell that may have a
slightly higher rate of SEI growth than others in the stack. If all the cells are treated the same by the BMS
and receive the same charge/discharge demand (current in and out), the depth of discharge (DOD) in
one cell may be 80%, for example, while in another it is closer to 90%. This will cause the SEI growth rate

to increase faster in the more deeply discharged cell.
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Figure 4: MapleSim model showing the effect of imbalanced charging on two cells

As seen in Fig 4, this will increase the likelihood of that cell failing either through complete loss of charge
capacity or, worse, overheating. This is why it is critically important for the BMS to monitor the state of
health of each cell and control the current into and out of them in order to balance the charge across all

cells.
Development of cell-pack models for real-time applications
For the purpose of this project, the key requirements for the battery model were:
* Upto 144 Li-lon polymer cells for testing the BMS of the client’s ESS products

* Ease of configuration for different requirements (parallel/series networks)

* Several sensors per cell: current, voltage, SoC, SoH



* Implement variation of chemistry make-up due to manufacturing tolerances
*  Fault-insertion on each cell: open-circuit, shorting
* Capable of running in real-time (target execution-time budget of 1 ms)

The real-time requirement was the biggest challenge for this project. While the MapleSim physics
models are fast, they are not as scalable as the equivalent-circuit model. Therefore, it was decided to

use the EC models, with some customized elements from the physics models, for this specific purpose.

Model Structure

Ill

In the case of Energy Storage Systems, each ESS battery is made of several “stacks” that, in turn, contain
several cells. The MapleSim model follows this structure with each cell being a shared, fully
parameterized subsystem, using the customized equivalent-circuit model described earlier. Additionally,

each cell can be switched to open circuit using logical parameters.
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Figure 5: Cell stack model

The stack model is made of 18 cell subsystems connected either in parallel or series, depending on the
requirement. Input signals are provided for charge balancing from the BMS. Output signals are provided

back to the BMS to monitor the condition of the stack: Supply voltage, SoC and SoH.

Finally, the full ESS is made of several stacks with 10 signals fed to and from the BMS.



Figure 6: ESS Battery model

Model Calibration and Validation

Much of the accuracy of the model is dependent on experimentally derived parameters, determined
from charge/discharge test results. Additionally, any deviation in performance due to manufacturing
variations needed to be included in order to test the charge-balancing capability of the BMS. Instead of
testing every cell, a smaller batch was tested, from which the average cell response could be determined
as well as the statistical distribution of the variants. These were used to implement the manufacturing

variability into the cell stack.

The average cell response was determined using the parameter-estimation tool supplied with the
MapleSim Battery Library. This uses optimization techniques to determine the values of cell-response
parameters that provide the closest “fit” to the experimental results. This response was then validated

against response data from other cells to ensure close estimation of the resulting model.

SoH behavior was implemented as a look-up table based on experimental results. The model determines
the capacity and internal resistance based on the number of charge/discharge cycles and depth of

discharge (DOD) from the lookup.



Experimental results for SoH Lookup
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Figure 7: SoH simulation showing effect on battery voltage

As mentioned, the variation of cell behavior was implemented through the use of random variants,
generated from the statistical distribution determined by the charge/discharge results from testing 48

cells. This was applied to all 144 cells and then compared with the real test results.
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Figure 8: Cell voltage distribution based on results from 48 cells



In figure 8, we see that the maximum variance of the voltage from the experimental data is 14mV, while

from the simulation it is 13mV: acceptable for the purpose of this project.
Model-code Generation and Performance Benchmark

Finally, the model was converted to ANSI-C through the MapleSim Connector for Simulink®. This
produces an s-Function of the battery model that can be tested for performance and accuracy with a
fixed-step solver on a desktop computer in MATLAB/Simulink™ before moving it to a real-time platform.
The simplest solver was used and the performance bench showed that the average execution time was
approximately 20 times faster than real-time, occupying 5.5% of the real-time system time budget. This
shows that the battery model can be easily scaled up, if required. A schematic of the final BMS test

system developed for the client is shown below.
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Figure 9: Battery model integration into BMS test system

The testing station provides the engineer with the ability to configure the battery model (number of
cells, series/parallel...) and apply a range of tests to it. The engineer can go back to the MapleSim™
model at any time to make any necessary changes to the model configuration, and then generate the
model for use on the real-time platform. In this system, the real-time software was National
Instruments’ VeriStand™, driving a PXI real-time system. The MapleSim Connector for NI VeriStand™
Software automates the model integration process, allowing the engineer to produce the real-time

model quickly and reliably.

The final ESS BMS Testing System from ControlWorks integrates real-time platform, signal processing,
fault-insertion tools and standard communications protocols (CANbus for automotive, Modbus for
industrial applications). Software on the operator system includes NI VeriStand™, NI TestStand™ and

MapleSim.



The system allows the engineer to run the BMS through a range of tests on the battery model, including
Constant Current (CC) and Constant Voltage (CC/CV) charge/discharge cycles, as well as Constant Power
(CP) and Constant Resistance (CR) discharge cycles. Results are displayed on the operator console

through NI VeriStand™ and NI TestStand™.
Summary

Test automation and simulation is critical in system-level testing. Issues such as time and cost of failure
analysis, constant development pressure, costs of repeated tests and lengthy set-up times can all be

addressed with improved test systems.

For testing ESS Battery Management Systems (BMS), the use of “virtual” batteries is proving to be an
effective alternative to the use of real batteries. They allow the engineer to avoid the risks of damage to
the batteries - and subsequent costs - while testing and optimizing the BMS design in a close-to-reality

loading environment.

Techniques for battery modeling have advanced significantly over the years to the point where physics-
based cell models that would have taken hours to solve in a FE or CFD tool can now be implemented in a
system model in order to predict how they would behave under loading from complex multi-domain

systems (mechanical, electromechanical, fluids, thermal, etc.).

The MapleSim Battery Library provides ready-made physics-based and equivalent-circuit models that
deliver the fidelity and performance required for implementation on Hardware-in-the-Loop testing
platforms, through MapleSim’s optimized code generation capability. The use of virtual battery
technology in the design of test systems can facilitate the development of better products, reduce

project risks, and get products to market faster.

MATLAB and Simulink are trademarks or registered trademarks of The MathWorks, Inc
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