
HYPERVISOR

HARDWARE

APPLICATION

GUEST OS

English Edition
NEWS 2017

CONTENTS
Hypervisor Debugging

Debug Tools for Intel® x86/x64

CombiProbe for TriCore DAP

New AUTOSAR Standard ARTI

2

6

7

8

 Seamless debugging
through all software layers

2

Hypervisor Debugging

In April 2017, Lauterbach will provide the high per-
formance capabilities of its new hypervisor support.
This article presents a reference implementation on
which a Xen hypervisor with two Linux guests is run-
ning on a HiKey board from LeMaker (Cortex-A53).

Virtualization in Embedded Systems

The virtualization concept allows multiple operating
systems to be run in parallel on a single hardware
platform. Currently, virtualization is being used more
and more in embedded systems. For example, in
the cockpit of a car, real-time applications that are
monitored by an AUTOSAR operating system run on
the same hardware platform parallel to Android based
user interfaces. A hypervisor, which is the core of
virtualization, ensures that everything works reliably
and efficiently.

The hypervisor, which is also referred to as a virtual
machine monitor, is a software layer fulfilling two tasks:

1.	Starting and managing the virtual machines (VMs).
2.	Virtualizing the physical hardware resources for the

VMs.

An operating system running on a VM is referred to as
a guest OS. All accesses by the guests to the virtual-
ized hardware resources are mapped to the physical
resources by the hypervisor.

CPU virtualization is important for debugging. Every
virtual machine is assigned one or more virtual CPUs
(vCPUs). The number of vCPUs does not necessari-
ly have to be the same as the number of CPU cores
available on the hardware platform.

Memory virtualization is equally important. The VMs
do not see the actual physical memory but see the
guest physical memory as virtualized memory. The hy-
pervisor manages a separate page table for each VM
to control access to physical memory. Since the appli-
cation processes, at least on operating systems like
Linux, work with virtual addresses anyway, the debug-
ger has to deal with a two stage address translation:

•	 Guest virtual memory to guest physical memory
•	 Guest physical memory to host physical memory

See the diagram “Virtual Memory in 2 Stages” on the
opposite page:

•	The Stage 1 MMUs mapping information is handled
by the page table of their guest OS.

•	The Stage 2 MMU uses the page tables of the hy-
pervisor.

Extended Debugging Concepts

TRACE32 was systematically extended in 2016 by
Lauterbach to provide its customers unlimited debug-

Hypervisor Layering

Host Machine

Hypervisor

Cores I/OMemory

Process A Process B

Guest OS 1

Virtual Machine 1

Process C Process D

Guest OS 2

Virtual Machine 2

www.lauterbach.com 3

NEWS 2017

ging capability with a hypervisor. The following exten-
sions were added:

•	 A machine ID was added to the TRACE32 command
syntax. The machine ID allows the debugger to ac-
cess the context of the active VM as well as the con-
text of all inactive VMs. A virtual machine is consid-
ered active when a core has been allocated to it for
execution.

•	 Using the new hypervisor-awareness, the debugger
detects and visualizes the VMs of the hypervisor.

•	 Instead of only being able to debug a single operat-
ing system, it is now possible to debug several oper-
ating systems at the same time.

•	 Instead of only being able to access the OS page ta-
bles of the active guests as before, the debugger can
now also use the page tables of all inactive guests.

The most important objective for all extensions was
seamless debugging of the overall system. This means
that when the system has stopped at a breakpoint,
you can check and change the current state of every
single process, all VMs, plus the current state of the
hypervisor and of the real hardware platform. In addi-
tion, you can set a program breakpoint at any location
in the code.

The unlimited debugging capability that Lauterbach
has been offering for almost 20 years now, for oper-
ating systems like Linux, formed the starting point for
all of these implemented extensions. Therefore, what

follows is a brief summary of the most important OS
debugging concepts:

Processes run on operating systems in a private virtual
address space. The TRACE32 OS-awareness and the
TRACE32 MMU support allow users to debug seam-
lessly across process boundaries:

•	 With the help of the space ID, it is possible to directly
access the virtual address space of each process.

•	 With the help of the TASK option, it is possible to
display the current register set and the stack frame
for every single process.

Machine ID

How does this concept need to be extended if the oper-
ating systems are running on virtual machines?

1.	 First, it is necessary to uniquely identify each virtual
machine. For this purpose, TRACE32 assigns each
VM a number, the machine ID. The machine ID of
the hypervisor is 0. Just as the space ID is used to
identify the virtual address space of a process, the
machine ID is used to identify the private address
space of a VM.

2.	To show the register set and the stack frame of any
process, the debugger must know on which VM
and on which guest OS the process is running. The
MACHINE option was introduced for this purpose.

