

A Framework for Middleware Supporting

Real-Time Wide-Area Distributed Computing

K. H. (Kane) Kim, Stephen Jenks, Larry Smarr, Andrew Chien, and Liang-Chen Zheng

Electrical Eng. and Computer Science Dept.
University of California, Irvine

{khkim@uci.edu, sjenks@uci.edu, lzheng@uci.edu}

Dept. of Computer Science and Engineering
University of California, San Diego

{lsmarr@ucsd.edu, achien@cs.ucsd.edu}

Abstract: The development of real-time systems that
are distributed over a wide area is a significant prob-
lem that has challenged researchers for many years.
Such systems require precise timing of actions
throughout, but wide area networks tend to have vari-
able delays that greatly reduce determinism.

The framework described here supports the com-
position of wide-area real-time Distributed Virtual
Computer systems from deterministic components to
provide precise timing from end-to-end. The frame-
work will use switched optical networks such as those
being developed for the OptIPuter project for well-
regulated long-distance paths yielding low jitter.
Within campus networks, the Time-Triggered Ethernet
technology will provide deterministic switching of
packets for real-time applications while supporting
legacy IP traffic. Finally, at the edges, the Time-
triggered Message-triggered Object (TMO) Support
Middleware will manage resources to provide real-
time operations while supporting an easy-to-program
interface and high-level timing specification.

1. Introduction
The history of distributed computing (DC) spans

more than three decades but the branch of the DC
technology related to real-time (RT) applications still
remains in an immature state. The needs for correct-
ing this situation are becoming more acute than ever
because exploration of new-generation DC applica-
tions which involve actions subject to relatively high-
precision timing requirements has been exploding in
recent years. Multi-media network based applications,
collaborating robots, and sensor network based appli-
cations are representative of the exploding RT DC ap-
plication fields.

At the top level the biggest fundamental research
challenge is:

To enable high-level high-precision real-time dis-
tributed software design and programming ac-
companied by cost-effective guaranteeing of ac-
ceptable response times.
High-level RT DC programming is a research sub-

ject of critical importance in this decade since a vast
number of new-generation RT DC application soft-
ware cannot be constructed in easily analyzable and
thus highly reliable forms with acceptable costs by use
of conventional C or assembly-level programming.
Technologies for cost-effective guaranteeing of ac-
ceptable response times are also of great importance.
If response time requirements are not met, then obvi-
ously applications fail. The efforts for guaranteeing
acceptable response times must also be affordable.
The state of the art in this area is very weak.

The top-level goal which the practicing commu-
nity has been longing for over many years cannot be
realized without successful development of some key
component technologies such as (1) programming
model and API; and (2) middleware possessing effec-
tive resource management capabilities.

The essence of RT computing is to effect impor-
tant output actions within precisely specified time-
windows. In RT DC systems, if an output action of a
node becomes ready only after manipulating some
data coming from another node, then the production of
the data by the latter node and its communication to
the former node must all occur in time for enabling the
output action to be within the specified time-window.
Controlling communication delays is obviously much
easier in LAN (local area network) -based application
systems than in WAN (wide area network) -based sys-
tems. Naturally, research in LAN-based RT DC sys-
tems has advanced steadily over the past two decades,
but fewer research efforts have been made in the field
of WAN-based high-reliability RT DC systems.

Recently, efforts for creating WAN environments
in which bounds on communication delay jitters are
significantly smaller than those in most major seg-
ments of the current Internet started growing. For ex-
ample, efforts for creating optical grids yielding tightly
bounded delay jitters are under way [Sma03]. There-
fore, we expect that research on RT wide-area DC will
be accelerated from here on.

At the more basic level, WAN-based DC has be-
come an active field of research, especially under the
label of grid computing [Fos01]. As the grid comput-

ing research community grows, the branch of the
community which deals seriously with the quality-of-
service (QoS) aspect is showing increasing interests in
the potential for wide-area RT DC. We have defined
an RT grid (or an RT sub-grid) as:

a grid (or a sub-grid) which facilitates both
(RG1) message communications with easily determin-
able tight latency bounds and
(RG2) computing node operations enabling easy
guaranteeing of timely progress of threads toward
computational milestones [Kim04].

