

UT54BS16245 16-bit Bus Switch

Released Datasheet Cobham.com/HiRel January 4, 2017

The most important thing we build is trust

FEATURES

- □ 3.3V operating power supply with typical 11Ω switch connection between ports
- \Box 5.0V operating power supply with typical 5Ω switch connection between ports
- Bidirectional operation
- ☐ Ultra-low power CMOS technology
- ☐ ESD Rating HBM: 2000V, Class 2
- ☐ Signal Isolation: -60dB
- ☐ Channel Bandwidth (3dB): 500MHz
- ☐ Standard Microcircuit Drawing (SMD):
 - o **5962-15240**
 - o QML Q and V compliant part
- ☐ Package Options: 48-lead flatpack

OPERATIONAL ENVIRONMENT

- ☐ Temperature Range: -55°C to +125°C
- ☐ Total Dose: 300 krad(Si)
- ☐ SEL Immune: ≤100 MeV-cm²/mg

APPLICATIONS

- Memory Interface
- Bus Isolation
- Redundancy
- Supports Analog Applications

INTRODUCTION

The UT54BS16245 provides 16 bits of high-speed CMOS-compatible bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay. The device is organized as a two 8-bit low-impedance switches with separate output-enable (/EN) inputs. When output enable (/EN) is low, the associated 8-bit bus switch is on and port A is connected to port B. When /EN is high, the switch is open and a high-impedance state exists between the two ports.

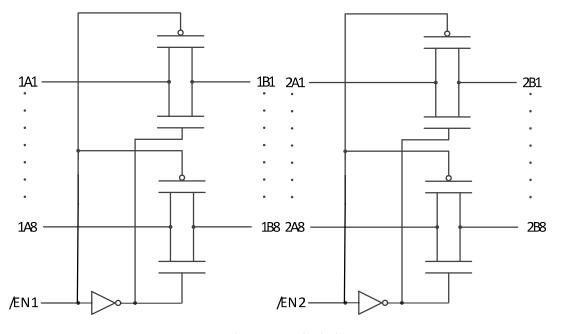


Figure 1: 16-bit Bus Switch Block Diagram

PINLIST

TO = TTL Output TTB = Three-State TTL Bidirectional

CI = CMOS Input

TUI = TTL Input (Internally Pulled High)
TI = TTL Input

TTO = Three-State TTL Output DIO = Differential Input/Output

Table 1: Pinlist

NUMBER	NAME	DESCRIPTION
26, 27, 29, 30, 32, 33, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47	nAn	Port A Pins
2, 3, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23	nBn	Port B pins
25, 48	/ENn	Active LOW enable pin
4, 10, 15, 21, 28, 34, 39, 45	V_{SS}	Ground Pin
7, 18, 31, 42	V_{DD}	Supply Pin, +3.3V or +5.0V
1, 24	NC	No Connect (electrically not connected to die)

PACKAGE PINOUT DIAGRAM

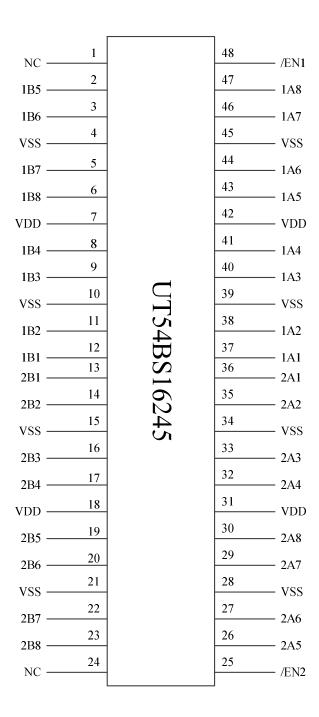


Figure 2: Package Pinout Diagram

ABSOLUTE MAXIMUM RATINGS^{1, 2}

Table 2: Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNITS
V_{DD}	Positive Supply Voltage	-0.5	+7.2	V
V_{I}	Input Voltage	-0.5	V _{DD} +0.3	V
I _{CCC} DC Channel Current			65	mA
P _D Max Power Dissipation ⁽³⁾			1.6	W
T _J Junction Temperature			+150	°C
θ_{JC} Thermal resistance, junction-to-case			15	°C/W
T _{STG} Storage Temperature		-65	+150	°C
ESD _{HBM}	ESD Protection ⁽⁴⁾		2000	V

