

KELLER AG für Druckmesstechnik Version 3.0 14.11.2014

Communication protocol for DCX Data Loggers from KELLER V3.0 14.11.2014

1 Introduction .. 2

2 Bit transfer layer (physical layer) ... 2

2.1 Introduction ... 2

2.2 Characteristic .. 2

3 Data-link layer... 3

3.1 Transmission format for the serial interface .. 3

3.2 Format of a message .. 4

3.2.1 Format of the message sent by the master.. 4

3.2.2 Format of the message sent by the slave .. 4

3.3 Principle of message interchange... 5

3.3.1 General rules.. 5

3.3.2 Treatment of errors .. 6

3.3.2.1 Transmission errors .. 6

3.3.2.2 Exception errors .. 6

3.3.3 Activate the interface to the DCX... 6

4 Description of functions.. 7

4.1 Function 30: Read coefficient.. 8

4.1.1 Calibration values... 8

4.1.2 Information values.. 8

4.1.3 Scaling of channels P1 and P2 .. 8

4.2 Function 31: Write coefficient.. 9

4.3 Function 48 : Initialise and release.. 9

4.4 Function 66 : Write and read new device address ... 10

4.5 Function 67 : Read out record ROM .. 10

4.6 Function 68 : Read out record ROM (not bus compatible)... 11

4.7 Function 69 : Read serial number .. 11

4.8 Function 73 : Read value of a channel (floating point)... 12

4.9 Function 73 : Read value of a channel (floating point) (Additional Function for DCX with CTD Module) 13

4.10 Function 92 : Read out record configuration ... 14

4.11 Function 93 : Write record configuration ... 14

4.12 Function 95 : Commands for setting the zero point .. 16

4.13 Function 100 : Read configuration .. 17

4.14 Functions for DCX with CTD Module ... 18

4.14.1 Function 0: CTD – read CTD configuration (Function only for DCX with CTD Module)... 18

4.14.2 Funktion 170: CTD – write CTD configuration (Function only for DCX mit CTD Module)... 18

5 Appendix... 19

5.1 Interface converter .. 19

5.2 Communication with modem (or Palmtop) .. 19

5.2.1 Problem.. 19

5.2.2 Solution .. 19

5.3 Floating-point format IEEE754.. 19

5.4 Memory map ... 20

5.5 Calculation of the CRC16 checksum .. 23

5.6 Description of the software driver (DLL).. 24

5.6.1 General .. 24

5.6.2 The functions of the DLL.. 24

5.6.2.1 Port functions .. 25

Communication protocol DCX Page 2/27

5.6.2.2 Echo function .. 25

5.6.2.3 Protocol functions.. 26

5.7 Support.. 27

1 Introduction

This document describes the communications protocol for the Data Logger DCX from KELLER Druckmesstechnik. In addition to

these transmitters, other devices such as digital pressure transmitters or manometers are also offered. These products are

distinguished by the designation CLASS. Within this device class, the individual device groups are differentiated by the

designation GROUP.

2 Bit transfer layer (physical layer)

2.1 Introduction

The physical connection is provided by the RS485 serial interface. This guarantees good interference immunity and enables a

flexible bus structure, i.e. several devices can be administrated as slaves by a single master.

In order to minimise the scope of cabling, the RS485 is used in half-duplex mode. This means that 2 wires are required for

communications and 2 wires for power infeed.

2.2 Characteristic

In order to operate several devices at one serial interface, they are simply all connected in parallel (RS485A, RS485B, GND and

+Vcc). Before incorporating the devices into the bus, each device must be programmed with a different address.

It is possible to configure a network up to a length of 1300 metres with a maximum of 128 devices. Each riser cable may be up to

14 m in length. The employed cable should correspond to specification EIA RS485. This means that the wires must be installed

in twisted pairs, for example.

The following RS485 drivers are used in the devices:

Devices of Class.Group = 5.5: MAX3471

These drivers are slew rate-limited and do not require any bias resistors. Most applications do not require terminating resistors,

either. Voltage protection is installed on both lines (RS485A and RS485B) in the devices. The common mode voltage relative to

GND is –7V ... + 12 V. This voltage must not be exceeded in any circumstances.

Further information on RS485: http://www.maxim-ic.com/MaximProducts/Interface/rs-485.htm

Information on wiring: http://www.maxim-ic.com/appnotes.cfm/appnote_number/763

master

max. 1300m

max. 14m

dr. n dr. 2 dr. 1

Communication protocol DCX Page 3/27

3 Data-link layer

This section describes how data interchange is effected on this bus. The data and their check and control structures are grouped

together to form messages. These constitute the smallest communication unit, i.e. only messages can be exchanged between

the devices. As a half-duplex protocol is in use here, only one device can use the bus as a transmitter at any one time. All other

devices are then in receiver mode. The master takes the form of a PC or microcontroller, for example, and the devices are the

slaves. Each message exchange takes place under the control of the master. The message contains the address for the

receiving slave.

This results in the following 2 options for data interchange :

a) Broadcasting This mode of communication enables the master to transmit a message to all slaves

simultaneously. The master does not receive a reply, however, and is thus unable to check

whether the message has been correctly received by every slave.

b) Data interchange This mode of communication enables the master to communicate with a single slave. This

normally involves the transmission of two messages: the master transmits a request and

the slave responds to this request. Only the master is permitted to request a response. The

request is received by every slave, but only the selected slave responds. The response

must be received within a stipulated time, otherwise the master will assess the attempt as

failed and must transmit the request again.

