Controller Area Network (CAN) UT64CAN333x CAN FD Transceivers

Released Datasheet Cobham.com/HiRel October 28, 2016

The most important thing we build is trust

FEATURES

- □ Single 3.3 V supply voltage
- □ 5 V tolerant digital I/O
- □ Compatible with ISO 11898-2 and 11898-5 standards
- 10 kbps to 8 Mbps baud rates
- Class 2 ESD for non-CAN bus pins
- □ Class 3A ESD for CAN bus pins (CANL, CANH)
- Bus-Pin fault protection:
 - ±36 V terrestrial
 - ±16 V in orbit
- □ Common-mode range: -7 to +12 V
- Over current protection
- $\hfill\square$ Low current standby mode: $I_{\text{DD}}~\leq~1500~\mu\text{A}$
- Cold spare of digital I/O
- Product options:
 - Sleep mode (Figure 1)
 - Diagnostic loopback mode (Figure 2)
 - Loopback for auto-baud mode (Figure 3)
- Packaging:
 - 8-lead ceramic flat pack
 - Weight: 0.444 g
- Standard Microelectronics Drawing (SMD)

 5962-15232
- OML Q and QML V qualified
- Evaluation board available (UT64CANEVB333x)

OPERATIONAL ENVIRONMENT

- □ Total dose: up to 100 krad(Si)
- □ Latch-up immune (LET \leq 117 MeV-cm²/mg)

APPLICATIONS

- Avionic/Aerospace sensor monitoring
- Avionic/Aerospace system telemetry
- Avionic/Aerospace command and control
- Utility Plane Communication
- Smart Sensor Communication
- □ ARINC825 applications
- Time Triggered (TTP/C and TTP/A) applications

INTRODUCTION

Cobham Semiconductor Solutions UT64CAN333x series of Controller Area Network (CAN) transceivers are developed in accordance with the ISO 11898-2 standard. The CAN transceiver provides the physical layer that permits operation on a differential CAN bus. This series of CAN transceivers are capable of baud rates between 10 kbps to 8 Mbps and include a slope-control mode to control the slew rate of the transmissions for baud rates of up to 500 kbps. A standby mode disables the transmitter circuit to conserve power while monitoring the bus for activity. The UT64CAN333x series of transceivers can support up to 120 nodes.

The three transceiver options are:

- The UT64CAN3330 provides a low power sleep mode of operation
- The UT64CAN3331 supports a bus isolated diagnostic loopback
- The UT64CAN3332 offers the ability to monitor bus traffic enabling the local controller to change its baud rate to match the operations of the bus

OVERVIEW

The UT64CAN333x series CAN transceivers are low power serial communications devices developed to handle the demands of harsh space and terrestrial environments. The UT64CAN333x transceivers are compatible with the ISO 11898-2 and 11898-5 standards, operating as the physical layer between the bus and the CAN controller. All of the transceivers operate on a single +3.3 V power supply and receive data with an input common-mode in the range of -7 V to +12 V. The CANH and CANL outputs are fault protected against short-circuits by over-current shutdown circuitry. Each UT64CAN333x CAN transceiver is capable of:

- Operations on any 5 V bus or 3 V bus
 - The CAN bus is not actively driven during recessive (logic high) transmission and actively driven during the dominant (logic low) transmission. During this time, the differential voltage of both 5 V and 3.3 V devices is the same; however, the common mode output voltage will vary between the 5 V and 3.3 V devices. Since the common mode output voltage may vary slightly, Cobham recommends that system level testing be performed to understand and maximize the performance of operations when using mixed supply CAN buses. Cobham also recommends using split termination to filter common mode high frequency noise from bus lines to reduce emissions.
- Being a cold spare back-up to an active transceiver
- Programmable slew control on the bus driver
- Operating at baud rates up to 8 Mbps
- Low-power standby mode. The standby mode permits the transceiver to enter a low-current, listen only, mode by disabling the driver while the receiver remains active. The local controller has the option to disable low-power standby mode when bus activity resumes
- The RS pin on the UT64CAN333x series CAN transceivers provides three functional modes of operation:
 - High-speed: The high-speed mode of operation is selected by connecting pin 8 directly to ground, allowing the driver output to achieve a baud rate up to 8 Mbps
 - \circ Slope control: The rise and fall slopes are adjusted by connecting a resistor to ground at pin 8. The slope of the driver output signal is proportional to the pin's output current. This slope control is implemented with an external resistor value between 10 kΩ to 100 kΩ. These values control to slew rates between $\sim 2.0 \text{ V/µs}$ to $\sim 20 \text{ V/µs}$
 - Low-power standby mode: If RS is set to a high-level input (> 0.75*V_{DD}), the transceiver enters a lowcurrent, listen only mode of operation. In this mode, the CAN bus driver is disabled and the receiver remains active. The CAN controller has ability to disable low-power standby mode once bus activity resumes

Along with the common functionality described, the UT64CAN333x family of transceivers includes three members, each with a unique mode of operation.

The UT64CAN3330, Figure 1, provides the option to place the transceiver into a low power sleep mode to conserve power when CAN activity is suspended. Sleep mode disables the driver and receiver circuit when the \overline{ZZ} pin is biased $\leq V_{IL}$. The part resumes operations when the \overline{ZZ} pin is biased $\geq V_{IH}$.

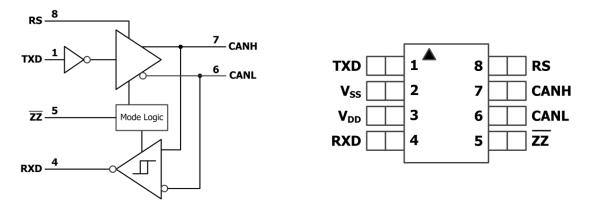


Figure 1: UT64CAN3330 (Sleep)

The UT64CAN3331, Figure 2, provides the option to isolate the transceiver bus connections to permit local node diagnostics, without interrupting operations on the bus. Diagnostic Loopback mode is enabled when the LBK pin is biased $\geq V_{IH}$. Diagnostic Loopback mode is disabled when the LBK pin is biased $\leq V_{IL}$. In the Diagnostic Loopback mode, the CANH/CANL output is placed in the recessive mode.

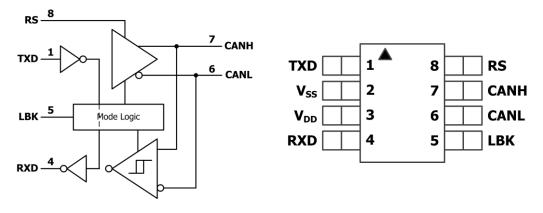


Figure 2: UT64CAN3331 (Diagnostic Loopback)

The UT64CAN3332, Figure 3, provides the option to automatically synchronize the baud rate of the transceiver by matching the bit timing to the traffic on the bus. The Auto Baud Loopback mode is enabled when the AB pin is biased \geq V_{IH}. Auto Baud Loopback mode is disabled when the AB pin is biased \leq V_{IL}. In the Auto-Baud mode, the CANH/CANL output is placed in the recessive mode.