NOTE:

- 1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification are not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability and performance.
- 2. All voltages referenced to V_{SS}
- 3. Per MIL-STD-883, method 1012, section 3.4.1, $P_D = (T_J(max) T_C(max))/\theta_{JC}$
- 4. Per MIL-STD-883, method 3015, Table 3

OPERATIONAL ENVIRONMENT⁽¹⁾

Table 3: Operational Environment

SYMBOL	PARAMETER	LIMIT	UNITS
TID	Total Ionizing Dose ⁽²⁾	300	krad(Si)
SEL	Single Event Latchup Immunity ⁽³⁾	≤100	MeV-cm ² /mg

NOTE:

- 1. For devices with procured with a total ionizing dose tolerance guarantee, post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to maximum TID level procured.
- 2. Per MIL-STD-883, method 1019, condition A
- 3. SEL is performed at VDD = Max Voltage at 125°C

RECOMMENDED OPERATING CONDITIONS(1)

Table 4: Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	MAX	UNITS
V_{DD}	Positive Supply Voltage	3.0 or 4.5	3.6 or 5.5	V
V_{IN}	Input Voltage on any pin	0.0	V_{DD}	V
T_C	Case Temperature Range		+125	°C
t _R Rise time		5		ns
t _F Fall time		5		ns
I_{CCC}	DC Channel Current		60	mA

NOTE:

1. All voltages referenced to V_{SS}

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(V_{DD} = 5.0V \pm 0.5V, 3.3V \pm 0.3V, -55^{\circ}C < T_{C} < +125^{\circ}C)$; Unless otherwise noted, T_{C} is per the temperature range ordered Table 5: DC Electrical Characteristics

SYMBOL	PARAMETER	CONDTIONS	MIN	MAX	UNITS
V_{IH}	High digital input voltage	$V_{DD} = 3.6, 5.5$	0.7* V _{DD}		V
$V_{ m IL}$	Low digital input voltage	$V_{DD} = 3.0, 4.5$		0.3* V _{DD}	V
${ m I}_{ m ID}$	Leakage current digital	V_{DD} (max); $V_{I}=V_{DD}$ or V_{SS}	-1	1	μA
${ m I}_{ m IA}$	Leakage current analog	V_{DD} (max); $V_{I}=V_{DD}$ or V_{SS}	-1	1	μA
I_{DD}	Active supply current	$V_{DD} = 3.6, 5.5$		0.1	mA/MHz
I_{DDQ}	Quiescent Supply Current	V_{DD} (max); I_{O} =0mA; /EN= V_{DD}		10	μA
C_{I}	Input Capacitance (/EN) (2)	$V_{I}=V_{DD}$ or V_{SS}		18	pF
C _{IO(OFF)}	Channel pin capacitance (channel disabled) (2)	V_{DD} (max); $V_{O}=V_{DD}$ or V_{SS} ; $V_{I}=V_{DD}/2$; $/EN=V_{DD}$		18	pF
		V_{DD} =4.5V, V_{I} = V_{SS} , /EN=0V, I_{O} =30mA		10	Ω
D	Resistance through switch	V_{DD} =4.5V, V_{I} = V_{SS} , /EN=0V, I_{O} =15mA		10	Ω
R _{ONL}	(channel input low) (3)	V_{DD} =3.0V, V_{I} = V_{SS} , /EN=0V, I_{O} =30mA		12	Ω
		V_{DD} =3.0V, V_{I} = V_{SS} , /EN=0V, I_{O} =15mA		12	Ω
		V_{DD} =4.5V, V_{I} = V_{DD} , /EN=0V, I_{O} =-30mA		10	Ω
D	Resistance through switch	V_{DD} =4.5V, V_{I} = V_{DD} , /EN=0V, I_{O} =-15mA		10	Ω
R _{ONH}	(channel input high) (3)	V_{DD} =3.0V, V_{I} = V_{DD} , /EN=0V, I_{O} =-30mA		12	Ω
		V_{DD} =3.0V, V_{I} = V_{DD} , /EN=0V, I_{O} =-15mA		12	Ω
		V_{DD} =4.5V, /EN=0V, I_{O} =+/-15mA, 25°c V_{IN} = V_{ss} , V_{DD} /2, V_{DD}		2	Ω
R _{ON(FLAT)}	Switch on resistance (3)	V_{DD} =3.0V, /EN=0V, I_{O} =+/-15mA, 25°c V_{IN} = V_{ss} , V_{DD} /2, V_{DD}		10	Ω