3.1 Transmission format for the serial interface

The data are transmitted serially via the bus. The following format applies:

• 1 start bit

• 8 data bits (the least significant bit first)

• 1 stop bit

• no parity bit

This results in 10 bits per transmission byte.

Communication protocol DCX Page 4/27

3.2 Format of a message

3.2.1 Format of the message sent by the master

Note on the presentation of messages: Each box presents 1 data byte consisting of 8 bits, unless otherwise stated.

Each message sent by the master possesses the following format:

DevAddr 0 Function

code

n byte parameters

(optional)

CRC16_H CRC16_L

• DevAddr: Address of the device.

Address 0 is reserved for broadcasting.

Addresses 1...249 can be used for bus mode.

Address 250 is transparent and reserved for non-bus mode. Every device can be contacted with this address.

Address 251 is used for modem function. Dataloggers addressed with this address will allow time gaps between the

transferred bytes and enable a communication through a modem.

Addresses 252...255 are reserved for subsequent developments.

• Function code: Function number

A function is selected and executed by the device via the function number. The function number is encoded in 7 bits. Bit 7 is

always 0. The functions are described further below.

• Parameters:

The parameters required by the function (n = 0 .. 6, according to function)

• CRC16: 16-bit checksum

These two check bytes serve to verify the integrity of the received data. If an error is established, the entire message will be

discarded. The principle employed for CRC16 calculation is described in the appendix. The CRC16 standard is applied here.

Note: The length of a message from the master is at least 4 bytes.

3.2.2 Format of the message sent by the slave

A message transmitted by the slave possesses the following format:

DevAddr X Function

code

n byte data

(optional)

CRC16_H CRC16_L

• DevAddr: Address of the device.

This address corresponds to the address of the responding device.

• Function code:

The function number is identical to the function number sent by the master. If the most significant bit is X = 0, this indicates

that the function has been executed correctly. If bit X = 1, an exception error has occurred.

• Data:

Any data requested via the function follow here.

• CRC16:

See above.

Note: A message from the slave has a minimum length of 5 bytes, and a maximum length of 10 bytes.

Communication protocol DCX Page 5/27

3.3 Principle of message interchange

3.3.1 General rules

• An address may only be allocated to one device connected to the bus. If two devices on the bus have the same address,

both will respond, leading to a conflict.

• Every data interchange is initiated by the master. This means that a device may only transmit data if requested to do so by

the master.

• A message consists of several bytes. These bytes are transmitted without any interruption.

• The addressed device must respond within time T1, otherwise the message will be invalid.

• After the device has respond, the master has to wait at least 1ms before he sends the next message.

Bit frame:
 ST D0 D1 D2 D3 D4 D5 D6 D7 SP ST D0 … D6 D7 SP

Whereby: ST: start bit, SP: stop bit, D0 .. D7: 8 data bits

Message frame:

Response times:

• T1: Time between receipt of inquiry and beginning of response.

Min. 1ms to max. 500ms for all functions and devices.

• T2: Time to ready-to-receive state for the slave: 500 µs. Therefore it is recommended to wait at least 1ms until sending

the next request.

Master:

Request

Master:

Request
Slave:

Response

T1 T2

Communication protocol DCX Page 6/27

3.3.2 Treatment of errors

2 types of errors may occur during the interchange of messages between master and slave: transmission errors and exception

errors.

3.3.2.1 Transmission errors

These errors are primarily accountable to line faults. The message format is incorrect. The following problems are possible :

• A received message is too short.

• A message is longer than the internal transmission buffer permits.

• The word length is not correct and can therefore not be interpreted correctly.

• The CRC16 checksum is incorrect.

In response to a transmission error, all received data are ignored. The slave remains in receive mode while the master is

required to initiate a new data interchange.

3.3.2.2 Exception errors

The message has been received correctly (no transmission error has occurred), but the transmitted function number and/or the

parameters are invalid. The slave responds with an exception error, unless the message has been received in broadcasting

mode.

The message transmitted as a response by the slave has the following format:

DevAddr 1 Function

code

Exception

code

CRC16_H CRC16_L

4 types of exception errors are defined :

• non-implemented function 1

• incorrect parameters 2

• erroneous data 3

• initialisation 32

Exception error 32 occurs when the device is started up anew and initialisation has not been carried out. This happens every

time the device is connected anew after a break in the power supply.

3.3.3 Activate the interface to the DCX

For reason of battery saving the interface of the DCX is disabled during the normal function.

It gets enabled as soon as there is a data request over the interface. This data packed however gets lost and the device will not

answer. Therefore the data packed has to be sent once again.

The interface will be disabled again after ten seconds without communication on the interface.

On active interface all available channels are measured continuously (every second). This way the requested channel with

function 73 returns always the actual value without delay.

Example:

Interface of DCX is disabled.

• PC sends initialization command (function 48):

 � DCX doesn’t answer (timeout error). Interface gets enabled.

• PC sends again the initialization command (function 48):

 � DCX answers.

Communication protocol DCX Page 7/27

4 Description of functions

This section describes the functions of the bus protocol for data loggers DCX (device Class.Group 5.5).

Overview:

F30: Read out scaling values

F31: Write scaling values

F48: Initialise devices, whereby the device ID is returned

F66: Program bus address

F67: Read out record ROM

F68: Read out record ROM (not bus compatible)

F69: Read out serial number

F73: Read out current pressure and temperature values in floating-point format

F92: Read out record configuration

F93: Write record configuration

F95: Zeroing functions

F100: Read out configurations

Functions for DCX Dataloggers with CTD module (Conductivity measurement)

F0: Read out configuration from CTD

F170: Write configuration to CTD

Communication protocol DCX Page 8/27

4.1 Function 30: Read coefficient

Request:
DevAddr 30 Nr. CRC16_H CRC16_L

Response:
DevAddr 30 B3 B2 B1 B0 CRC16_H CRC16_L

Exception errors:

2 if no. > 111

3 if message length incorrect

32 if device is not yet initialised

Note:

Every coefficient can be read in IEEE754 format (floating-point format 4-byte B0 .. B3) via this function.