Virtual Memory in 2 Stages

Stage 2 MMU

Guest 1
Virtual
Memory

Guest 2
Virtual
Memory

Guest 1
Physical
Memory

Guest 2
Physical
Memory

Stage 1 MMUStage 1 MMU

Host
Physical
Memory

4

Hypervisor
•	 Load debug symbols
•	 Set up page table awareness (MMU)
•	 Load Hypervisor awareness

Guest OS 1
•	 Load debug symbols
•	 Set up page table awareness (MMU)
•	 Load OS awareness

Guest OS 2
•	 Load debug symbols
•	 Set up page table awareness (MMU)
•	 Load OS awareness

Guest OS 3

Guest OS 4

Guest OS 5

Debugger Configuration

These two extensions are sufficient to allow the debug-
ger to access all information across process bound-
aries. The “TRACE32 Commands” overview above
provides a comparison of the extended TRACE32
command syntax for hypervisor debugging to the tra-
ditional syntax used for OS-aware debugging.

Hypervisor Awareness

Like the OS-awareness functionality, there is now a
hypervisor-awareness functionality. This functionality
provides the debugger with all information on the hy-
pervisor running on the hardware platform. However,
hypervisor-awareness requires the debug symbols
for the hypervisor to be loaded. The debugger can
then create an overview of all guests. The “Guest List”
screenshot for our reference implementation — Xen,
Cortex-A53 — shows the following information:

•	 VM IDs and VM states, number of vCPUs per VM
•	 Start addresses of the stage 2 page tables (vttb)

The awareness for the particular hypervisor is created
by Lauterbach and provided to its customers. An
overview of all currently supported hypervisors is
shown in the table “Currently Supported Hypervisors”
on page 5.

Debugger Configuration

How do the extended debug concepts effect debug-
ging with TRACE32 now? Let‘s first look at the config-
uration. The following steps are necessary to configure
the hypervisor as well as every single guest OS:

1.	 Load the debug symbols
2.	Set up page table awareness (MMU)
3.	Load the TRACE32 hypervisor-awareness respec-

tively the TRACE32 OS-awareness

Guest List

Data.dump	 <space _ id>:<virtual _ address>
Data.LOAD.Elf <file>	 <space _ id>:<virtual _ address>
Register.view	 /TASK <process _ name>
Frame.view	 /TASK <process _ name>

TRACE32 Commands

Data.dump	 <machine _ id>:::<space _ id>::<virtual _ address>
Data.LOAD.Elf <file>	 <machine _ id>:::<space _ id>::<virtual _ address>
Register.view	 /MACHINE <machine _ id> /TASK <process _ name>
Frame.view	 /MACHINE <machine _ id> /TASK <process _ name>

Traditional
OS-Aware
Debugging

Hypervisor
Debugging

< NEW >

www.lauterbach.com 5

NEWS 2017

The “Debugger Configuration” diagram shows an over-
view of the individual configuration steps.

Debug Process

The operation of a debugger must often resolve con-
tradicting requirements. One user group wants simple
and intuitive operation while another group demands
maximum flexibility and full scripting capabilities. Let‘s
first take a look at the intuitive operation. The basic
idea is actually very simple: if the debugger stops at
a breakpoint, then the GUI visualizes the application
process that triggered the breakpoint.

If you are interested in a different application process,
then you simply open the TRACE32 global task list. All
tasks executing on the overall system are listed there.
You can select the task you want to display in the GUI
by double-clicking on the task. The global task list also
offers a simple way to set program breakpoints for a
specific task. Since the debug symbols are associated
with a machine ID and a space ID when the .elf file is

loaded, functions and variables can be addressed by
name as per usual when debugging.

Maximum flexibility and full scripting capabilities can
be obtained using the TRACE32 commands. The ex-
tended syntax for these commands are presented
above.

Summary

Since Lauterbach has systematically extended the well-
known concepts for OS-aware debugging to hypervi-
sor debugging, it will be easy for TRACE32 users to get
started with just a little practice.

KVM

VxWorks 653 3.x

Wind River Hypervisor 2.x

Xen

Currently Supported Hypervisors

( more to follow )

Xen Hypervisor on Cortex-A53

Global Task List Virtual Machine List

6

Intel ® x86/x64 – Tool Update
In January of this year, Lauterbach introduced the
new CombiProbe Whisker MIPI60-Cv2. The TRACE32
CombiProbe and TRACE32 QuadProbe now offer
the same debug features for the Converged Intel ®
MIPI60 connector:

•	 Standard JTAG, Intel ® debug hooks with Pmode,
and I2C bus

•	 Merged debug ports (two JTAG chains)
•	 Intel ® Survivability features (threshold, slew rate, ...)

However, these debug tools have different areas of
application. The TRACE32 QuadProbe, which is ex-
pressly designed for server processors, is a dedicated
debug tool that enables SMP debugging of hundreds
of threads on targets with up to four debug connectors.

The TRACE32 CombiProbe with the MIPI60-Cv2
Whisker, designed for client as well as mobile device
processors, can capture and evaluate system trace
data in addition to its enhanced debugging features.
Trace capabilities include support of one 4-bit and one
8-bit trace port with nominal bandwidth.