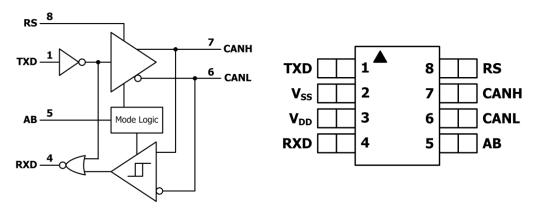


Figure 3: UT64CAN3332 (Auto-Baud Loopback)

PINLIST

I = LVTTL Compatible Input

IPU = LVTTL Compatible Input with Internal Pull-up

IPD = LVTTL Compatible Input with Internal Pull-down O = LVTTL Compatible Output

I/O = LVTTL Compatible Bi-Direct AI = Analog Multi-Function Input

AO = Analog OutputDIO = Differential Input/Output

DIO =	Differential	πραι/Οαιραι	

	Table 1: Pinlist						
NUMBER	NAME	TYPE	DEFAULT	DESCRIPTION			
1	TXD	IPU		Driver Input Data			
4	RXD	0	*	Receiver Output Data			
7	CANH	DIO	*	High-Level CAN Voltage Input/Output			
6	CANL	DIO	*	Low-Level CAN Voltage Input/Output			
		IPD		Active LOW, low-current sleep mode - driver/receiver			
	ZZ			circuits deactivate			
				(UT64CAN3330 only)			
5	LBK	IPD		Active High, diagnostic loopback mode pin			
				(UT64CAN3331 only)			
	AB	IPD		Active HIGH, bus listen-only loopback mode pin			
	AD			(UT64CAN3332 only)			
				Operational Mode Select:			
8	RS	AI	0.7V	Slope Control			
0	NJ	AI	0.7 V	High speed			
				Standby			
3	VDD	POWER		Supply voltage			
2	VSS	POWER		Ground			
NOTE							

NOTE:

* Output follows the input (TXD = Logic Low (Dominant) causes CANH-CANL = 3.0V (Dominant) and RXD = Logic Low (Dominant) or input (TXD = Logic High (Recessive) causes CANH-CANL = 0V (Recessive) and RXD = Logic High (Recessive)

ABSOLUTE MAXIMUM RATINGS^(1, 2)

	Table 2: Absolute Maximum Ratings			
SYMBOL	PARAMETER	MIN	MAX	UNITS
V _{DD}	Supply Voltage Range	-0.3	6.0	V
V _{I/O}	Voltage on TTL pins during operation RXD, TXD, RS, AB, ZZ, LBK	-0.3	5.5	V
V	Voltage on CANH and CANL bus terminal pin (On-orbit) ⁽³⁾	-16	+16	V
V _{CANH/L}	Voltage on CANH and CANL bus terminal pin (Terrestrial) ⁽³⁾	-36	+36	V
I _{I/O}	LVTTL Input/Output DC Current	-10	+10	mA
θ _{JC}	Thermal resistance, junction-to-case		15	°C/W
TJ	Junction Temperature		+150	°C
T _{STG}	Storage Temperature	-65	+165	°C
P _D	Maximum package power dissipation permitted at $T_C=125^{\circ}C^{(4)}$		1.67	W
ESD _{HBM}	ESD Protection (CANL, CANH) ⁽⁵⁾		4000	V
ESD _{HBM}	ESD Protection (TXD, RXD, RS, ZZ, AB, LBK) ⁽⁵⁾		2000	V

NOTE:

Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional 1. operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification are not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability and performance.

2. All voltages referenced to V_{SS}

Radiation effects can adversely affect the reliability and performance of the device during this condition. Contact a factory representative to 3. evaluate the reliability based on the exposure to radiation.

Per MIL-STD-883, method 1012, section 3.4.1, $P_D = (T_J(max)-T_C(max))/\theta_{JC})$ Per MIL-STD-883, method 3015, Table 3 4.

5.

OPERATIONAL ENVIRONMENT⁽¹⁾

Table 3: Operational Environment

SYMBOL	PARAMETER	LIMIT	UNITS
TID	Total Ionizing Dose ⁽²⁾	100	krad(Si)
SEL	Single Event Latchup Immunity ⁽³⁾	≤117	MeV-cm ² /mg

NOTE:

For devices procured with a total ionizing dose tolerance guarantee, post-irradiation performance is guaranteed at 25°C per MIL-STD-883 1. Method 1019, Condition A up to maximum TID level procured.

Per MIL-STD-883, method 1019, condition A 2. 3.

SEL is performed at VDD = 3.6V at 125°C

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

	Table 4: Recor	nmended Operating Cor	nditions		
SYMBOL	PARAMET	PARAMETER		MAX	UNITS
V _{DD}	Supply Voltage Range		3.0	3.6	V
V _{CANH}	Voltage on CANH bus termin	al pin	-7.0	+12.0	V
V _{CANL}	Voltage on CANL bus termina	al pin	-7.0	+12.0	V
T _C	Case Temperature Range		-55	+125	°C
V _{I/O}	Voltage on TTL pins during o RXD, TXD, RS, AB, ZZ, LBK	Voltage on TTL pins during operation RXD, TXD, RS, AB, ZZ, LBK		5.5	V
V _{ID}	Differential input voltage	Differential input voltage		6	V
	Bias input to RS pin for stand	Bias input to RS pin for standby		V _{DD}	V
RS _{BIAS}	Resistor value between the F for slope control	Resistor value between the RS pin and ground for slope control		100	kΩ
	Bias input to RS pin for high	speed (8 Mbps)	V _{SS}	0.3	V
I _{OHC}	High-level output current	CANH, CANL	-50		mA
I _{OLC}	Low-level output current	CANH, CANL		50	mA
I _{IHC}	High-level input current	CANH, CANL	-10		mA
I _{ILC}	Low-level input current	CANH, CANL		10	mA

NOTE:

1. All voltages referenced to V_{SS}

DC ELECTRICAL CHARACTERISTICS (1)