NOTE:

- All voltages referenced to V_{SS}
 Per MIL-STD-883, method 3012
- 3. Guaranteed by Characterization

AC ELECTRICAL CHARACTERISTICS¹

 $(V_{DD}=5.0V\pm0.5V,\,3.3V\pm0.3V,\,-55^{\circ}C< T_{C}<+125^{\circ}C);$ Unless otherwise noted, T_{C} is per the temperature range ordered Table 6: AC Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS
t _{PD15}	Channel Propagation Delay ⁽¹⁾	V_{DD} = 5.0V ± 0.5V, I1=+/-15mA, /EN= V_{ss}		250	ps
t _{EN}	Channel Enable Delay ⁽²⁾	$V_{DD} = 5.0V \pm 0.5V$	1	5	ns
t_{DIS}	Channel Disable Delay ⁽²⁾	$V_{DD} = 5.0V \pm 0.5V$	1	5	ns
t _{PD15}	Channel Propagation Delay ⁽¹⁾	V_{DD} = 3.3V ± 0.3V, I1=+/-15mA, /EN= V_{ss}		250	ps
t _{EN}	Channel Enable Delay ⁽²⁾	$V_{DD} = 3.3V \pm 0.3V$	1	7	ns
t _{DIS}	Channel Disable Delay ⁽²⁾	$V_{DD} = 3.3V \pm 0.3V$	1	7	ns

NOTE:

- 1. The propagation delay through the channel is based on the RC time constant of the channel capacitance and maximum channel resistance for defined V_{DD}
- 2. Measured at 300mV above or below steady state output voltage using output test load circuit

Table 7: Signal Characteristics

_	rabio / rolyital citatateta bata						
	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	X_{TALK}^{1}	Channel Cross-Talk ^(1,2)	$V_{DD} = 5.0V$			-60	dB
	X_{TALK}^{1}	Channel Cross-Talk ^(1,2)	$V_{DD} = 3.3V$			-60	dB
	ISO _{OFF} ¹	Off Isolation ^(1,2)				-60	dB

NOTE:

- 1. Guaranteed by design
- 2. RL = 50Ω , CL = 50pF, fin = 1MHz, Vin = 1VRMS centered at $V_{DD}/2$

TIMING DIAGRAM

Figure 3: Channel Propagations Delay ($/EN = V_{SS}$)