The TRACE32 CombiProbe with the DCI OOB Whisker
is specially designed for debugging and tracing of
form factor devices without debug connectors. If
the chip contains a DCI Manager, the target and the
debugger can exchange debug and trace messages
directly via the USB3 interface. The DCI protocol used
to exchange messages supports standard JTAG and
Intel ® debug hooks as well as trace messages for
recording system trace information.

Debugger and System Trace
for USB3 Connector
(all applications)

PowerDebug USB 3 Combi
Probe

Whisker
DCI OOB

Debugger and System Trace
for Intel® Converged MIPI60 Connector
(devices and client applications)

PowerDebug USB 3 Combi
Probe

Whisker
MIPI60-Cv2

Debugger
for Intel® Converged MIPI60 Connector
(server)

PowerDebug USB 3 Quad
Probe

Up to 4 x
Whisker
MIPI60-Q

www.lauterbach.com 7

NEWS 2017

TRACE32 CombiProbe TriCore DAP

Lauterbach has been supplying its new CombiProbe
TriCore DAP for the AURIX™ family from Infineon
since October 2016. This means TRACE32 now of-
fers comprehensive run-time analyses for all AURIX
users whose target hardware does not provide an
AGBT interface.

DAP Streaming

The CombiProbe implements a new technology named
DAP streaming: The contents of the on-chip trace
memory are read while the program is executing and
transmitted in full to the 128 MB trace memory of the
CombiProbe. For this, the chip must provide a high-
speed debug interface. The AURIX™ DAP interface
meets the corresponding requirements: DAP frequen-
cies of up to 160 MHz, data rates of up to 30 MB/s.
The DAP bandwidth is not large enough to transmit the
entire program flow, but extensive analyses can still be
performed:

•	 Function run-time measurements using the Compact
Function Trace (CFT). This trace is a special program
trace mode in which trace data is only generated for

function calls (cftcall) and function returns (cftret).
The “Compact Function Trace” diagram below
shows an example of the call tree and the run-time
details TRACE32 calculated based on this trace data.

•	 Analysis of the contents of selected variables over
time.

•	 Run-time measurements for tasks, ISRs, and OS
services.

TRACE32 Streaming

If the 128 MB trace memory the CombiProbe is not
large enough to record all relevant trace data, then it
is possible to combine DAP streaming with TRACE32
streaming. TRACE32 streaming transfers the trace
data immediately after it is received by the Combi-
Probe to the host computer and stores it there in a file.
This makes it possible to record several TB of contigu-
ous trace data for the purpose of long-term measure-
ments.

You will find more details at:
www.lauterbach.com/8467

Compact Function Trace

DAP Streaming and TRACE32 Streaming

AURIX™ Target

TriCore
CPU 0

SPB
Bus

GTM Host
ComputerTRACE32

Streaming

MCDS
EMEM
(XTM) D

A
P

DAP
Streaming

TRACE32 CombiProbe
128 MByte of trace memory

If your address has changed or you do not want to receive a newsletter
from us any more, please send a brief email to the following address:

mailing@lauterbach.com

ARTI – AUTOSAR Run-Time Interface
The new ARTI standard will be specially designed to
meet the current requirements of the automobile in-
dustry for OS-aware debugging and tracing. Lauter-
bach, as an official AUTOSAR development partner,
is active in the design of this standard. Publication
of the standard is planned for the beginning of 2018.

The ORTI standard, which has been used throughout
the automobile industry since 2003, helps thousand of
developers to debug and profile their AUTOSAR sys-
tems. The standard has aged gracefully over the years
and requires updating to meet current needs.

Goals

New methods for software development, multicore
and multi-ECU systems, and increasing requirements
on the validation of real-time critical systems – the new
standard needs to cover all of this. Many of the new
debug, trace, and profiling features that will be add-
ed to the ARTI standard are already in use today as
proprietary solutions. This means the functionality has
already proven itself. What is missing are standardized
interfaces between the various tools used in the devel-
opment process. The following is an example.

Exporting Trace Data

Since 2014, Lauterbach has been working closely with
various manufacturers of tools used for the validation
and optimization of automotive software. TRACE32
exports its real-time trace data recorded, which is then
loaded into the external tool and comprehensively an-
alyzed. So what is currently missing?

1.	The ORTI file created by the build tool only contains
information on the tasks, the OS services, and the
ISRs, but no information on when the tasks were
started or terminated, as well as no information on
the runnables. Before exporting, this missing infor-
mation must be added manually in TRACE32.

2.	There is no standardized format for trace data ex-
ports. This means the external tools must be able
to read the proprietary TRACE32 format.

The new ARTI standard will close both of these gaps.
The ARTI file provided by the build tool will contain
information on all AUTOSAR objects while simultane-
ously standardizing the export of trace data.

Summary

Since all important tool manufacturers as well as tool
users work together on drafting the new ARTI stan-
dard, it will surely be just as successful and long-lived
as its predecessor.