What has prevented the creation of a broad range
of RT grids? The issue of transferring messages with
easily determinable tight latency bounds has been the
main stumbling-block, particularly when coast-to-
coast latencies are greater than ten milliseconds and
world-wide latencies are greater. These latencies are
often greater than the period of real-time tasks at either
end of the connection. Therefore, scheduling of the
communications and computations requires considera-
tion of the number of messages in flight and the com-
munication delay.

The issue of jitter and indeterminate delays along
these long distance links is largely one of economic
constraints. Dedicated paths were unaffordable for
most applications. The situation is changing, however.
Continuous increase in the availability of wavelengths
of light, called Lambdas, traversing strands of optical
fiber, combined with the steady declines of the costs of
acquiring such lambdas, have encouraged some tech-
nological visionaries to propose to use dedicated
Lambdas to form fully optical data paths among major
science laboratories spread over multiple cities and
states. A challenge then is how to extend and adapt
the most advanced and effective technologies estab-
lished for RT DC in LAN environments to such RT
grid environments. Although a fundamental obstacle
may be absent in such dedicated optical-path WAN
environments, there are many research questions re-
lated to achievable DC performance, optimal use of
resources, newly enabled applications, etc.

In fact, campus networks, including many univer-
sity campus networks and networks covering indus-
trial complexes, typically involve multiple Ethernet
switches. Therefore, RT message communication
through this LAN part of the RT grids is a non-trivial
issue. However, there has been a breakthrough pro-
duced by Hermann Kopetz at the Vienna Univ of
Technology (TUW). The new RT LAN scheme in-
vented by him is called the Time-Triggered (TT)
Ethernet [Kop05].

2. Real-Time Distributed Virtual
Computers

Once an RT grid with appropriate RT communica-
tion capabilities is established, it can be operated to
provide a different set of RT distributed virtual com-
puters (DVCs), also called RT DC virtual machines, at
a different time. The term DVC was used by Larry
Smarr and Andrew Chien to refer to the configuration
of DC resources with the following characteristics
[Sma03, Kim04] and depicted in Figure 1.

(DVC1) A DVC is an image of a DC facility pre-
sented to application software. It can be viewed as a
dynamically established sub-grid. It typically involves
computing nodes, which may come from one site or
multiple sites, and communication paths among the
nodes. A computing node here may contain proces-
sors, storage devices, displays, other peripherals, and
ports leading to inter-node communication paths.

(DVC2) A DVC is configured dynamically in
principle. However, it may remain in tact for a long
time, e.g., even for months, or for as short as a few
minutes. Within a DVC, multiple applications may
run concurrently, sharing resources of the DVC.

Ideally, a DVC should look like "a safe local clus-
ter" to the applications, rather than like the "relatively
hostile, best-effort, open Internet" [Sma03]. However,
the relatively long message communication latency
inherent in WANs puts a limit on the extent to which a
DVC can be made to look like a local cluster, at least
to RT application developers.

Based this DVC notion, we have established its
specialized case for RT computing, i.e., the notion of
RT DVC. An RT DVC must be distinctively stronger
than a general DVC in the following characteristics
[Kim04]:

(RD1) The message paths in an RT DVC must
have the capability of transferring messages with eas-
ily determinable tight latency bounds. Therefore, if a

Real-
Time
Object
(TMO)
network

Real-
Time
Dist.
Virtual
Computer
(DVC)
- Dynamically

formed

Figure 1. A real-time DVC

lambda-path were to support such RT message paths
for one RT DVC together with message paths for other
simultaneously-active DVCs, it must be operated to
provide both tight latency bounds and guaranteed
bandwidths to the RT DVC.

(RD2) In each computing or sensing-actuating
site (offering computing nodes) within the RT DVC,
participating computing nodes must exhibit timing be-
haviors which are not different from those of comput-
ing nodes in an isolated site by more than a few per-
cents. Also, computing nodes in an RT DVC must en-
able easy procedures for assuring the very high prob-
ability of application processes and threads reaching
important milestones on time. This means that com-
puting nodes must be equipped with appropriate infra-
structure software, i.e., OS kernel and middleware
with relatively easily analyzable QoS.