� Information on IEEE754: see appendix.

Unused coefficients contain undefined values (NaN)

4.1.1 Calibration values

No. Description of coefficient Unit

64 Offset of pressure sensor P1 bar

65 Gain factor of pressure sensor P1

66 Offset of pressure sensor P2 bar

67 Gain factor of pressure sensor P2

The calibration values can be read and written.

4.1.2 Information values

No. Description of the coefficient Unit

80 Minimum pressure of sensor P1 bar

81 Maximum pressure of sensor P1 bar

82 Minimum pressure of sensor P2 bar

83 Maximum pressure of sensor P2 bar

84 Minimum temperature of temperature sensor °C

85 Maximum temperature of temperature sensor °C

86 Minimum temperature of sensor P1 °C

87 Maximum temperature of sensor P1 °C

88 Minimum temperature of sensor P2 °C

89 Maximum temperature of sensor P2 °C

96 RC_ModusVal1

97 RC_ModusVal2

100 Reserved for custom applications

…

111

No. 96 & 97: Values for event recording: just in RAM

For Firmware versions higher then 07.06, the settings are stored in the EEPROM

and therefore they will not be lost after a battery change

4.1.3 Scaling of channels P1 and P2

P1 and P2 are linearly scalable with zero point and gain factor: Value = gain factor * value + offset

Standard values: Offset = 0.0, gain factor = 1.0

It is also possible to influence the offset values via function 95 (see function 95).

The gain factor should be used for calibration purposes only, and not to alter pressure units.

The latter operation should always be carried out by the master!

Communication protocol DCX Page 9/27

4.2 Function 31: Write coefficient

Request:
DevAddr 31 Nr. B3 B2 B1 B0 CRC16_H CRC16_L

Response:
DevAddr 31 0 CRC16_H CRC16_L

Exception errors:

2 If writing is not allowed

3 If message length is incorrect

32 If device has not yet been initialised

Note:

Information on scaling of the channels: See functions 73 and 95. Information on which channels are active: See function 100.

4.3 Function 48 : Initialise and release

Request:
DevAddr 48 CRC16_H CRC16_L

Response:
DevAddr 48 Class Group Year Week BUF STAT CRC16_H CRC16_L

Exception error:

3 If message length incorrect

Note:

Each time the device is switched on by applying the supply voltage or after a break in the power supply, the device must be

initialised via this function. Calling a different function will lead to exception error 32.

The following information is returned:

Class Device ID code

 5: digital pressure transmitter

Group Subdivision within a device class

 5: data logger DCX

Year, Week Firmware version

BUF Length of the internal receive buffer

STAT Status information

 0: Device addressed for first time after switching on.

 1: Device was already initialised

Communication protocol DCX Page 10/27

4.4 Function 66 : Write and read new device address

Request:
DevAddr 66 NewAddr CRC16_H CRC16_L

Response:
DevAddr 66 ActAddr CRC16_H CRC16_L

Exception error:

3 If message length is incorrect

32 If device is not yet initialised

Note:

This function programmes the device addresses to NewAddr. The address is returned in ActAddr as confirmation. It is to be

ensured that the new address NewAddr is not already in use by another bus user.

Permissible addresses: 1 .. 249. Address 250 is transparent. This means that every device, irrespective of the set address, will

respond to address 250. Consequently, transparent DevAddr = 250 may only be used in stand-alone operating mode!

Address 251 is used for modem function and can also just be used for stand-alone operating mode. For further information see

appendix.

For the purpose of reading the device address when the address is not known, for example, the value 250 is transferred as

DevAddr and the value 0 is transferred as NewAddr. The current address is then returned in response.

4.5 Function 67 : Read out record ROM

Request:
DevAddr 67 Page_H Page_L Position N CRC16_H CRC16_L

Response:
DevAddr 67 DATA 0 … DATA N-1 CRC16_H CRC16_L

Exception error:

2 If Page > RecRomLastPagePhysic or Position + N > 64

3 If message length is incorrect or N > int.buffer - 4

32 If device is not yet initialised

Note:

Page: Allocation and size see function 93! (0… RecRomLastPagePhysic)

Position: 0… 63

N: Amount of bytes which are read on the requested page and position. This is limited by the protocol (max. int. buffer – 4)

Communication protocol DCX Page 11/27

4.6 Function 68 : Read out record ROM (not bus compatible)

Request:
DevAddr 68 Page_H Page_L Index CRC16_H CRC16_L

Response:
DevAddr 68 DATA 0 … DATA 7/63 CRC16_H CRC16_L

Exception error:

2 If Page > RecRomLastPagePhysic

3 If message length is incorrect

32 If device is not yet initialised

Note:

Page: Allocation and size see function 93! (0… RecRomLastPagePhysic)

Index: If index = 0, just the first 8 bytes of the page (header) will be transmitted (DATA 0…7)

If index = 1, the hole page will be transmitted (DATA 0…63)

This function is not conform to the protocol declaration (10 transmission bytes max.) and hence can not be used if more than one

slave is connected to the bus.