 $(V_{DD}= 3.3V \pm 0.3V, -55^{\circ}C < T_{C} + < +125^{\circ}C)$; Unless otherwise noted, T_{C} is per the temperature range ordered Table 5: DC Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
I_{DD1}	Supply current maintaining a	TXD=0V, R _L =∞, RS=0V, AB=0V, ZZ=V _{DD} or LBK=0V See Figure 4		18	
\mathbf{I}_{DD2}	dominant output	TXD=0V, $R_L=60\Omega \pm 1\%$, RS=0V, AB=0V, $\overline{ZZ}=V_{DD}$, LBK=0V See Figure 4		60	mA
I_{DD3}	Supply current receiving a dominant bus input	$TXD=V_{DD}, R_{L}=60\Omega \pm 1\%, RS=0V, AB=0V \text{ or}$ $\overline{ZZ}=V_{DD} \text{ or } LBK=0V, V_{ID}=1.4V, V_{IC}=2.5V$ See Figure 4		3	mA
I_{DD4}		TXD= V_{DD} , $R_L = \infty$, $RS = 0V$, $AB = 0V$ or $\overline{ZZ} = V_{DD}$ or LBK= $0V$ See Figure 4		3	
\mathbf{I}_{DD5}	Supply current maintaining a Recessive output	TXD=V _{DD} , $R_L=60\Omega \pm 1\%$, RS=0V, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V See Figure 4		3	mA
I_{DD6}		TXD=V _{DD} , $R_L=60\Omega \pm 1\%$, RS=0V, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V, $V_{ID}=0.0V$, $V_{IC}=2.5V$ See Figure 4		3	
I_{DD7}		$R_L = \infty$, $\overline{ZZ} = 0V$, TXD= V_{DD} , RS= $0V$ or V_{DD} See Figure 4		60	
\mathbf{I}_{DD7A}	Sleep supply current (UT64CAN 3330 only)	R_L =60Ω ±1%, \overline{ZZ} =0V, TXD=V _{DD} , RS=0V or V _{DD} See Figure 4		60	μA
I_{DD8}	(,)	$ \begin{array}{c} R_L{=}60\Omega \pm 1\%, \ , \ \overline{ZZ}{=}0V, \ TXD{=}V_{DD}, \ RS{=}0V \ \text{or} \ V_{DD}, \\ V_{ID}{=}0.0V, \ V_{IC}{=}2.5V \\ & \text{See Figure 4} \end{array} $		115	
I_{DD9}		$R_L = \infty$, RS=V _{DD} , TXD=V _{DD} , AB=0V or $\overline{ZZ} = V_{DD}$ or LBK=0V See Figure 4		1.6	
I_{DD10}	Standby supply current	R_L =60Ω ±1%, RS=V _{DD} , TXD=V _{DD} , AB=0V or \overline{ZZ} =V _{DD} or LBK=0V See Figure 4		1.65	mA
I _{DD11}	_	$ \begin{array}{c} R_{L} = 60\Omega \ \pm 1\%, \ RS = V_{DD}, \ TXD = V_{DD}, \ AB = 0V \ \text{or} \ \overline{ZZ} = V_{DD} \\ \text{or} \ LBK = 0V, \ V_{ID} = 0.0V, \ V_{IC} = 2.5V \\ \text{See Figure 4} \end{array} $		1.6	-
I _{DD12}	Supply Current Under High Voltage Fault ⁽²⁾	$R_L = \infty$, RS=0V, TXD=V _{DD} , AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V, $V_{CANH/L}=+/-24V$ See Figure 4		6	mA
I_{DD13}		$R_L = \infty$, RS=0V, TXD=0V, AB=V _{DD} See Figure 4		3	
\mathbf{I}_{DD13A}	Supply Current Operating in Auto Loopback	R_L =60 Ω ±1%, RS=0V, TXD=0V, AB=V _{DD} See Figure 4		3	mA
I_{DD13B}	(UT64CAN 3332 only)	$ \begin{array}{c} R_L{=}60\Omega \pm 1\%, RS{=}0V, TXD{=}0V, AB{=}V_{DD}, V_{ID}{=}1.4V, \\ V_{IC}{=}2.5V \\ \text{See Figure 4} \end{array} $		3	
I_{DD14}	Supply Current Operating in – Diagnostic Loopback	$R_{L} = \infty$, RS=0V, TXD=0V, LBK=V _{DD} See Figure 4		3	mA
I_{DD14A}	(UT64CAN 3331 only)	R_L =60 Ω ±1%, RS=0V, TXD=0V, LBK=V _{DD} See Figure 4		3	

NOTE:

1.

All voltages referenced to V_{SS} Guaranteed by characterization for $V_{\text{CANH/L}}$ = +/-36V 2.

DRIVER⁽¹⁾

(V_{DD} = 3.3V ± 0.3V, -55°C < T_C < +125°C); Unless otherwise noted, T_C is per the temperature range ordered

		Table 6: DC Electrical Characteristics			
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
V_{CANH1}	Bus output voltage (dominant) CANH	TXD=0V, RS=0V, $R_L=60\Omega \pm 1\%$, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V See Figure 5 and Figure 6	2.25	V_{DD}	v
V _{CANL1}	Bus output voltage (dominant) CANL	TXD=0V, RS=0V, $R_L=60\Omega \pm 1\%$, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V See Figure 5 and Figure 6	0.50	1.25	V
V _{CANH2}	Bus output voltage (recessive) CANH	TXD= V_{DD} , RS=0V, R_L =60 $\Omega \pm 1\%$, AB=0V or \overline{ZZ} = V_{DD} or LBK=0V See Figure 5 and Figure 6	2.0	3.0	V
V _{CANL2}	Bus output voltage (recessive) CANL	TXD=V _{DD} , RS=0V, R _L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V See Figure 5 and Figure 6	2.0	3.0	v
V_{ODD1}	Differential output voltage	TXD=0V, RS=0V, $R_L=60\Omega \pm 1\%$, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V See Figure 5 and Figure 6	1.5	3.0	v
V _{ODD2}	(dominant)	TXD=0V, RS=0V, V_{TEST} = -7 to +12V, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V See Figure 6 and Figure 7	1.2	3.0	
V _{ODR1}	Differential output voltage	TXD=V _{DD} , RS=0V, R _L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V See Figure 5 and Figure 6	-120	12	mV
V _{ODR2}	(recessive)	TXD=V _{DD} , RS=0V, $R_L = \infty$, AB=0V or $\overline{ZZ} = V_{DD}$ or LBK=0V See Figure 5 and Figure 6	-500	50	mV
I_{OSH1}		VCANH=-7 V, CANL= ∞ , TXD=0V, RS=0V, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V See Figure 8	-250		
I _{OSH2}	Short-circuit output ⁽²⁾	VCANH=12 V, CANL= ∞ , TXD=0V, RS=0V, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V See Figure 8		3	mA
I _{OSL1}	Short-circuit output ⁽²⁾	VCANL=-7 V, CANH= ∞ , TXD=0V, RS=0V, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V See Figure 8	-1		IIIA
I _{OSL2}		VCANL=12 V, CANH= ∞ , TXD=0V, RS=0V, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V See Figure 8		250	

NOTE:

All voltages referenced to V_{SS}
 Guaranteed by characterization

RECEIVER⁽¹⁾

(V_{DD} = 3.3V ± 0.3V, -55°C < T_C < +125°C); Unless otherwise noted, T_C is per the temperature range ordered

SYMBOL	PARAMETER	Table 7: DC Electrical Characterist		MIN	MAX	UNIT
STINDUL		CONDITION	5	MITIN	MAA	UNTI
$V_{\rm IT+}$	Positive-going input threshold voltage	AB=0V or ZZ=V _{DD} or LBK	=0V, V _{IC} =2.5V		900	
V_{Π^-}	Negative-going input threshold voltage	See Figure 9 and T	able 13	500		mV
V_{HST}	Hysteresis voltage	V _{HST} =V _{IT+} – V	Π-	20		
\mathbf{I}_{IR1}		V_{CANH} or $V_{CANL} = 12V$	TXD=V _{DD} , AB=0V		500	
\mathbf{I}_{IR2}	– Bus input current	V_{CANH} or V_{CANL} = 12V and $V_{DD} \le V_{SS}$ +0.3V	or $\overline{ZZ} = V_{DD}$, AB=0V or $\overline{ZZ} = V_{DD}$ or LBK=0V, Other bus		600	μA
\mathbf{I}_{IR3}		V_{CANH} or $V_{CANL} = -7V$	pin (V_{CANH} or V_{CANL})	-610		P., (
$\mathbf{I}_{\mathrm{IR4}}$	_	V_{CANH} or $V_{CANL} = -7V$ and $V_{DD} \le V_{SS}+0.3V$	at 0V	-450		
C _H	CANH capacitance ⁽²⁾	CANH to V_{SS} , $V_{I}=0.025*Sin$ TXD= V_{DD} , AB=0V or $\overline{ZZ}=V_{DD}$			50	
CL	CANL capacitance ⁽²⁾	CANL to V_{SS} , $V_{I}=0.025$ *Sir TXD=V _{DD} , AB=0V or \overline{ZZ} =V	n(2E6πt)+2.3V,		50	pF
C_{ID}	Differential capacitance ⁽²⁾	CANH to CANL, VI = 0.025 *Sir AB=0V or \overline{ZZ} =V _{DD} or	. ,,		25	
R_{ID}	Differential input resistance			40	100	
R _H	Single ended input resistance CANH	AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V	20	50	kΩ	
R_L	Single ended input resistance CANL			20	50	
R _M	Percent difference between RH and RL	$\frac{2* (\mathbf{R}_L-\mathbf{R}_H) }{(\mathbf{R}_L+\mathbf{R}_H)}*$	100		3.0	%