(RD3) If representative computing nodes of two
RT DVCs are connected via RT message paths, then
the ensemble consisting of the two DVCs and the RT
message paths is also an RT DVC. This makes the
definition of RT DVC to be recursive in nature.

An RT DVC may be dedicated to running one RT
DC application or used to support multiple RT DC ap-
plications concurrently. Therefore, extensive research
is needed to establish a middleware model with the
following capabilities:

(M1) Establishment of RT communication paths
spanning wide areas, including allocation of Lambdas,
allocation of virtual Lambdas (i.e., time-shares of
Lambdas), and coordination of RT message-send tim-
ings; A middleware subsystem handling these may be
called an RT communication infrastructure manage-
ment (RCIM) subsystem.

(M2) On-demand creation of RT DVCs; A mid-
dleware subsystem handling these may be called an RT
grid resource management (RGRM) subsystem. The
RGRM subsystem may learn from the RCIM subsys-
tems what RT communication paths are available for
use. It allocates a subset of the available computing
resources (including PC clusters in DC sites) and
communication resources to the new RT DVC being
created in response to a request.

(M3) Allocation of both computing and commu-
nication resources within the DVC as demands from
the applications arise; A middleware subsystem han-
dling these may be called an intra-RT-DVC resource
management (IRDRM) subsystem. It seems reason-
able to attempt to develop an IRDRM subsystem as an
extension of a well established middleware subsystem
effective in LAN-based RT DC systems.

In this paper, we present a middleware framework
consisting of the three middleware subsystems men-
tioned above and discuss some major issues that need
to be resolved to realize the middleware in a cost-

effective form.

3. RT DVC Middleware
The structure of the RT DVC middleware is de-

picted in Figure 2. The RCIM subsystem obtains ap-
propriate resources from both the general grid comput-
ing resource manager and the general grid communi-
cation resource manager and then establish RT com-
munication paths spanning wide areas. The RGRM
subsystem obtains appropriate computing resources
from the general grid computing resource manager and
obtains RT communication paths from the RCIM sub-
system and use them to configure one or more RT
DVCs as demands arise. On each RT DVC, the
IRDRM subsystem supports multiple RT wide-area
DC applications.

Major issues and approaches in realizing each
middleware subsystem are discussed below.

3.1 Technical foundation for realizing high-
QoS WAN communication layers

As we defined, an RT grid must facilitate message
communications with easily determinable tight latency
bounds. The WAN in which an RT grid resides con-
tains typically three different regions as depicted in
Figure 3. For Region 2 and Region 3, a common ap-
proach for creating an environment yielding tight la-
tency bounds has been to dedicate the LAN to the
communication among the constituencies of RT DC in
the local area and isolate it from non-RT computing
sites in the local area and from the general Internet.
The economic incentives for using more flexible net-
working schemes than such isolated LAN schemes are
strong. Recently, a technology breakthrough that al-

IRDRM

DVC

IRDRM

DVC

RGRM

RCIM

Applications

Grid Comp.
Resource Mgr.

Grid Comm.
Resource Mgr.

Figure 2. Structure of the RT DVC middleware

lows more flexible local area
networking without impairing the
tight latency bounds came from
Hermann Kopetz at TUW
[Kop095]. The basic idea behind
the newly invented RT LAN
scheme, TT Ethernet, is to put a
special mark in the message
header that indicates whether the
message is an RT message or a
normal message. Whenever an
RT message arrives at a switch,
the message is processed first
even if some non-RT messages
are already in the buffer within
the switch.

The generators of RT messages must cooperate so
that the RT messages produced by them may traverse
in collision-free manners. This cooperation is handled
by instantiations of the middleware running on DC
sites and development of such middleware is an im-
portant research topic. We have some experiences in
building special instances of such middleware during
the course of developing TMOSM (TMO Support
Middleware) [Kim99]. However, the cooperation
logic developed there is a simple TDMA support logic
which covers simple Ethernet configurations but does
not cover complex campus network configurations in-
volving tens of Ethernet switches. Therefore, estab-
lishment of a middleware subsystem which schedules /
coordinates RT message-send actions of DC sites in
manners effective in typical campus network environ-
ments equipped with TT Ethernet switches is an open
research issue.