4.7 Function 69 : Read serial number

Request:
DevAddr 69 CRC16_H CRC16_L

Response:
DevAddr 69 SN3 SN2 SN1 SN0 CRC16_H CRC16_L

Exception errors:

3 If message length is incorrect

32 If device is not yet initialised.

Note:

The serial number is allocated at the factory. It consists of 4 bytes and is calculated as follows :

 SN = 256 3 * SN3 + 256 2 * SN2 + 256 * SN1 + SN0

Communication protocol DCX Page 12/27

4.8 Function 73 : Read value of a channel (floating point)

Request:
DevAddr 73 CH CRC16_H CRC16_L

Response:
DevAddr 73 B3 B2 B1 B0 STAT CRC16_H CRC16_L

Exception errors:

2 If CH > 5

3 If message length is incorrect

 32 If device is not yet initialised

Note:

A device can measure up to five signals (channels):

Two independent pressure sensors, P1 and P2. Plus the temperatures of pressure sensors TOB1 and TOB2 respectively. The

temperatures of the pressure sensors (TOB1, TOB2) are required for temperature compensation of the pressure signal. A

temperature sensor (T) can also be measured.

P1-P2 is a calculated channel.

On a standard pressure transmitter, only channels P1 and TOB1 are available. You can read out which channels are active via

function 100.

The measured value is returned in IEEE754 format (4-byte B0 ... B3).

CH Name Description Unit

0 P1-P2 Difference of both pressure sensors bar

1 P1 Pressure from pressure sensor 1 bar

2 P2 Pressure from pressure sensor 2 bar

3 T Additional temperature sensor °C

4 TOB1 Temperature of pressure sensor 1 °C

5 TOB2 Temperature of pressure sensor 2 °C

The STAT byte contains the current status.

Bit position .7 .6 .5 .4 .3 .2 .1 .0

Name /STD --- TOB2 TOB1 T P2 P1 ---

A set /STD bit indicates whether the transmitter is in Power-up mode, otherwise it is in Standard mode.

A set P1, P2, T, TOB1, TOB2 bit indicates that a measuring or computation error has occurred in the channel concerned.

Communication protocol DCX Page 13/27

4.9 Function 73 : Read value of a channel (floating point) (Additional Function for DCX with CTD Module)

Request:
DevAddr 73 CH CRC16_H CRC16_L

Response:
DevAddr 73 B3 B2 B1 B0 STAT CRC16_H CRC16_L

Exception errors:

2 If CH not valid

3 If message length is incorrect

 32 If device is not yet initialised

Note:

A device with CTD Module can measure 3 additional signals (channels):

Conductivity uncompensated, conductivity compensated to 25°C and the temperature measured with a PT1’000 sensor.

Settings and factors for the correction/calculation of this measuring values are accessible with Function 0 and Function 170.

The measured value is returned in IEEE754 format (4-byte B0 ... B3).

CH Description Unit

10 Conductivity compensated to 25°C mS/cm

11 Conductivity uncompensated mS/cm

3 Temperature of PT1’000 Conductivity sensor °C

The STAT byte contains the current status.

Bit position .7 .6 .5 .4 .3 .2 .1 .0

Name /STD CTD TOB2 TOB1 T P2 P1 ---

A set /STD bit indicates whether the transmitter is in Power-up mode, otherwise it is in Standard mode.

A set P1, P2, T, TOB1, TOB2 bit indicates that a measuring or computation error has occurred in the channel concerned.

A set CTD bit indicates whether the CTD Module is in Power-up mode which takes around 1,5 seconds or a measuring or

computation error has occurred. If the CTD bit is set, the values are not valid or not actual.

Communication protocol DCX Page 14/27

4.10 Function 92 : Read out record configuration

Request:
DevAddr 92 Index CRC16_H CRC16_L

Response:
DevAddr 92 PARA0 PARA1 PARA2 PARA3 PARA4 CRC16_H CRC16_L

Exception errors:

 2 If Index > 8

 3 If message length incorrect

 32 If device is not yet initialised

Note:

Index table see function 93.

4.11 Function 93 : Write record configuration

Request:
DevAddr 93 Index PARA0 PARA1 PARA2 PARA3 PARA4 CRC16_H CRC16_L

Response:
DevAddr 93 0 CRC16_H CRC16_L

Exception errors:

 2 If Index > 9

 3 If message length incorrect

 32 If device is not yet initialised

Note:

All variables are readable.

Marked variables are writable, they are saved in the RAM. That means: On a battery change they are lost.

For Firmware versions higher then 07.06, the settings are stored in the EEPROM

and therefore they will not be lost after a battery change

Index Para0 Para1 Para2 Para3 Para4 Note

0 FUNC --- --- --- --- ---

1 CFG REC_CTRL EE_CTRL PAGE_H PAGE_L ---

2 RecRomFirstPagePhysik_H RecRomFirstPagePhysik_L RecRomLastPagePhysik_H RecRomLastPagePhysik_L RecRomAnzTextPage EEPROM Info

3 Time_Byte3 Time_Byte2 Time_Byte1 Time_Byte0 --- Actual time

4 Start_Time_Byte3 Start_Time_Byte2 Start_Time_Byte1 Start_Time_Byte0 Record_StartTime

5 LoadFixCounter_LH LoadFixCounter_LL --- --- --- * until 03.10

6 LoadModusMessCounter_H LoadModusMessCounter_L LoadFastMessCounter_H LoadFastMessCounter_H LoadSaveCounter ---

7 ModusSelect_H ModusSelect_L ModusChannel --- --- ---

8 RecChannels _H RecChannels _L Available RecordCH_H Available RecordCH_L Bat_Capacity ---

9 LoadFixCounter_LH LoadFixCounter_LL LoadFixCounter_HH* LoadFixCounter_HL* --- * from 03.10 on

* from software version 03.10 on: Totally 4 bytes LoadFixCounter. Until 03.10 use Index 5, after 03.10 use Index 9 instead

Communication protocol DCX Page 15/27

Index 0:

 FUNC
Bit 7 6 5 4 3 2 1 0

description f_RecStart f_RecStop f_RecFree

f_RecFree = 1, complete memory is write enabled.