NOTE:

All voltages referenced to V_{SS}
 Capacitance is measured for initial qualification and when design changes might affect the input/output capacitance

ANALOG INPUT (RS)⁽¹⁾

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V_{RS1}	Input voltage for enabling High- speed mode (8Mbps operation)	TXD=V _{DD} , R_L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V	V_{SS}	300	mV
V_{RS2}	Input Voltage for enabling Standby mode	TXD=V _{DD} , R_L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V	0.75*V _{DD}	5.5	V
\mathbf{I}_{RS1}	High-Speed mode input current	V _{RS} =0V	-500	-100	μA
\mathbf{I}_{RS2}	Standby mode input current	V_{RS} =0.75* V_{DD}		30	μA
\mathbf{I}_{RS3}	Standby mode input current	V _{RS} =5.5V		50	μA
\mathbf{I}_{RS4}	Cold sparing leakage current	V_{RS} =5.5V or $V_{RS} \le 0.3V$, $V_{DD} \le V_{SS}$ +0.3V	-20	20	μA

(V_{DD}= $3.3V \pm 0.3V$, $-55^{\circ}C < T_{C} < +125^{\circ}C$); Unless otherwise noted, T_C is per the temperature range ordered

NOTE:

1. All voltages referenced to V_{ss}

TTL I/O (TXD, \overline{ZZ} , AB, RXD, LBK) ⁽¹⁾

 $(V_{DD}= 3.3V \pm 0.3V, -55^{\circ}C < T_{C} < +125^{\circ}C)$; Unless otherwise noted, T_{C} is per the temperature range ordered Table 9: DC Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
$V_{\rm IH}$	Input Voltage High		2.0		V
V_{IL}	Input Voltage Low			0.8	V
\mathbf{I}_{IOD}	Input leakage current on TXD	V_{in} =0V or V_{in} =5.5V	-60	100	μA
I _{IO}	Input leakage current on pins (ZZ, AB, LBK)	V_{in} =0V or V_{in} =5.5V	-10	100	μA
I_{CS}	Cold sparing leakage current (TXD, ZZ, AB, RXD, LBK)	V_{in} =0.0V and V_{in} =5.5V, $V_{DD} \le V_{SS}$ +0.3V	-20	20	μA
V _{OH}	Output high voltage on RXD	I _{OH} =-4mA	2.4		V
V _{OL}	Output Low voltage on RXD	I _{OL} =4mA		0.4	V
C _{IO}	Input Capacitance ⁽²⁾	TXD or \overline{ZZ} or AB or RXD or LBK to V _{SS} , VI=0.025*Sin(2E6 π t), RS=0V		10	pF

NOTE:

All voltages referenced to V_{ss} 1.

2. Guaranteed by characterization

AC ELECTRICAL CHARACTERISTICS

DRIVER⁽¹⁾

(V_{DD}= $3.3V \pm 0.3V$, $-55^{\circ}C < T_{C} < +125^{\circ}C$); Unless otherwise noted, T_C is per the temperature range ordered

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
t_{PLHT1}	Propagation delay time (TXD input dominant to CAN dominant) ⁽²⁾	$\begin{array}{l} \text{RS=0V, } \text{R}_{\text{L}}\text{=}60\Omega \pm 1\%, \text{AB=0V or } \overline{\text{ZZ}}\text{=}\text{V}_{\text{DD}} \text{ or} \\ \text{LBK=0V, } \text{V}_{\text{TXD}} \leq 125 \text{kHz} \text{ (Square wave, 50\% duty} \\ \text{cycle, } \text{tr} \leq 6 \text{ns, } \text{tf} \leq 6 \text{ns, } \text{Z}_{\text{O}}\text{=}50\Omega \text{)}, \\ \text{See Figure 10} \end{array}$		85	
t _{plht2}		RS with 10kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125 kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50Ω), See Figure 10		260	ns
t _{plht3}		$ \begin{array}{l} \text{RS with } 100 \text{k}\Omega \text{ to } \text{V}_{\text{SS}} \text{, } \text{R}_{\text{L}} = 60\Omega \pm 1\% \text{, } \text{AB} = 0 \text{V or} \\ \overline{\text{ZZ}} = \text{V}_{\text{DD}} \text{ or } \text{LBK} = \text{V} \text{, } \text{V}_{\text{TXD}} \leq 125 \text{ kHz} \text{ (Square wave,} \\ 50\% \text{ duty cycle, } \text{tr} \leq 6\text{ns, } \text{tf} \leq 6\text{ns, } \text{Z}_{\text{O}} = 50\Omega \text{)}, \\ \text{See Figure } 10 \end{array} $		1200	
t _{phlT1}		$\begin{array}{l} \text{RS=0V, } \text{R}_{\text{L}}\text{=}60\Omega \ \pm1\%, \ \text{AB=0V or } \overline{\text{ZZ}}\text{=}\text{V}_{\text{DD}} \text{ or} \\ \text{LBK=0V, } \text{V}_{\text{TXD}} \le 125 \text{kHz} \ (\text{Square wave, } 50\% \ \text{duty} \\ \text{cycle, } \text{tr} \le 6 \text{ns, } \text{tf} \le 6 \text{ns, } \text{Z}_{\text{O}}\text{=}50\Omega), \\ \text{See Figure } 10 \end{array}$		120	
t _{phlt2}	Propagation delay time, (TXD recessive to CAN recessive) ⁽²⁾	$ \begin{array}{l} \text{RS with } 10 \text{k}\Omega \text{ to } \text{V}_{\text{SS}}, \ \text{R}_{\text{L}} = 60 \Omega \ \pm 1\%, \ \text{AB} = 0 \text{V or} \\ \overline{\text{ZZ}} = \text{V}_{\text{DD}} \text{ or } \text{LBK} = 0 \text{V}, \ \text{V}_{\text{TXD}} \le 125 \text{kHz} \ (\text{Square wave}, \\ 50\% \ \text{duty cycle}, \ \text{tr} \le 6 \text{ns}, \ \text{tf} \le 6 \text{ns}, \ \text{Z}_0 = 50 \Omega), \\ \text{See Figure } 10 \end{array} $		485	ns
t _{PHLT3}		RS with 100kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50Ω), See Figure 10		1650	