For Region 1, a new-generation WAN backbone,
in particular, the OptIPuter core being developed un-
der the leadership of Larry Smarr at UCSD, is an at-
tractive choice. Three possible situations must be con-
sidered in developing an RCIM subsystem dealing
with such a WAN backbone. In one case, Lambdas
can be reserved for various lengths of time as a part of
forming dedicated message paths between gateways in
Region 2. In this case, the network communication jit-
ter and throughput variance are negligible and thus
such Region 1 presents no more problems in realizing
high-QoS WAN communication layers. In the second
case, a time-share of a Lambda can be reserved such
that a tight latency bound can be easily determined and
a certain bandwidth is guaranteed to an RT message
path from one gateway to another in Region 2. There-
fore, certain types of high-QoS WAN communication
layers can still be realized in this case. In the third
case, Lambdas cannot be reserved for dedicated use or
guaranteed time-shares but it is possible to program
Lambda switches to support RT messages in the man-

ner that the TT Ethernet switch does. This will require
the cooperation of the vendor of the Lambda switches.
We plan to study all three cases in the context of the
special connections being established between UCI
and UCSD partly to enable realization of a Southern
California OptIPuter.

Effective integration of the middleware subsystem
facilitating harmonious communication of RT mes-
sages through Region 2 and Region 3 with the subsys-
tem managing RT message paths in Region 1 is also an
important research topic. The integrated RCIM sub-
system can then handle establishment of RT commu-
nication paths spanning wide areas, including alloca-
tion of Lambdas, allocation of virtual Lambdas (i.e.,
time-shares of Lambdas), and coordination of RT mes-
sage-send timings.

3.2 An RT grid resource management
(RGRM) middleware subsystem handling
on-demand creation of RT DVCs

The RGRM subsystem responds to requests from
users for creation of RT DVCs. It must first be able to
keep an RT subgrid by obtaining computing node fa-
cilities, RT communication paths, and peripherals from
the grid. RT communication paths can be obtained
from the RCIM subsystem while computing nodes can
be obtained from the general grid computing resource
manager.

The RGRM subsystem allocates a subset of the
available computing resources, including PC clusters
in DC sites, and communication resources to the new
RT DVC being created in response to a request. When
the lifetime of the RT DVC is over, all the resources
used to form the RT DVC are returned to the RGRM
subsystem. Since the costs of computing node facili-
ties are still declining at a steady rate, it seems reason-
able to consider only dedicated use of computing
nodes in each RT DVC. However, significant seg-
ments of each RT communication path available in the
RT grid may be virtual links or path-segments to begin
with. Therefore, the allocation of RT communication

Region 1:
OptIPuter Core

Region 2:
Campus
Network

Region 3:
Edge LANs
& Wireless

NetsSensor N
ets

Lambda
switched

Packet
switched

Packet
switched
& ad-hoc

Irvine San Diego

Figure 3. Three regions in a WAN

paths by RGRM to an RT DVC may involve splitting
of a virtual path into multiple virtual paths of narrower
bandwidths and increased delay bounds. As a system-
atic splitting technique is needed in the RCIM subsys-
tem, a similar technique is needed in this RGRM sub-
system as well.

The Grid Resource Allocation and Management
(GRAM) service, a part of the Globus toolkit [Fos97,
Fos98], will need to be extended to support RGRM. It
has been pretty much CPU-usage oriented, with RSL
(Resource Specification Language) attributes like
hostCount, maxCpuTime, maxMemory, etc. RT DVC
is additionally concerned with RT communication
paths. Attributes for such connectivity with associated
latency and bandwidth characteristics will need to be
added to GRAM and RSL.