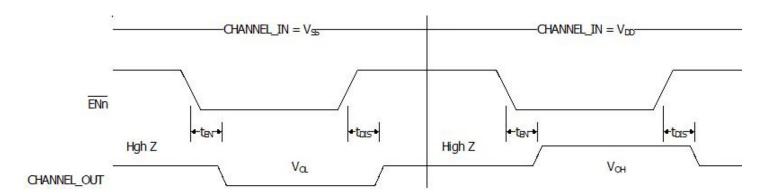


Figure 4: Enable Timing

TEST LOADS

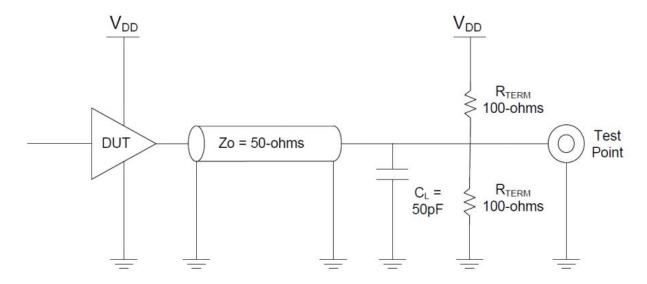


Figure 5: Standard Test Load

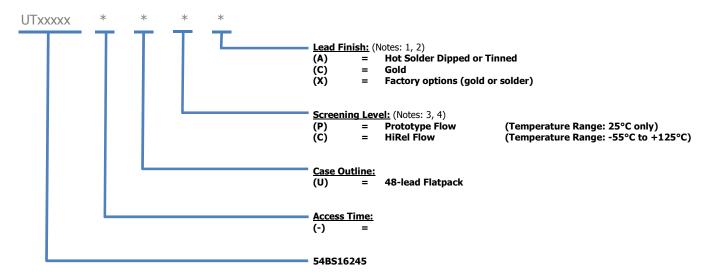
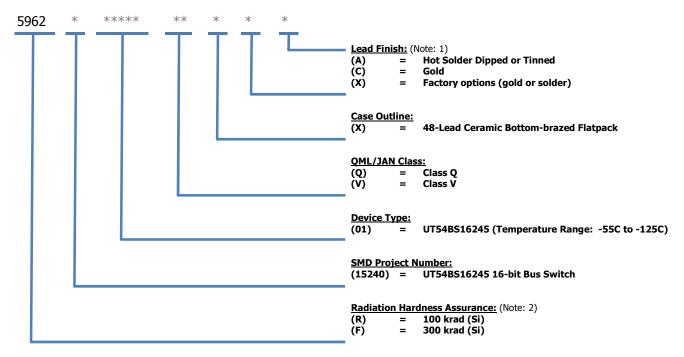

PACKAGE DRAWINGS

Figure 6: 48-Lead Flatpack

ORDERING INFORMATION


Generic Datasheet Part Numbering

1. Lead finish (A, C, F, or X) must be specified.
2. If an "X" is specified when ordering, then the part marking will match the lead finish applied to the device shipped
3. Prototype Flow per Cobham Manufacturing Flows Document. Lead finish is Factory Option "C" only. Radiation is neither tested nor guaranteed.
4. HiRel Flow per Cobham Manufacturing Flows Document. Radiation TID tolerance may (or may not) be ordered.

ORDERING INFORMATION

SMD Part Numbering

Federal Stock Class Designator

Notes:

Lead finish must be specified. If "X" is specified when ordering, the factory will determine lead finish. Part marking will reflect the lead finish applied to the device shipped. A radiation hardness assurance level must be selected. The use of "-" indicates no radiation hardness assurance guarantee.

REVISION HISTORY

Table 8: Revision History

Date	Rev. #	Change Description	Initials
05/01/2016	1.0.0	Updated datasheet to reflect Cobham logo, colors, and modified format. Updated the following specifications: R_{ON} , I_{IA} , I_{DD} , I_{DDO} , T_{EN} , and T_{DIS} .	MM
06/23/2016	2.0.0	Released Datasheet. Updated propagation delay, capacitance, and minor formatting.	ВМ
6/30/2016	2.0.1	IDDQ: CONDITIONS: /EN=VDD	BM
01/04/2017	2.0.2	FEATURES: QML Q and V compliant part	BM

Template Revision: A

Cobham Semiconductor Solutions - Datasheet Definitions

Advanced Datasheet - Product In Development

Preliminary Datasheet - Shipping Prototype

Released Datasheet - Shipping QML & Reduced Hi - Rel

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Semiconductor Solutions 4350 Centennial Blvd Colorado Springs, CO 80907

E: info-ams@aeroflex.com T: 800 645 8862

Aeroflex Colorado Springs Inc., dba Cobham Semiconductor Solutions, reserves the right to make changes to any products and services described herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.