
On-chip debug gets it rightTechnology	

To achieve time-to-market goals involving increasingly complex technology, designers are taking advantage of on-chip
debug units. These units improve system visibility and create a non-intrusive debug environment. Designers can then get it
right the first time … before product launch.

On-chip debug units maximize real-time
embedded systems
By Steve Griffith Aeroflex Colorado Springs

No matter how advanced our design pro-
cess becomes, or how good we get at it,
there will always be that phase in the
design process called debug. Once the
basic integrity of a system is established
and tests are running, the focus inevi-
tably turns to finding out why a certain
test or application does not complete as
expected. That is, errors in the behavior
of the program must be diagnosed and
fixed – debugged. Debugging poses
unique challenges for real-time embed-
ded applications, such as increased
complexity amidst short design cycles,
decreased visibility, and keeping up with
real time while staying non-intrusive.
However, new on-chip debug units are
helping to alleviate these issues via
market requirements so that systems
designers can achieve program goals …
the first time.

Issue: Increasing complexity and
short design cycles
One challenge for the debug phase is
related to the increasing complexity of
devices and the shortening design cycles.
The proliferation of high-performance,
fault-tolerant, commercially available
RISC processors and System-on-Chip
(SoC) devices has been a boon to design-
ers of next-generation systems ranging
from consumer electronics to medical,

transportation, nuclear control, and high-
reliability applications. Add to this the
statistic that more than 50 percent of new
embedded designs now use commercial
operating systems such as RTOSs and
generic operating systems such as Linux
and Windows CE .NET[1]. These factors
have made it possible to create increas-
ingly complex systems in shorter periods
of time with product delivery expected
soon after. Figure 1 shows a typical
example. This one-million-gate SoC and
its supporting development board were
both completed in six months. The sys-
tem was then ready for embedded appli-
cation testing and the start of debug.

With traditional debug tools, having
the development board and SoC ready

would just be part of a typical setup.
For example, if debug were to be per-
formed using an In-Circuit Emulator or
In-Circuit Debugger (ICE or ICD), then
a customized “emulator” would also have
to be developed, or a generic emulator
adapted, to work with the new SoC. This
would add another aspect of hardware and
software design (and debug) to the proj-
ect. However, with a built-in debug unit,
all the extra debug hardware was already
designed and on-chip. No other boards
needed to be plugged into the system in
order to debug it. As a result, it is possible
to more quickly debug test applications
and meet the demanding product delivery
schedules with fewer design resources.

Accordingly, during the past several
years, silicon and Intellectual Property
(IP) vendors have worked to develop
standardized, on-chip debug units
that can be included with the other IP
blocks used in an SoC chip design.
Debug standards such as the ARM
EmbeddedICE + Embedded Trace,
MIPS EJTAG, and Intel XScale On-Chip
Debug are some examples. Each debug
standard sets expectations for common
interfaces and visibility into internal reg-
isters and memory, as well as expecta-
tions for breakpoint, single stepping, and
profiling features. New IP versions of

Figure 1

On-chip debug gets it rightTechnology	

copy

the processor and other SoC blocks are
accompanied by new releases of IP for
the debug unit. All vendors typically pro-
vide any software drivers needed to run
the debug units. It is notoriously difficult
to predict and schedule how much time
and effort it will take to find and fix bugs.
While using standard built-in debug
units does not solve the problem, it does
make many of the variables and risks go
away: variables such as how much time
it will take engineers to learn or design
a new nonstandard external debug tool,
and the risk that there will be problems
with a new nonstandard debug tool.

Issue: Decreasing visibility
With higher levels of integration come
lower levels of visibility into the
system’s operation and more challenges
for debug. For example, not long ago
an Ethernet interface would have been
implemented with discrete devices on
a board, and any access to memory as a
result of Ethernet activity would be easily
visible using a logic analyzer on the
external memory bus. As that interface is
moved on-chip with the microprocessor,
memory controller, data cache, and other
interfaces, it is likely that many of the
Ethernet memory accesses are no longer
observable off-chip. As a result, tradition-
al bus-based methods for debugging
interface problems have become hugely
impractical, if not impossible. On-chip
debug units solve this visibility problem.
For example, the SoC architecture
shown in Figure 2 uses the industry-
standard Advanced Microcontroller

Bus Architecture (AMBA) with an
Advanced High-performance Bus (AHB)
connecting all the interfaces together.
This makes them readily accessible to
the debug unit (DSU3) and ultimately
visible to the external user.

Issue: Real-Time Non-Intrusive
(RTNI) debugging
A couple of common debug tools that
do not use on-chip debug resources are
source-level debuggers and lower-level
assembly language debuggers. These
debug tools can allow the engineer to step
through the execution of a program line-
by-line in the source code and into some
of the details of the assembly instructions.
Using these tools, a program execution
can be stopped at predetermined break-
points set by the user. When the execution
of the program has stopped on a line of
the program, the engineer can determine
some information about the state of the
execution of the program, such as which
subroutine of the program is executing
and what values the program’s variables
are currently holding. With these basic
features, both source-level and assem-
bly language debuggers are capable of
helping to diagnose a large number of
errors. However, they are not as useful
for finding bugs in software written for
real-time systems – which by their very
nature have timing as a critical element:
Inputs are processed and outputs are
created on boundaries of nanosecond
clock cycles, for example, sampling
directional velocity and firing engines.