3.3 An intra-RT-DVC resource management
(IRDRM) middleware subsystem and an
RT DVC programming model

The IRDRM subsystem handles allocation of both
computing and communication resources within the
DVC as demands from the applications arise. The ul-
timate goal of the resource acquisition of an RT DC
application is to execute its logic in time for timely
execution of output actions. Past research on resource
management in RT DC systems has taught us two im-
portant lessons:

(CI1) Many DC actions occur concurrently and
involve use of both computing and communication re-
sources. Past research dealing with computing re-
source allocation was extensive but largely conducted
in separation from the research on allocation of com-
munication resources. An exceptional case is the work
by the Kopetz' group although the application pro-
gramming model adopted there is of a somewhat re-
strictive type [Kop97]. To maximize the computa-
tional efficiency of many concurrent RT DC actions, a
well orchestrated allocation of both computing re-
sources and communication resources is desirable and
is an important research challenge in this decade.

(CI2) Efficient resource management in RT DC
systems is not possible without reasonably accurate
derivation of resource demands from the specifications
of RT DC applications, i.e., RT DC application pro-
grams. Accurate derivation of resource demands from
RT DC programs is very difficult with RT DC pro-
grams specified in low-level programming styles, i.e.,
the styles practiced in C or assembly languages.

In the past decade, much of our research was di-
rected toward establishing a high-level RT DC object
model, the Time-triggered Message-triggered Object
(TMO), which includes parameters that can be easily
interpreted by the resource manager (i.e., the node
kernel and the resource management middleware sub-

system) and lead to efficient resource management.
The main goal has been to relieve the RT DC applica-
tion designers and programmers of the burden of deal-
ing with low-level programming tools and low-level
abstractions of computing and communication envi-
ronments [Kim97, Kim00, Kim02a].

During the initiation of the TMO model, we
thought that desired RT DC object models must in-
clude timing specification mechanisms which were in-
tuitive and simple to use and yet possessed strong ex-
pressive power. Such timing specifications must en-
able relatively easy interpretation by the DC resource
management middleware subsystem. The TMO model
reflects our judgment that supporting programmers to
specify start-time-windows and completion deadlines
of RT computation-segments in convenient manners,
rather than simplistically specifying priority numbers,
is very important. After all, it is natural for RT appli-
cation programmers to think about start-time-windows
and completion deadlines rather than priority numbers.

In addition, it is desirable to support programmers
to specify a deadline for result arrival in association
with a remote method call. It will enable systematic
composition of higher-level services with timeliness
assurances out of lower-level services.

We have been enabling TMO programming with-
out creating any new language or compiler. Instead, a
middleware model called the TMOSM (TMO Support
Middleware) provides execution support mechanisms
and can be easily adapted to a variety of commercial
kernel+hardware platforms compliant with industry
standards [Kim99]. TMOSM uses well-established
services of commercial OSs, e.g., process and thread
support services, short-term scheduling services, and
low-level communication protocols, in a manner
transparent to the application programmer. The
TMOSM architecture was devised to contribute to
simplifying the analysis of the execution time behavior
of application TMOs running on TMOSM.

TMOSM has been found to be easily adaptable to
most commercial hardware + kernel platforms, e.g.,
PCs or similar hardware with Windows XP, Windows
CE, Linux, etc. [http://dream.eng.uci.edu/ TMO-
download/]. Our experiences indicate that even this
middleware extension of a general-purpose OS such as
Windows XP can support application actions with the
10ms-level timing accuracy. A Windows CE based
prototype of TMOSM has been developed and is under
continuous optimization with the goal of supporting
application actions with better-than-10ms-level timing
accuracy. Multiple prototype implementations of
TMOSM and similar middleware based on the Linux
platform also exist [KimH02].

A friendly programming interface wrapping the
execution support services of TMOSM has also been

developed and named the TMO Sup-
port Library (TMOSL) [Kim00]. It
consists of a number of C++ classes
and approximates a programming
language directly supporting TMO as
a basic building-block. The pro-
gramming scheme and supporting
tools have been used in a broad range
of basic research and application pro-
totyping projects in a number of re-
search organizations and also used in
an undergraduate course on RT DC
programming at UCI [http://dream.
eng.uci.edu/eecs123/serious.htm].
TMO facilitates a highly abstract pro-
gramming style without compromis-
ing the degree of control over timing
precisions of important actions.
However, research on the TMO
scheme has been largely confined to
the cases of RT local-area DC.