0 = no ‚old record’ can be over written and not the hole memory space is available.

 f_RecStop = 1, an active record will be stopped.

f_RecStart = 1, starts a record (if start condition is met)

Index 1:

 CFG
Bit 7 6 5 4 3 2 1 0

description fRE_CFG_Continue

Set fRE_CFG_Continue for endless recording. (just writing)

 REC_CTRL
Bit 7 6 5 4 3 2 1 0

description fRE_Error fRE_Active fRE_Start fRE_Memoryfull fRE_Continue

 fRE_Continue =1, endless recording. 0 = record until memory is full.

 fRE_Memoryfull = 1, no more memory is available. Enable writing with f_RecFree

 fRE_Start = 1, start conditions are set, wait for start (trigger)

 fRE_Active = 1, record configuration written, record active or waits for start (prepared)

fRE_Error = 1, error occurred, record stopped.

 EE_CTRL
Bit 7 6 5 4 3 2 1 0

description f_AckError f_LoBatError

 PAGE_H/L current page in which data will be saved

Index 2: Available record memory

Index 3: Time_Byte0…3: Actual time in the DCX

Index 4: Start_Time_Byte0…3: If actual time is later then start time, then record is possible.

Index 5: LoadFixCounter: Interval for fixed record saving interval in seconds.

Index 6:

LoadModusMessCounter_H/L: Interval for event check in seconds.

 LoadFastMessCounter_H/L: Interval for event check if a event has occurred (fast event check).

 LoadSaveCounter: After LoadSaveCounter measurements the average of these measurements is

saved. (Average in 1 second interval)

Index 7:

ModusSelect_H/L: Record type according to the set bit.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

description CH< Val1 CH> Val1 Delta CH On Off Intervall Fix Intervall

 ModusChannel: Event check for selected channel.

Index 8:

 Available RecordCH_H/L & RecordChannels_H/L: channels which are available and which are recorded.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

description --- CH 14 CH 13 CH 12 CH 11 CH 10 CH9 CH8 CH7 CH6 TOB2 TOB1 T P2 P1 P1-P2

Bat_Capacity Battery state (of capacity) 0...100%

Communication protocol DCX Page 16/27

4.12 Function 95 : Commands for setting the zero point

Requests:

Request a:
DevAddr 95 CMD CRC16_H CRC16_L

Request b with setpoint:
DevAddr 95 CMD B3 B2 B1 B0 CRC16_H CRC16_L

where B3:B0: Floating-point number IEEE754 format (4-byte B0 ... B3) for the setpoint.

Response:
DevAddr 95 0 CRC16_H CRC16_L

Exception errors:

 1 If in Power-up mode

 2 If CMD > 3

 3 If message length incorrect

 32 If device is not yet initialised

Note:

Fixed amount of bytes on modem communication (address 251): 5

The following actions can be carried out with this function:

CMD Meaning

0 Set zero point of P1

1 Reset zero point of P1 to standard value

2 Set zero point of P2

3 Reset zero point of P2 to standard value

CMD 0, 2:

Zero point values for pressure channels P1 and P2. These values can also be read via function 30 and written via function 31.

Request a: The zero point is calculated such that the current measured value = 0.0

Request b: The zero point is calculated such that the current measured value equals the setpoint (B3:B0)

CMD 1, 3: Reset zero point to factory setting

The zero point values are reset to 0.

Communication protocol DCX Page 17/27

4.13 Function 100 : Read configuration

Request:
DevAddr 100 Index CRC16_H CRC16_L

Response:
DevAddr 100 PARA0 PARA1 PARA2 PARA3 PARA4 CRC16_H CRC16_L

Exception errors:

 2 If index > 8

 3 If message length is incorrect

 32 If device is not yet initialised

Note:

CFG_P & CFG_T : available channels

This function supplies the information as to how the device has been configured. This configuration is carried out at the factory

and cannot be altered by the customer.

A pressure transmitter can read two independent pressure sensors (P1 and P2), plus the temperatures of the respective

pressure sensors (TOB1 and TOB2) and an independent temperature (T).

Index Para0 Para1 Para2 Para3 Para4

2 CFG_P CFG_T --- --- CNT_T

CFG_P: Channels which are measured max. every second or in the record interval

CFG_T: Channels which are measured if the channel has been selected for recording or if a temperature compensation

 (correction of pressure signal) is made.

CFG_P and CFG_P are encoded as follows:
Bit position: .7 .6 .5 .4 .3 .2 .1 .0

Description: CH7 CH6 TOB2 TOB1 T P2 P1 P1-P2

Communication protocol DCX Page 18/27

4.14 Functions for DCX with CTD Module

4.14.1 Function 0: CTD – read CTD configuration (Function only for DCX with CTD Module)

Anforderung:

DevAddr 0 Index PARA0 PARA1 PARA2 PARA3 CRC16_H CRC16_L

Antwort:

DevAddr 0 STAT PARA0 PARA1 PARA2 PARA3 CRC16_H CRC16_L

Note:

A device with CTD Module can measure 3 additional signals (channels):

Conductivity uncompensated, conductivity compensated to 25°C and the temperature measured with a PT1’000 sensor.

Settings and factors for the correction/calculation of this measuring values are accessible with Function 0 and Function 170.

