RadHard-by-Design Analog

RHD5903

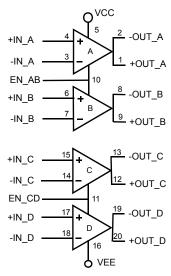
Quad Fully-Differential Operational Amplifier w/Enable **Preliminary Datasheet** Cobham.com/HiRel September 9, 2016

The most important thing we build is trust

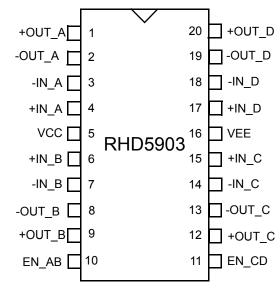
FEATURES

\square Single power supply operation (3.3V to 5.0V) or dual power supply operation (± 1.65 to ± 2.5 V)
☐ Radiation performance
- Total dose: >1 Mrad(Si); Dose rate = 50-300 rad(Si)/s
- ELDRS Immune
- SEL Immune >100 MeV-cm ² /mg
- Neutron Displacement Damage >10 ¹⁴ neutrons/cm ²
☐ Differential Outputs
☐ Rail-to-Rail output range
☐ Enable pin to Enable/Disable amplifiers in pairs.
☐ Short Circuit Tolerant
☐ Full military temperature range
☐ Designed for aerospace and high reliability space applications
☐ Packaging – Hermetic ceramic SOIC
- 20-pin, 0.514"L x 0.300"W x 0.120"Ht SOIC
- Typical Weight 1.6 grams
☐ Radiation Hardness Assurance Plan: DLA Certified to MIL-PRF-38534, Appendix G.

GENERAL DESCRIPTION


The RHD5903 is a radiation hardened, single supply, differential output, quad operational amplifier with enable in a 20-pin SOIC package. The RHD5903 design uses specific circuit topology and layout methods to mitigate total ionizing dose effects and single event latchup. These characteristics make the RHD5903 especially suited for the harsh environment encountered in Deep Space missions. It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534 Class K, the RHD5903 is ideal for demanding military and space applications.

ORGANIZATION AND APPLICATION


The RHD5903 amplifiers are capable of rail-to-rail outputs. Performance characteristics listed are for general purpose operational 5V CMOS amplifier applications. The amplifiers will drive substantial resistive or capacitive loads and are unity gain stable under normal conditions. Resistive loads in the low kohm range can be handled without gain derating and capacitive loads of several nF can be tolerated. CMOS device drive has a negative temperature coefficient and the devices are therefore inherently tolerant to momentary shorts, although on chip thermal shutdown is not provided. All inputs and outputs are diode protected. The output Common Mode voltage is set to Vcc/2

The devices will not latch with SEU events to above 100 MeV-cm²/mg. Total dose degradation is minimal to above 1 Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid 10¹⁴ neutrons per cm² range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependent.

The RHD5903 is configured with enable/disable control. Pairs of amplifiers are put in a power-down condition with their outputs in a high impedance state. Several useful operational amplifier configurations are supported where more than one amplifier can feed an output with others disabled.

FIGURE 1: BLOCK DIAGRAM

20-Pin SOIC

FIGURE 2: PACKAGE PIN-OUT

Notes:

- 1. Package and Lid are electrically isolated from signal pads.
- 2. It is recommended that the Lid be grounded to prevent any ESD or static buildup.
- 3. EN_AB enables amplifiers A & B. EN_CD enables amplifiers C & D.

Pin	Signal Name	Definition
1	+ OUT_A	Positive Output of Amplifier A.
2	- OUT_A	Negative Output of Amplifier A.
3	-IN_A	Inverting input of Amplifier A.
4	+IN_A	Non-Inverting input of Amplifier A.
5	VCC	+ Voltage Supply.
6	+IN_B	Non-Inverting input of Amplifier B.
7	-IN_B	Inverting input of Amplifier B.
8	- OUT_B	Negative Output of Amplifier B.
9	+ OUT_B	Positive Output of Amplifier B.
10	EN_AB	A Logic Low will disable Amplifiers A & B so that the outputs are high impedance.
11	EN_CD	A Logic Low will disable Amplifiers C & D so that the outputs are high impedance.
12	+ OUT_C	Positive Output of Amplifier C.
13	- OUT_C	Negative Output of Amplifier C.
14	-IN_C	Inverting input of Amplifier C.
15	+IN_C	Non-Inverting input of Amplifier C.
16	VEE	- Voltage Supply.
17	+IN_D	Non-Inverting input of Amplifier D.
18	-IN_D	Inverting input of Amplifier D.
19	- OUT_D	Negative Output of Amplifier D.
20	+ OUT_D	Positive Output of Amplifier D.

TABLE 1: PIN-OUT DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	+150	°C
Supply Voltage VCC - VEE	+7.0	V
Input Voltage	VCC +0.4 VEE -0.4	V
Lead Temperature (soldering, 10 seconds)	300	°C
Thermal Resistance, Junction to Case, ⊝jc	7	°C/W
Power @ 25°C	200	mW

NOTICE: Stresses above those listed under "Absolute Maximums Rating" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Typical	Units
+Vcc	Power Supply Voltage	3.3 to 5.0	V
Vcm	Input Common Mode Range	Vcc to VEE + 1.25v	٧

ELECTRICAL PERFORMANCE CHARACTERISTICS

(Tc = -55°C to +125°C, +Vcc = +5.0V -- UNLESS OTHERWISE SPECIFIED)