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
t _{skpt1}		$\begin{array}{l} \text{RS=0V, } \text{R}_{\text{L}}\text{=}60\Omega \ \pm1\%, \ \text{AB=0V or } \overline{\text{ZZ}}\text{=}\text{V}_{\text{DD}} \text{ or} \\ \text{LBK=0V, } \text{V}_{\text{TXD}} \leq 125 \text{kHz} \ (\text{Square wave, } 50\% \ \text{duty} \\ \text{cycle, } \text{tr} \leq 6 \text{ns, } \text{tf} \leq 6 \text{ns, } \text{Z}_{\text{O}}\text{=}50\Omega), \\ \text{See Figure } 10 \end{array}$		75	
t _{skpt2}	Pulse skew $(t_{PHL} - t_{PLH})^{(2)}$	RS with 10kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50Ω), See Figure 10		450	ns
t _{skpt3}		RS with 100kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ 50Ω), See Figure 10		1250	
t _{RT1}		$\begin{array}{l} \text{RS=0V, } \text{R}_{\text{L}}\text{=}60\Omega \ \pm1\%, \ \text{AB=0V or } \overline{\text{ZZ}}\text{=}\text{V}_{\text{DD}} \text{ or} \\ \text{LBK=0V, } \text{V}_{\text{TXD}} \leq 125 \text{kHz} \ (\text{Square wave, } 50\% \ \text{duty} \\ \text{cycle, } \text{tr} \leq 6 \text{ns, } \text{tf} \leq 6 \text{ns, } \text{Z}_{\text{O}}\text{=}50\Omega), \\ \text{See Figure } 10 \end{array}$	5	80	
t _{rt2}	Differential CAN signal rise time ^{(2) (3)}	RS with 10kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6 s, tf ≤ 6ns, Z ₀ =50Ω), See Figure 10	14	250	ns
t _{RT3}		$ \begin{array}{l} \text{RS with } 100 \text{k}\Omega \text{ to } \text{V}_{\text{SS}}, \ \text{R}_{\text{L}} = 60\Omega \pm 1\%, \ \text{AB} = 0 \text{V or} \\ \overline{\text{ZZ}} = \text{V}_{\text{DD}} \text{ or } \text{LBK} = 0 \text{V}, \ \text{V}_{\text{TXD}} \leq 125 \text{kHz} \ (\text{Square wave}, \\ 50\% \ \text{duty cycle}, \ \text{tr} \leq 6 \text{ns}, \ \text{tf} \leq 6 \text{ns}, \ \text{Z}_{\text{O}} = 50\Omega), \\ \text{See Figure } 10 \end{array} $	40	1000	
t _{FT1}		$\begin{array}{l} \text{RS=0V, } \text{R}_{\text{L}}\text{=}60\Omega \ \pm1\%, \ \text{AB=0V or } \overline{\text{ZZ}}\text{=}\text{V}_{\text{DD}} \text{ or} \\ \text{LBK=0V, } \text{V}_{\text{TXD}} \leq 125 \text{kHz} \ (\text{Square wave, } 50\% \ \text{duty} \\ \text{cycle, } \text{tr} \leq 6 \text{ns, } \text{tf} \leq 6 \text{ns, } \text{Z}_{\text{O}}\text{=}50\Omega), \\ \text{See Figure } 10 \end{array}$	20	75	
t _{FT2}	Differential CAN signal fall time ^{(2) (3)}	RS with 10kΩ to V _{SS} , R _L =60Ω ±1%, AB=0V or $\overline{ZZ}=V_{DD}$ or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50Ω), See Figure 10	30	185	ns
t _{FT3}		$ \begin{array}{l} \text{RS with } 100 \text{k}\Omega \text{ to } \text{V}_{\text{SS}}, \ \text{R}_{\text{L}} = 60\Omega \pm 1\%, \ \text{AB} = 0 \text{V or} \\ \overline{\text{ZZ}} = \text{V}_{\text{DD}} \text{ or } \text{LBK} = 0 \text{V}, \ \text{V}_{\text{TXD}} \leq 125 \text{kHz} \ (\text{Square wave}, \\ 50\% \ \text{duty cycle}, \ \text{tr} \leq 6 \text{ns}, \ \text{tf} \leq 6 \text{ns}, \ \text{Z}_{\text{O}} = 50\Omega), \\ \text{See Figure } 10 \end{array} $	40	800	
t _{ens}	Enable time from standby deactivate to CAN dominant	$\begin{array}{l} \text{TXD=0V, } \text{R}_{\text{L}} = 60\Omega \ \pm 1\%, \ \text{AB=0V or } \overline{\text{ZZ}} = \text{V}_{\text{DD}} \text{ or} \\ \text{LBK=0V, } \text{V}_{\text{RS}} \le 125 \text{kHz} \ (\text{Square wave, } 50\% \ \text{duty} \\ \text{cycle, } \text{tr} \le 6\text{ns, } \text{tf} \le 6\text{ns, } \text{Z}_{\text{O}} = 50\Omega, \\ \text{RS} \ < \ 0.75^* \text{V}_{\text{DD}} \text{), } \text{See Figure } 11 \end{array}$		1.50	μs
t _{enz}	Enable time from sleep deactivate to CAN dominant	$\begin{array}{l} \text{RS=0V, TXD=0V, } \text{R}_{\text{L}} = 60\Omega \pm 1\%, \textit{V}_{ZZ} \leq 50 \text{kHz}} \\ \text{(Square wave, 50\% duty cycle, tr} \leq 6 \text{ns, tf} \leq 6 \text{ns, Z}_0 = 50\Omega), \text{See Figure 12}} \\ \text{(UT64CAN3330 Only)} \end{array}$		7	μs

SYMBOL	PARAMETER CONDITIONS		MIN	MAX	UNIT
t _{DISS}	Disable time from standby assert to CAN recessive	TXD=0V, R_L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, $V_{RS} \le 125$ kHz (Square wave , 50% duty cycle, tr \le 6ns, tf \le 6ns, Z_0 =50 Ω , RS \ge 0.75*V _{DD}), See Figure 11		150	ns
t _{DISZ}	Disable time from sleep assert to CAN recessive	$ \begin{array}{l} \text{RS=0V, TXD=0V, R_{L}=60\Omega \pm 1\%, V_{ZZ} \leq 50 \text{kHz}} \\ \text{(Square wave, 50\% duty cycle, tr } \leq 6 \text{ns, tf } \leq \\ \text{6ns, Z}_{0} = 50\Omega\text{), See Figure 12} \\ \text{(UT64CAN3330 Only)} \end{array} $		100	ns

NOTE:

1. Per MIL-STD-883, method 3012 2. $C_L = 50 \text{ pF}$ or equivalent on the ATE or 15 pF ±20% for bench test characterization 3. Guaranteed by characterization

RECEIVER⁽¹⁾

 $(V_{DD} = 3.3V \pm 0.3V, -55^{\circ}C < T_{C} < +125^{\circ}C)$; Unless otherwise noted, T_{C} is per the temperature range ordered Table 11: DC Electrical Characteristics