The measuring values are accessible with function F73.

STAT:

A set STAT bit indicates (STAT = 1) whether the CTD Module is in Power-up mode which takes around 1,5 seconds or a

measuring or computation error has occurred. If the CTD bit is set, the values are not valid or not actual.

Index:

Table below at Function 170.

4.14.2 Function 170: CTD – write CTD configuration (Function only for DCX with CTD Module)

Anforderung:

DevAddr 170 Index PARA0 PARA1 PARA2 PARA3 CRC16_H CRC16_L

Antwort:

DevAddr 170 STAT 0 0 0 0 CRC16_H CRC16_L

STAT: wie Funktion 0

Index:

Index Bezeichnung Describtion Byte Position / Data type Unit

25 Measuring range selector 1 = Measuring range 1 (0...0.2mS/cm)

2 = Measuring range 2 (0...2mS/cm)

3 = Measuring range 3 (0...20mS/cm)

4 = Measuring range 4 (0...200mS/cm)

Para0 / Byte

28 Serialnumber CTD Module Serialnumber = Para1 + Para2*2^8 + Para3*2^16 Para1 Para2 Para3 / Integer

30 Device type / Firmware Device type (Para0.Para1) / Firmware (Para2.Para3) Para0 Para1 Para2 Para3 / Byte

31 Factor Temperature (T) Factor for Temperature adjustment (Factory setting = 1,000)

32 Offset Temperature (T) Offset für Temperature adjustment (Factory setting = 0,000) °C

33 Factor cond. for range 1 Faktor für Leitfähigkeit Bereich 1 (Factory setting = 1,000)

34 Factor cond. for range 2 Faktor für Leitfähigkeit Bereich 2 (Factory setting = 1,000)

35 Factor cond. for range 3 Faktor für Leitfähigkeit Bereich 3 (Factory setting = 1,000)

36 Factor cond. for range 4 Faktor für Leitfähigkeit Bereich 4 (Factory setting = 1,000)

38 Media temperature factor Factor for temperature dependency of the media. The conductivity will

be calculated to ist value at 25°C. (Factory setting = 0,0225 corresponds

to 2,25%/°C ~standard for fresh water)

 %/°C

39 Cell constant Zellkonstante für Leitfähigkeit (Werkseinstellung = 1,000)

(wirksam auf alle Bereiche)

Interpretation of data type Float (Function F0 and F170):

Float: The Value is in the normed format IEEE754-Format (4-Byte Para0 ... Para3).

PARA0 PARA1 PARA2 PARA3
s e[30:23] f[22:0]

31 30 24 23 0

Communication protocol DCX Page 19/27

5 Appendix

5.1 Interface converter

The serial RS232 interface or the USB interface can be used for connection to a PC. KELLER offers converters for this purpose.

Various other products are commercially available, however. The following requirements apply when working with KELLER

software:

- The converter must control transmit / receive switch-over automatically.

- KELLER converters feature a hardware echo, i.e. the transmitted message is received again immediately as

an echo. This echo is required by some KELLER software programmes.

5.2 Communication with modem (or Palmtop)

5.2.1 Problem

Devices with standard bus protocol detect the end of a message through a timeout counter which starts after reception of each

byte. Follows another byte within ~200us the timeout counter stops and starts again after the end of the new byte. Reaches the

timeout counter zero, then the message gets interpreted. If the message is correct the device gives a answer.

For communications with modem the time between each byte can take up to 300ms (small send buffer). The device detects such

a timeout as the end of a message, interprets it as not complete and rejects it: The device will not answer!

5.2.2 Solution

A interpretation of a message is only made after the reception of a certain amount of byte. The detection of such a specific

message is made by the bus address 251. (That means further, that just one device can be connected to the bus)

Now the time between each byte can take up to 400ms.

If the message is 400ms after the reception of the last byte still not complete (amount of bytes smaller than expected) then the

message will be rejected: The device does not answer and goes back in receive mode again. The amount of byte for each

message is defined by the function number.

5.3 Floating-point format IEEE754

As data transmission is effected byte-wise (8-bit data), the floating-point values are represented as follows :

B0: Bit 0..7; B1: Bit 8..15, B2: Bit 16..23, B3: Bit 24..31

Representation in accordance with IEEE754:

s e[30:23] f[22:0]

31 30 23 22 0

If you use the DLL which is available from KELLER, you do not need to carry out conversion, as this is encapsulated in the DLL.

If you wish to address the devices directly, however, you must convert the individual bytes into a floating-point value.

To obtain a floating-point value from the individual bytes, proceed as follows:

1. Define data structure in which an array of 4 bytes and a 32-bit floating-point value is defined at the same memory

location.

2. Write the bytes into the byte array.

3. Read out the floating-point value.

You do not need to carry out any actions, therefore, as the computer attends to interpretation. Some microcontrollers have a

different data structure for floating-point values. In such cases, adaptation is necessary.

Further information is to be found at:

http://cch.loria.fr/documentation/IEEE754/numerical_comp_guide/ncg_math.doc.html - 556

Communication protocol DCX Page 20/27

5.4 Memory map

The memory of the DCX is divided into pages. The amount of pages depend on the device type.

On YEAR.WEEK 02.35 there are 2048 pages, the 03.15 contains 4096 pages.

Each page contains 64 bytes. The first 8 bytes represent the header of the page. The following bytes are the data. A dataset

consists of 4 bytes. These can contain the measure channel, time and value.

Page Description

0 Data memory

1

2

...

...

...

X-1 End of data memory

X Record text

...

...

...

2047 End of record text

Header

The header consists of 8 bytes.