Parameter	Symbol	Conditions	Min	Max	Units
Input Offset Voltage (Differential) 1/	Vos		-15	15	mV
Input Offset Current 4/	los	Tc = +25°C	-100	100	рА
Input Offset Current 1/	105	Tc = +125°C	-3000	3000	
Input Bias Current 1/	lв	Tc = +25°C	-100	100	рА
input bias Current <u>i</u> /	IB	Tc = +125°C	-3000	3000	
Input Common Mode Rejection Ratio	CMRR		55		dB
Power Supply Rejection Ratio (Differential)	PSRR		55		dB
Output Voltage High	Vон	ROUT = 3.6KΩ to GND	4.9		V
Output Voltage Low	Vol	Rout = 3.6KΩ to Vcc		0.1	V
Short Circuit	lo(sink)	Vout to Vcc	-100	-180	mA
Output Current 2/	Io(SOURCE)	Vout to Vee	120	200	mA
Slew Rate 1/	SR	RL = 8K, Gain = 1	2.0		V/uS

ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

(Tc = -55° C TO $+125^{\circ}$ C, +Vcc = +5.0V -- UNLESS OTHERWISE SPECIFIED)

Parameter	Symbol	Conditions	Min	Max	Units
Open Leen Cain, 1/	Aol	No Load, Tc = +25°C, -55°C	65		dB
Open Loop Gain 1/		No Load, Tc = +125°C	55		
Unity Gain Bandwidth 1/	UGBW	RL = 10K	5.8		MHz
Input Voltage - Enable (EN_AB,	Vні	High (Enabled)	3.5		V
EN_CD)	VLO	Low (Disabled)		1.5	V
Input Current - Enable	len	+25°C		10	- nA
(EN_AB, EN_CD)		+125°C		500	
Quiaggant Supply Current 1/	Iccq	All Amplifiers Enabled, No Load		5	mA
Quiescent Supply Current 1/		All Amplifier Disabled		200	uA
Channel Separation 2/		RL = 2K, f = 1.0KHz	84		dB
Input-Referred Voltage Noise 2/	e _n	21 Typical @ F = 5 kHz			nV/ $\sqrt{\rm Hz}$
Phase Margin 2/	Φ_{m}	Tc = +25°C, No Load	30		Deg

Notes:

- 1/ Specification derated to reflect Total Dose exposure to 1 Mrad(Si) @ +25°C.
- 2/ Not tested. Shall be guaranteed by design, characterization, or correlation to other test parameters.

SWITCHING CHARACTERISTICS

(Tc = -55°C to +125°C, +Vcc = +5.0V -- Unless otherwise specified)

Parameter	Symbol	Conditions	Min	Max	Units
Output Delay (Enabled)	t _{ON} EN			800	ns
Output Delay (Disabled)	t _{OFF} EN			200	ns

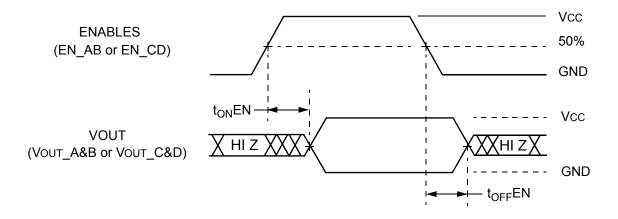
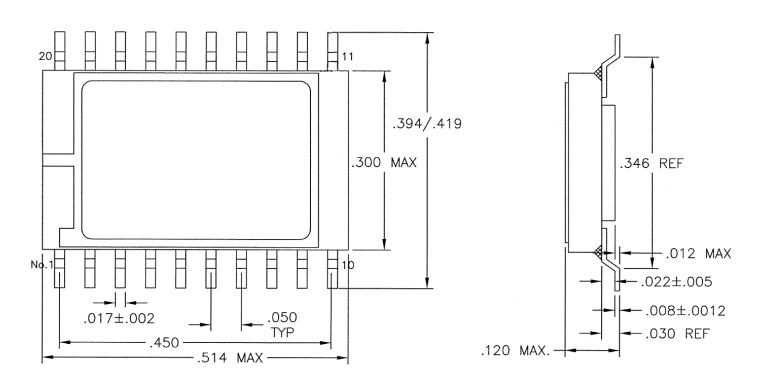



FIGURE 3: RHD5903 SWITCHING DIAGRAM

Note: Package and lid are electrically isolated from signal pads.

ORDERING INFORMATION

Model	DLA SMD#	Screening	Package
RHD5903-7	-	Commercial Flow, +25°C testing only	
RHD5903-201-1S	5962-1223701KXC	DLA SMD Pending	
RHD5903-201-2S	5962-1223701KXA	DLA SIMD Periding	20-pin SOIC Package
RHD5903-901-1S	5962H1223701KXC	DLA Radiation Certification Pending	
RHD5903-901-2S	5962H1223701KXA		

REVISION HISTORY

Date	Revision	Change Description
09/09/2016	D	Import into Cobham format

Datasheet Definition

Advanced Datasheet - Product In Development

Preliminary Datasheet - Shipping Prototype

Datasheet - Shipping QML & Reduced Hi-Rel

EXPORT CONTROL:

This product is controlled for export under the Export Administration Regulations (EAR), 15 CFR Parts 730-774.

A license from the Department of Commerce may be required prior to the export of this product from the United States.

Cobham Semiconductor Solutions 35 S. Service Road Plainview, NY 11803

E: info-ams@cobham.com T: 800 645 8862

Aeroflex Plainview Inc., DBA Cobham Semiconductor Solutions, reserves the right to make changes to any products and services described herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.