SYMBOL	PARAMETER CONDITIONS		MIN	MAX	UNIT
t _{PLHR}	Propagation delay time (CANH recessive to RXD recessive) ⁽²⁾	$ \begin{array}{l} \text{RS=0V, TXD=V_{\text{DD}}, R_{\text{L}}=\infty, AB=0V \text{ or } \overline{ZZ}=V_{\text{DD}} \text{ or} \\ \text{LBK=0V, } V_{\text{CANH}} \leq 125 \text{kHz} \text{ (Square wave, 50\% duty} \\ \text{cycle, tr} \leq 6\text{ns, tf} \leq 6\text{ns, } Z_{\text{O}}=50\Omega\text{), } V_{\text{CANL}}=1.5\text{V,} \\ \text{See Figure 13} \end{array} $		60	ns
t _{PHLR}	$ \begin{array}{l} \text{RS=0V, TXD=V_{\text{DD}}, R_{\text{L}}=\infty, AB=0V \text{ or } \overline{ZZ}=V_{\text{DD}} \text{ or} \\ \text{Definition of Barbon of CANH} \\ \text{dominant to RXD dominant)}^{(2)} \end{array} \\ \begin{array}{l} \text{RS=0V, TXD=V_{\text{DD}}, R_{\text{L}}=\infty, AB=0V \text{ or } \overline{ZZ}=V_{\text{DD}} \text{ or} \\ \text{LBK=0V, } V_{\text{CANH}} \leq 125 \text{ kHz} \text{ (Square wave, 50\% duty} \\ \text{cycle, tr} \leq 6 \text{ns, } tf \leq 6 \text{ns, } Z_0=50\Omega\text{), } V_{\text{CANL}}=1.5 \text{V}, \\ \text{See Figure 13} \end{array} $			60	ns
t _{skpr}	Pulse skew	$t_{SKPR} = (t_{PHLR} - t_{PLHR})$, See Figure 13		25	ns
t _{RR}	RXD output signal rise time ^{(2) (3)}	$ \begin{array}{l} RS=0V, TXD=V_{DD, R_L=60\Omega \pm 1\%, AB=0V \ or} \\ \overline{ZZ}=V_{DD} \ \text{or} \ LBK=0V, V_{\mathsf{CANH} \leq 125 \text{kHz} \ (Square \ wave, 50\% \ duty \ cycle, \ tr \ \leq 6ns, \ tf \ \leq 6ns, \ Z_0=50\Omega), \\ V_{CANL}=1.5V, \ See \ Figure \ 13 \end{array} $		5	ns
t _{FR}	RXD output signal fall time ^{(2) (3)}	$ \begin{array}{l} RS=0V, TXD=V_{DD, R_{L}=60\Omega \pm 1\%, AB=0V \ or} \\ \overline{ZZ}=V_{DD} \ or \ LBK=0V, V_{CANH} \leq 125 kHz \ (Square wave, \\ 50\% \ duty \ cycle, \ tr \leq 6ns, \ tf \leq 6ns, \ Z_{O}{=}50\Omega), \\ V_{CANL}{=}1.5V, \ See \ Figure \ 13 \end{array} $		5	ns

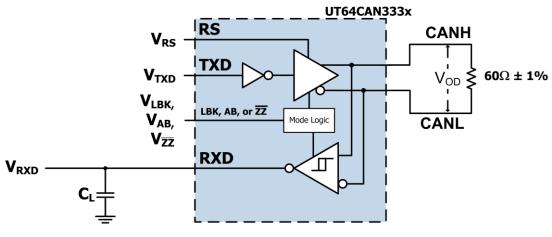
NOTE:

1.Per MIL-STD-883, method 30122. $C_L = 50 \text{ pF or equivalent on the ATE or 15 pF ±20% for bench test characterization3.Guaranteed by characterization$

TRANSCEIVER LOOPBACK⁽¹⁾

 $(V_{DD}= 3.3V \pm 0.3V, -55^{\circ}C < T_{C} < +125^{\circ}C)$; Unless otherwise noted, T_{C} is per the temperature range ordered Table 12: DC Electrical Characteristics

SYMBOL	PARAMETER	Table 12: DC Electrical Characteristics CONDITIONS	MIN	MAX	UNIT	
t _{loopd1}		RS=0V, R _L =60 Ω ±1%, AB=0V or \overline{ZZ} =V _{DD} or LBK=0V, V _{TXD} ≤ 125kHz (Square wave, 50% duty cycle, tr ≤ 6ns, tf ≤ 6ns, Z ₀ =50 Ω), See Figure 14		125		
t _{loopd2}	Total loop delay, TXD to RXD, dominant ⁽²⁾	$ \begin{array}{l} R_{S} \text{ with } 10 k\Omega \text{ to } V_{SS}, R_{L} {=} 60\Omega \pm 1\%, AB {=} 0 V \text{ or} \\ \overline{ZZ} {=} V_{DD} \text{ or } LBK {=} 0 V, V_{TXD} \leq 125 kHz \text{ (Square wave,} \\ 50\% \text{ duty cycle, } tr \leq 6ns, tf \leq 6ns, Z_{O} {=} 50\Omega), \\ \mathrm{See \ Figure \ 14} \end{array} $		800	ns	
t loopd3		$\begin{array}{l} R_{s} \text{ with } 100 k\Omega \text{ to } V_{ss}, \ R_{L}{=}60\Omega \pm 1\%, \ AB{=}0V \text{ or} \\ \overline{ZZ}{=}V_{\text{DD}} \text{ or } LBK{=}0V, \ V_{\text{TXD}} \leq 125 \text{kHz} \text{ (Square wave,} \\ 50\% \text{ duty cycle, } tr \leq 6\text{ns, } tf \leq 6\text{ns, } Z_{\text{O}}{=}50\Omega\text{)}, \\ \text{See Figure } 14 \end{array}$		1500		
t _{loopr1}		R_{S} =0V, R_{L} =60 Ω ±1%, AB=0V or \overline{ZZ} = V_{DD} or LBK=0V, $V_{TXD} \leq$ 125kHz (Square wave, 50% duty cycle, tr \leq 6ns, tf \leq 6ns, Z_{0} =50 Ω), See Figure 14		125		
t _{loopr2}	Total loop delay, TXD to RXD, recessive ⁽²⁾	$ \begin{array}{l} R_{S} \text{ with } 10 k\Omega \text{ to } V_{SS}, R_{L} {=} 60 \Omega \pm 1\%, AB {=} 0 V \text{ or} \\ \overline{ZZ} {=} V_{DD} \text{ or } LBK {=} 0 V, V_{TXD} \leq 125 kHz \text{ (Square wave,} \\ 50\% \text{ duty cycle, } tr \leq 6ns, tf \leq 6ns, Z_{O} {=} 50 \Omega \text{)}, \\ \mathrm{See \ Figure \ 14} \end{array} $		800	ns	
t _{loopr3}		$\begin{array}{l} R_{s} \text{ with } 100 k\Omega \text{ to } V_{ss}, \ R_{L}{=}60\Omega \pm 1\%, \ AB{=}0V \text{ or} \\ \overline{ZZ}{=}V_{\text{DD}} \text{ or } LBK{=}0V, \ V_{\text{TXD}} \leq 125 \text{kHz} \text{ (Square wave,} \\ 50\% \text{ duty cycle, } tr \leq 6\text{ns, } tf \leq 6\text{ns, } Z_{\text{O}}{=}50\Omega\text{)}, \\ \text{See Figure } 14 \end{array}$		1650		
t _{LBK}	Loopback delay, TXD to RXD ⁽²⁾	to RXD ⁽²⁾ $ \begin{array}{l} R_{S} = 0V, \ R_{L} = 60\Omega \pm 1\%, \ LBK = V_{DD}, \ V_{TXD} \leq 125 \text{kHz} \\ (\text{Square wave, 50\% duty cycle, } tr \leq 6\text{ns, } tf \leq 6\text{ns,} \\ Z_{0} = 50\Omega), \ \text{See Figure 15} \ (\text{UT64CAN3331 Only}) \end{array} $		20	ns	
t _{AB1}	Loopback delay, TXD to RXD ⁽²⁾	$\begin{array}{l} R_{S}{=}0V, \ R_{L}{=}60\Omega \ {\pm}1\%, \ AB{=}V_{DD}, \ V_{TXD} \leq 125 kHz \\ (Square wave, 50\% \ duty \ cycle, \ tr \ \leq \ \mathsf{6ns, \ tf \ \leq \ 6ns, \\ Z_{O}{=}50\Omega), \ See \ Figure \ 16 \ (UT64CAN3332 \ Only) \end{array}$		20		
t _{AB2}	Loopback delay, CAN input to RXD ⁽²⁾	delay, CAN input to $ \begin{array}{l} R_{\text{S}} = 0\text{V}, \ \text{TXD} = \text{V}_{\text{DD}}, \ \text{R}_{\text{L}} = \infty, \ \text{AB} = \text{V}_{\text{DD}}, \ \text{V}_{\text{CANH}} \leq 125 \text{kHz} \\ (\text{Square wave}, \ 50\% \ \text{duty cycle}, \ \text{tr} \leq 6 \text{ns}, \ \text{tf} \leq 6 \text{ns}, \\ Z_0 = 50\Omega), \ \text{See Figure 17} \ (\text{UT64CAN3332 Only}) \end{array} $		60	ns	