Absolute time in seconds since 01.01.2000

(2^32*Byte1+2^16*Byte2+2^8*Byte3+Byte4)

Byte Description

0 Header

1

2

3

4

5

6

7

8 Data 1

9

10

11

12 Data 2

13

14

15

... ...

... ...

... ...

60 Data 14

61

62

63

Byte Description of the header

0 Start detection / overflow counter / start pointer

1 Remaining 8 bit of the start pointer

2 Absolute time: 1st byte (byte1)

3 Absolute time 2nd byte (byte2)

4 Absolute time 3rd byte (byte3)

5 Absolute time 4th byte (byte4)

6 Reserved

7 Reserved

1 Page with 64 bytes :
Memory: 2048 or 4096 Pages

Communication protocol DCX Page 21/27

Byte 0:

7 6 5 4 3 2 1 0

Bit 7: Start detection – Set bit indicates page as start of record.

Bit 5 + 6: Overflow counter – Is incremented if last page has reached and a new one is started.

Bit 0 .. 4: Together with the 2nd byte it represents the start pointer. It points to the page on which the record

starts. 5 Bit + 8 Bit = 13 Bit

Data x

A dataset consists of 4 bytes. There are four types of them:

a) Dataset with measured channel, value and time gap

 The measured value is a 4 byte float, where the last byte is omitted.

b) Dataset with time space

A dataset with time space is used when the time gap to the last data set is more than 15 seconds.

Time space = 256* 1st byte + 2nd byte = Range (0.. 65'535 s)

c) Dataset with text

Allows saving of a text packet with 3 characters (3 bytes).

d) Empty dataset

A empty dataset can mark the end of a record.

Byte Description

0 Bit 7..4: Measured channel ‚0000’ to ‚1110’ Bit 3..0: Time gap to last dataset (0..15s)

1 Measured value 1st byte

2 Measured value 2nd byte

3 Measured value 3rd byte

Byte Description

0 Bit 7..4: ‚1111’ Bit 3..0: ‚0000’

1 Time space to last data set 1st byte

2 Time space to last data set 2nd byte

3 ‚0000 0000’

Byte Description

0 Bit 7..4: ‚1111’ Bit 3..0: ‚0100’

1 8 bit ASCII character

2 8 bit ASCII character

3 8 bit ASCII character

Byte Description

0 Bit 7 .. 4: ‚1111’ Bit 3 .. 0: ‚1111’

1 ‚xxxx xxxx’

2 ‚xxxx xxxx’

3 ‚xxxx xxxx’

Communication protocol DCX Page 22/27

Procedure for reading the directory of a record

1. Reading of the active page

Read the address of the actual page with function 92 Index 1.

2. Reading of the last pages

Increment the address of the actual page and check the address of the start pointer. It’s found in the header of the page which

can be read with function 76. The difference of actual page and start page shows the size of the record. The start time of the start

page is also found in the header of the start page.

With further increments of the page addresses and the same procedure as described above also the next records can be found.

Take care of overflows.

Page Description

0 start page of record 1

1 record 1

2 record 1

3 record 1

4 start page of record 2

5 record 2

6 record 2

7 start page of record 3

8 record 3

9 record 3

10 record 3

...

a) Catch start pointer with function 93

b) Increment of page address

c) Pointer to start page

d) Increment of page address

e) Pointer to start page

Communication protocol DCX Page 23/27

5.5 Calculation of the CRC16 checksum

The checksum can either be calculated or derived from a table.

Here is an example of CRC16 calculation in C:

//

// CRC-16 calculation in C

//

// Calculation of CRC-16 checksum over an amount of bytes in the serial buffer.

// The calculation is done without the 2byte from crc16 (receive-mode).

// SC_Buffer[]: Byte-Buffer for the serial interface. Type: unsigned char (8bit)

// SC_Amount : Amount of Bytes which should be transmitted or are received (without CRC16)

//

//

void CalcCRC16(unsigned char* CRC_H, unsigned char* CRC_L)

{

 // locals

 unsigned int Crc;

 unsigned char n, m, x;

 // initialisation

 Crc= 0xFFFF;

 m= SC_Amount;

 x= 0;

 // loop over all bits

 while(m>0)

 {

 Crc^= SC_Buffer[x];

 for(n=0; n<8; n++)

 {

 if(Crc&1)

 {

 Crc>>= 1;

 Crc^= 0xA001;

 }

 else

 Crc>>= 1;

 }

 m--;

 x++;

 }

 // result

 *CRC_H= (Crc>>8)&0xFF;

 *CRC_L= Crc&0xFF;

}// end CalcCRC16

This results in the following calculation for function 48 with device address 250: CRC16_H= 4, CRC16_L= 67.

CRC := $FFFF
N := 0

M := 0

CRC mod 2
= 1

CRC := CRC div 2

CRC := CRC xor $A001

CRC := CRC div 2

M < 8

M := M + 1

N := N + 1

N < Message length

START

STOP

CRC := CRC xor DATA[N]

yes

yes

yes

Communication protocol DCX Page 24/27

5.6 Description of the software driver (DLL)

5.6.1 General

The available DLL DCXc.dll has been tested on the Windows 95, 98, NT and 2000 operating systems.

Examples of the use of this DLL are available for the following programming languages:

- LabVIEW

- C++

- Delphi

- VB

- VBA

The call convention stdcall is used for assigning the parameters to the functions. This means that:

− all parameters are passed via the stack,

− the parameter furthest to the right is calculated and passed first, the parameter furthest to the left is calculated and passed

last,

− the function itself deletes the parameters from the stack.