In a real-time system, the relational timing
between events occurring in the system is
also critical. For example, a problem in the
execution of a program could be related to
the order in which two signals occur. Both
source-level or assembly-level debug-
gers may stop the program execution in a
way that changes this timing and hides the
problem. This is an example of “intrusive”
behavior from a debugging tool. A better
method for debugging real-time problems
is to put a logic analyzer or oscilliscope
probe on the signals in question and observe
the exact timing of the signals during the
regular flow of the program. However,
this method does not provide any details
about the state of the rest of the system.
What is needed is some debug function-
ality built into the SoC that provides
logic analyzer type trigger capability,
source/assembly-level debugger type state
visibility, and subclock cycle time reso-
lution, all without altering the program
flow. This is available in new generations
of RTNI on-chip debug units.

Common debug unit features
A few examples have been given des-
cribing debug challenges and how on-
chip debug units can help in the debug
phase. Insight into important elements
and requirements for what is typically
found in these on-chip debug units is
also valuable.

Easy connection – The first requirement
for an on-chip debug unit is the ability to
easily connect to it from an external debug
host. For embedded systems, the debug
host might just be a terminal program that
interprets commands and sends them to an
interface using a simple software driver.
Referring back to Figure 2, there might
be a wide variety of interfaces supported.
In this case USB, UART, PCI, JTAG,
Ethernet, and SpaceWire standard inter-
faces are all implemented. When multiple
interfaces are implemented on the SoC
device, and supported by the on-chip debug
unit, debug can be performed through any
one or more of them. For example, if an
application uses SpaceWire, the debugging
can be performed through any other inter-
face without affecting packet flow on the
SpaceWire link.

Maximized visibility/control – As
alluded to previously, another important
element for on-chip debug support is to
maximize internal visibility and control.
The debug unit should give access not
only to all registers defined by the pro-
cessor architecture, but also SoC feature
registers, debug unit registers, and even
internal memory such as instruction and

Command layer

Terminal

Basic commands GDB protocol

GRLIB Debug Drivers

USB

USB
debug link

Serial I/F

Serial
debug link

LEON
Processor

Memory
Controller

APB
Bridge

Custom
IP core

PCI
debug link

JTAG
debug link

Ethernet
debug link

AHB

DSU3

SpW
RMAP link

PCI JTAG Ethernet GRESB

GRESB

GDB (port 2222)

DEBUG HOST

IP Debug drivers

Debug interface drivers

Debug interfaces

UT699 LEON
3FT TARGET

SYSTEM

Figure 2

2 VME and Critical Systems / December 2008

Technology	

data caches. The access to these registers
and memory should be available with-
out affecting the flow of the application
being debugged: non-intrusively. The
DSU3 in Figure 2 can share read or write
cycles on the AHB bus without band-
width conflicts, even at maximum CPU
frequencies. Write cycles from a debug
unit are by definition intrusive, but
might be helpful for debug as a “what-
if” experiment or quick-fix experiment.
Many debug units include some sort of
buffering of the history of the program
flow, for example, a circular buffer hold-
ing the CPU instruction history and
another holding the AHB address/data
transaction history. A good debug unit
should also provide the ability to read
or modify any external RAM or flash
memory on the board.

Attainable breakpoints/control – The
debug unit must provide a way to set
breakpoints and control stepping through
instructions. This is usually set up using
debug unit control registers. For example,
a debug “control register” used with an
“AHB register” value may create a break
in program execution based on the AHB
address. Breaks may also be defined
based on the value in a trap register or an
external trigger, or an assembly instruc-
tion. The debug unit may also have timers
that can be invoked to delay a break for a
specific number of clock cycles after the
breakpoint event.

Debug support software usable, but not
required – Often on-chip debug units are
used without any special Graphical User
Interface (GUI) software. Many experi-
enced developers like the speed and ease
of plain low-level commands as opposed
to working through a GUI. For example,
when a particular register value is sought
it may be more convenient to use a sin-
gle command line query. Other times
it is desirable to display lots of infor-
mation together. For example, the user
might want to display the source code
disassembly, cache contents, trace buf-
fer contents, external memory contents,
and so on, all together. Most IP vendors
have more sophisticated software tools
to do this. For example, Gaisler Research
offers an Eclipse-based GUI environment
(Grmon RCP). A typical session is shown
in Figure 3. With such an environment
(as opposed to single command query), it
is easier to do a wide scan for irregulari-
ties when trying to narrow the scope of a
debug problem.

On-chip debug units
launch success
The wide availability of
commercial IP has made
it possible to create very
highly integrated SoCs in
a short amount of time.
With higher levels of
integration come lower
levels of visibility into
the system’s operation.
Decreased vis ibi l i ty
makes it very difficult to
debug the increasingly

complicated programs running on the
system. This has led to the emergence
of on-chip integrated debug units
that provide the functionality of
traditional software debug tools,
with internal visibility similar to full
emulation, and timing resolution
equal to that of high-performance
logic analyzers. These integrated
debug units are restoring much of
the ability to quickly and effectively
resolve problems seen in today’s em-
bedded applications. They also allow
system designers to get it right the first
time ... before product launch. CS

References
1.� �Laengrich, Norbert, “Adapting hardware-

assisted debug to Embedded Linux and
other modern OS environments,”
PC/104 Embedded Solutions, September
2006. www.smallformfactors.com/articles/
laengrich

Figure 3

“These integrated debug
units are restoring
much of the ability to
quickly and effectively
resolve problems seen
in today’s embedded
applications. They
also allow system
designers to get it right
the first time ... before
product launch.”

On-chip debug gets it right

ff UT699 LEON 3FT Microprocessor

VME and Critical Systems / December 2008 3

Aeroflex Colorado Springs
4350 Centennial Blvd

Colorado Springs, CO 80907
800-645-8862

www.aeroflex.com/LEON

Reprinted with permission, VME and Critical Systems, @2009, December 2008, By The Reprint Dept., 800-259-0470, 11399-0109.
For web posting and limited copies for organizational use.