NOTE:

1. Per MIL-STD-883, method 3012

2. $C_L = 50 \text{ pF}$ or equivalent on the ATE or 15 pF ±20% for bench test characterization

TABLES AND FIGURES

	Table 13: Differential Input Voltage Threshold Test					
INP	OU	TPUT	MEASURED (V)			
VCANH	VCANL	R		VID		
-6.1	-7.0	L		0.9		
12.0	11.1	L		0.9		
-1.0	-7.0	L	VOL	6.0		
12.0	6.0	L		6.0		
-6.5	-7.0	Н		0.5		
12.0	11.5	Н		0.5		
-7.0	-1.0	Н	Vон	6.0		
6.0	12.0	Н		6.0		
Open	Open	Н		Х		

 C_L = 50pF or equiv. ATE load or 15pF±20% Bench test load

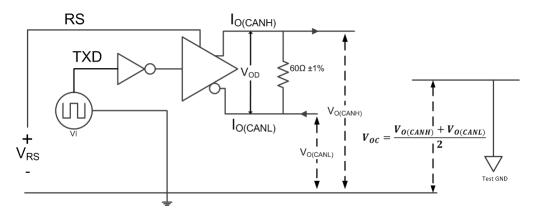


Figure 5: Driver Voltage, Current, and Test Definition

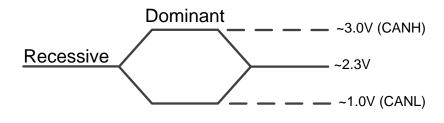
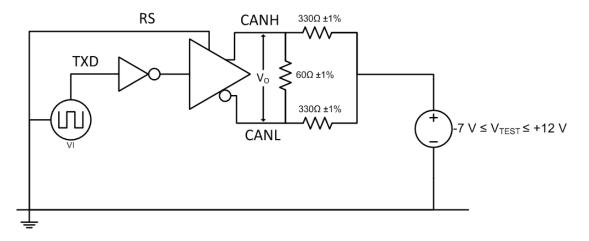
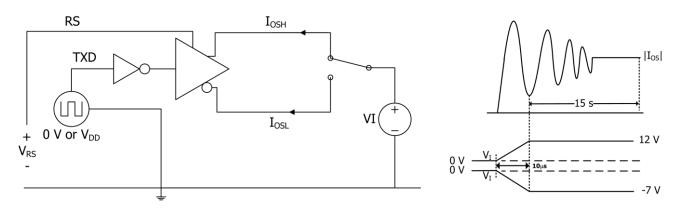




Figure 6: Bus Logic State Voltages Definitions

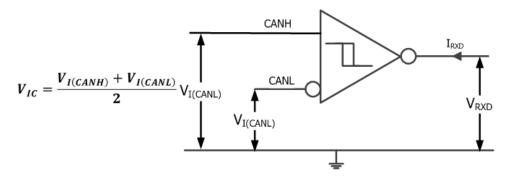
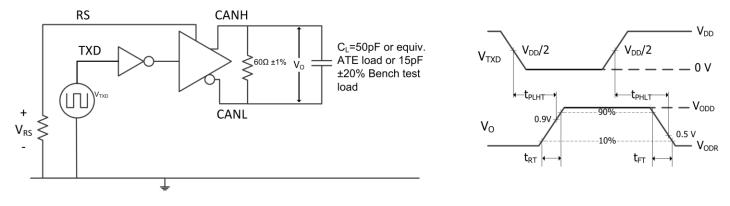



Figure 9: Receiver Voltage and Current Definitions

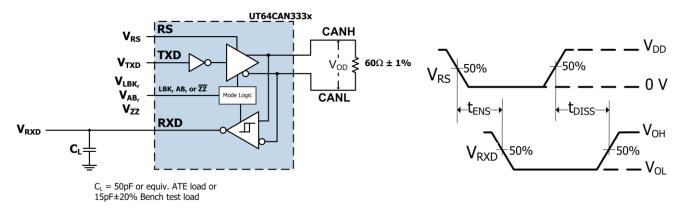
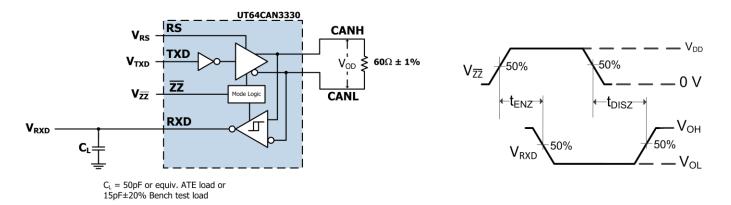



Figure 11: t_{ENS} and t_{DISS} Test Circuit and Voltage Waveforms

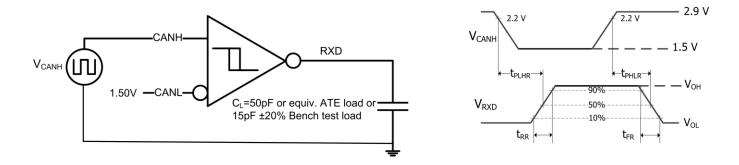


Figure 13: Receiver Test Circuit and Voltage Waveforms

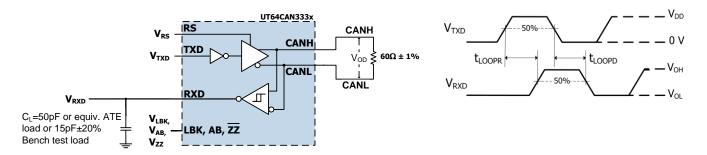
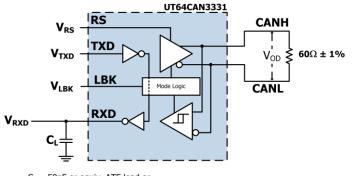
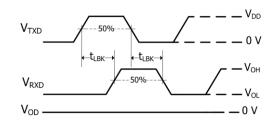
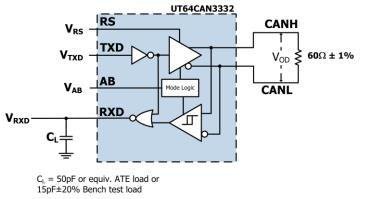