As the declarations for the functions presented below show, many variables are declared with the prefixed word var. This means

that these variables are passed as pointers and not as values.

The types employed for declaration purposes are described below:

Type Range Format

Byte 0..255 8-bit without sign

Word 0..65535 16-bit without sign

Smallint -32768..32767 16-bit with sign

Longint -2147483648.. 2147483647 32-bit with sign

Pbyte Pointer to byte

Single +/- 1.5x10-45..3.4x1038 32-bit

5.6.2 The functions of the DLL

Each function returns a value which indicates whether the desired function has been successfully executed or not. All the

possible return values are specified below. The returned parameters are only valid and may only be processed if the function

concerned has been successfully executed.

Return value Description

RS_OK 0 Function successfully executed; return parameters are valid

RS_EX1 1 Function successfully executed; but exception error 1 has occurred

RS_EX2 2 Function successfully executed; but exception error 2 has occurred

RS_EX3 3 Function successfully executed; but exception error 3 has occurred

RS_EX32 32 Function successfully executed; but exception error 32 has occurred

RS_BROADCAST 100 Broadcast

RS_ERROR -1 General error

RS_TXERROR -2 Transmit error

RS_RXERROR -3 Receive error in UART

RS_TIMEOUT -4 No data or insufficient data received

RS_BADDATA -5 Data erroneous (e.g. CRC16 erroneous)

Communication protocol DCX Page 25/27

5.6.2.1 Port functions

The devices are connected to the PC via a serial interface. The port functions serve to open and close this interface. Ports 1 to 9

(COM1..COM9) are valid. The standard setting should be used for the timeout time (Timeout = 0). When the desired port has

been successfully opened, the OpenComPort function returns the value RS_OK, otherwise RS_ERROR.

An open port is closed automatically on ending the programme.

It is additionally possible to set the baud rate and the data format via the OpenComExt function. DCX devices only support 9600

baud.

As a standard setting, no parity is used (none). This results in a data format of 10 bits per byte. If parity is active, the data format

is 11 bits per byte.

function OpenComPort(intPort, intTimeout: Smallint): Smallint; stdcall; export;

function OpenComExt(intPort, intTimeout: Smallint; longBaud: Longint; intParity:Smallint

): Smallint; stdcall; export;

intParity: 0: no parity bit (sStandard), 1: odd parity bit, 2: even parity bit

longBaud: 9600 for 9600 baud

function CloseComPort : Smallint; stdcall; export;

5.6.2.2 Echo function

Interface converters from KELLER Druckmesstechnik always supply an echo of the message transmitted by the PC.

This function has the standard value 1 (Echo On), to enable operation with the converters supplied by KELLER. If other

converters are used which do not supply a hardware echo, the function must be set to 0 = Echo Off .

function EchoOn(bteEcho: Byte): Smallint; stdcall; export;

Communication protocol DCX Page 26/27

5.6.2.3 Protocol functions

The following functions encapsulate the above-described bus functions. The parameter sequences are identical. The CRC16

checksum is not included here, as it is calculated and checked in the DLL. Some parameters consist of several bytes. These are

grouped together for the sake of clarity. The different requests a and b pertaining to function 95 are split into two functions: F95

and F95val.

function F30(bteDeviceAddr, bteCoeffNo: Byte; var sinCoeff: Single

): Smallint; stdcall; export;

function F31(bteDeviceAddr, bteCoeffNo: Byte; sinCoeff: Single

): Smallint; stdcall; export;

function F48(

 bteDeviceAddr: Byte; var bteClass, bteGroup, bteYear, bteWeek, bteBuffer, bteState: Byte

): Smallint; stdcall; export;

function F66(bteDeviceAddr, bteNewAddr: Byte; var bteActualAddr: Byte

): Smallint; stdcall; export;

function F67(

 bteDeviceAddr: Byte; wrdPage: Word; btePos: Byte; bteAmount: Byte; pbteData: Pbyte

): Smallint; stdcall; export;

function F68(bteDeviceAddr: Byte; wrdPage: Word; bteIndex: Byte; pbteData: Pbyte

): Smallint; stdcall; export;

function F69(bteDeviceAddr: Byte; var linSN: Longint

): Smallint; stdcall; export;

function F73(bteDeviceAddr, bteChannel: Byte; var sinValue: Single; var bteStat: Byte

): Smallint; stdcall; export;

function F92(

 bteDeviceAddr, bteIndex: Byte; var btePara0, btePara1, btePara2, btePara3, btePara4: Byte

): Smallint; stdcall; export;

function F93(

 bteDeviceAddr, bteIndex: Byte; btePara0, btePara1, btePara2, btePara3, btePara4: Byte

): Smallint; stdcall; export;

function F95(bteDeviceAddr, bteCmd: Byte

): Smallint; stdcall; export;

function F95val(bteDeviceAddr, bteCmd: Byte; sinVal: Single

): Smallint; stdcall stdcall; export;

function F100(

 bteDeviceAddr, bteIndex: Byte; var btePara0, btePara1, btePara2, btePara3, btePara4: Byte

): Smallint; stdcall stdcall; export;

function F0 and F170

is not supported with the dll yet.

Communication protocol DCX Page 27/27

5.7 Support

We are pleased to offer you support in implementing the protocol.

For implementation under Windows, a DLL with diverse reference implementations is available.

The software READ30 or CCS30 is available free of charge for the configuration and read-out of the devices.

All information and software is available under:

http://www.keller-druck.com

KELLER AG für Druckmesstechnik

St. Gallerstrasse 119 • CH-8404 Winterthur

Tel: ++41 52 235 25 25

http://www.keller-druck.com