Figure 14: t_{LOOP} Test Circuit and Voltage Waveforms

_ V_{DD}

- 0 V


- V_{OH}

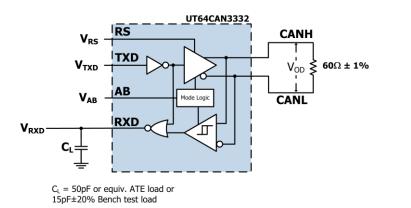
- V_{OL}

_ 0 V

 C_L = 50pF or equiv. ATE load or 15pF±20% Bench test load

V_{TXD}

 V_{RXD}


 V_{OD}

-50%

-t_{AB1}

←t_{AB1}

50%

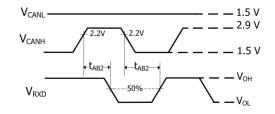


Figure 17: t_{AB2} Test Circuit and Voltage Waveforms

TEST LOADS

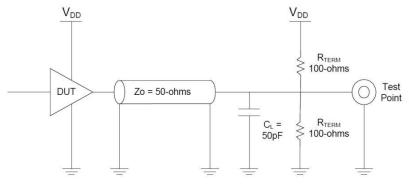
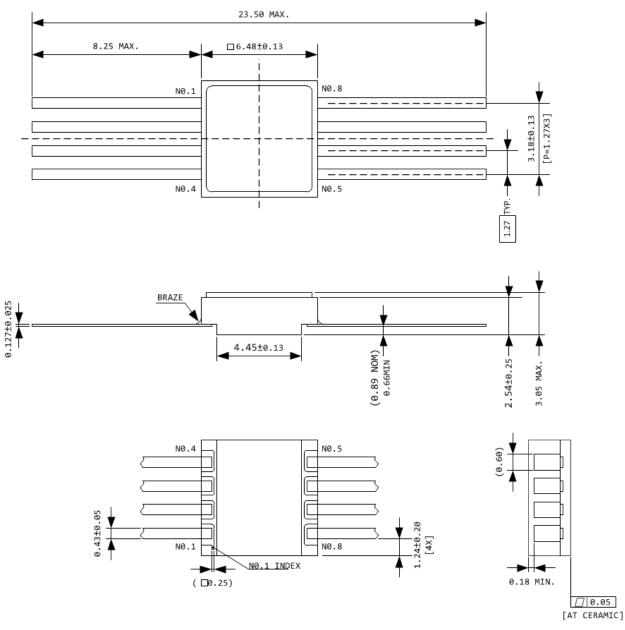
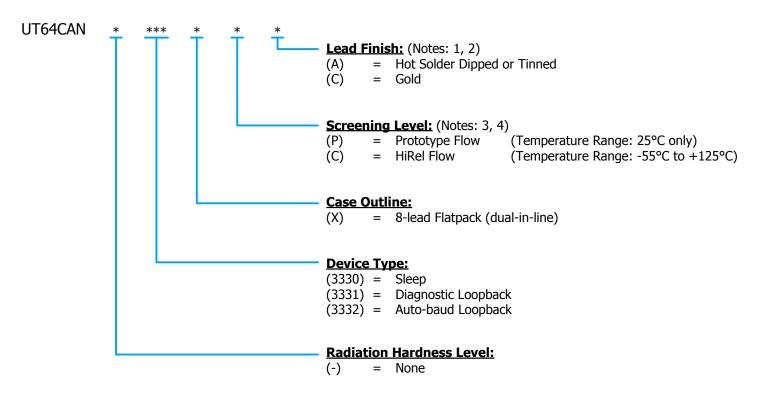



Figure 18: Standard Test Load

NOTE:

- 1.
- C_{L} = 50 pF minimum or equivalent (includes scope probe and test socket) Measurement of data output occurs at the low to high or high to low transition mid-point, typically $V_{\text{DD}}/2$ 2.

PACKAGING

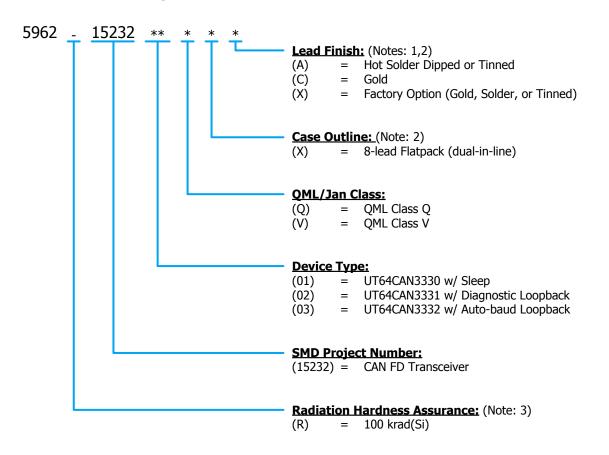

NOTES:

- 1. Package Material: Opaque 90% Minimum Alumina Ceramic.
- All Exposed metal areas must be gold plated 100 to 225 microinches thick over electroplated nickel undercoating 100 to 350 microinches thick per MIL-PRF-38535.
- 3. The seal ring is electrically connected to V_{SS} .
- 4. Finished Package Weight: 450 mg (maximum)

Figure 19: 8-lead Ceramic Flatpack (Units in mm)

ORDERING INFORMATION

Generic Datasheet Part Numbering



NOTES:

- 1. Lead finish (A,C, or X) must be specified.
- 2. If and "X" is specified when ordering, then the part marking will match the lead finish applied to the device shipped
- 3. Prototype Flow per Aeroflex Manufacturing Flows Document. Lead finish is GOLD "C" only. Radiation is neither tested nor guaranteed.
- 4. HiRel Flow per Cobham Manufacturing Flows Document. Radiation TID tolerance may not be ordered.

ORDERING INFORMATION

SMD Part Numbering

NOTES:

- 1. Lead finish (A,C, or X) must be specified.
- 2. If and "X" is specified when ordering, then the part marking will match the lead finish applied to the device shipped
- 3. Total dose radiation must be specified when ordering. QML Q and QML V are not available without radiation hardening. For prototype inquiries, contact factory.

24

REVISION HISTORY

Table 14: Revision History			
Date	Rev. #	Change Description	
11/17/15	2.0.0	Initial release of Preliminary Datasheet	
12/15/15	2.1.0	Removed VOCPP spec, corrected typos, updated RXD rise and fall time spec, and updated figure 13.	
12/17/15	2.2.0	Updated SEL limit on feature page, Changed note 3 in table 2, changed note 3 and SEL limit in table 3, updated figures and tables, updated RXD rise and fall time spec, removed transient overvoltage spec, removed I/O capacitance minimum	
1/28/15	2.3.0	QML Q approved. Minor updates to formatting and added ATE equivalent circuit. Added mixed signal bus operation and split termination verbiage.	
05/01/16	2.4.0	Changed tPLHT3 from 870ns to 1200ns.	
05/17/16	2.5.0	Removed the Recommended PCB Footprint	
10/07/16	2.5.1	Revised Iosh2 specification from 1 mA to 3 mA. Updated the VCANH1 minimum specification to 2.25. Updated figures to show CL=50pF. Updated Tables 2 and 4 with LBK signal. Updated Figures 2, 3, 11, 12, 13, 14, and 17.	

Cobham Semiconductor Solutions – Datasheet Definitions

Advanced Datasheet - Product In Development Preliminary Datasheet - Shipping Prototype Datasheet - Shipping QML & Reduced Hi – Rel

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, echnology, or software are exported from the U.S.: These commodities, technology, or software were exported from the Inited States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Semiconductor Solutions 4350 Centennial Blvd Colorado Springs, CO 80907

E: info-ams@aeroflex.com T: 800 645 8862

Aeroflex Colorado Springs Inc., dba Cobham Semiconductor Solutions, reserves the right to make changes to any products and services described herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.