It seems reasonable to attempt to
develop an IRDRM subsystem as an
extension of a well established mid-
dleware subsystem effective in RT lo-
cal-area DC systems. We plan to ex-
tend the TMO programming scheme into a desirable
programming model for use in RT wide-area DC ap-
plication programming. A desirable programming
model should allow natural intuitive specification of
not only the timeliness and other QoS requirements
inherent in RT local-area DC applications but also
those in RT wide-area DC applications. Similarly, we
believe that TMOSM is a solid starting base for devel-
oping a desirable IRDRM middleware subsystem
model. Rationales for these adoptions are elaborated
in the sections to follow.

4 . The TMO scheme as a starting point
for establishment of an RT DVC
programming model
The key features of the TMO programming and

specification scheme are reviewed.
(TM1) All time references in a TMO are refer-

ences to global time in that their meaning and correct-
ness are unaffected by the location of the TMO
[Kop97]. If GPS receivers are incorporated into the
TMO execution engine, then a global time base of mi-
crosecond-level precision can be established. Within a
cluster computer a master-slave scheme, which in-
volves time announcements by the master and exploi-
tation of the knowledge on the message delay between
the master and the slave, can be used to establish a
global time base of sub-millisecond level precision.

(TM2) TMO has been devised to contain only
high-level intuitive and yet precise expressions of tim-
ing requirements. Start-time-windows and completion
deadlines for object methods and time-windows for
output actions are used but no specification in indirect
terms (e.g., priority) are required. Deadlines for result
arrivals can also be specified in the client's calls for
service methods.

(TM3) TMO is a high-level program construct in
that conventional low-level program abstractions such
as processes, threads, priorities, and socket communi-
cation protocols are transparent to TMO programmers.
Yet, it offers a powerful structure which is capable of
representing all conceivable practical RT and non-RT
applications in easy-to-analyze forms.

(TM4) TMO is a natural, syntactically minor, and
semantically powerful extension of the conventional
object(s). The basic structure is depicted in Figure 4.
TMO is a DC component and thus TMOs distributed
over multiple nodes may interact via remote method
calls and another mechanism (see TM6).

(TM5) TMO is also an autonomous active DC
component. Its autonomous action capability stems
from one of its unique parts, called the time-triggered
(TT) methods or the spontaneous methods (SpMs),
which are clearly separated from the conventional ser-
vice methods (SvMs). The SpM executions are trig-
gered upon reaching of the real-time clock at specific
values determined at the design time whereas the SvM
executions are triggered by service request messages

ODSS
1

ODSS
2

Name of TMO

Object Data Store (ODS)

Time-triggered (TT)
Spontaneous Methods

(SpM's)

Message-triggered
Service Methods

(SvM's)

Service Request
 Queues

Client
TMO's

Capabilities for accessing
other TMO's and network
environment incl . logical
multicast channels, and
I/O devices

EAC

Reservation Q

SvM 2

SpM 2

SvM 1

SpM 1

concurrency
control

Deadlines From SvM's , SpM's

AAC

AAC

•
•

• • "Absolute time
domain"

"Relative time
domain"

• •

• • •

Figure 4. TMO structure

from clients. For example, the triggering times may
be specified as "for t = from 10am to 10:50am every
30min start-during (t, t+5min) finish-by t+10min".
By using SpMs, global time based coordination of dis-
tributed actions (TCoDA), a principle pioneered by
our international collaborator Hermann Kopetz
[Kop97], can be easily designed and realized.

(TM6) TMOs can use another interaction mode
in which messages can be exchanged over logical mul-
ticast channels of which access gates are explicitly
specified as data members of involved TMOs. The
channel facility is called the Real-time Multicast and
Memory-replication Channel (RMMC) [Kim00]. The
RMMC scheme facilitates RT publish-subscribe chan-
nels in a powerful form. It supports not only conven-
tional event messages but also state messages based on
distributed replicated memory semantics [Kop97].

(TM7) The TMO incorporates several rules for
execution of its components that make the analysis of
the worst-case time behavior of TMOs to be system-
atic and relatively easy while not reducing the pro-
gramming power in any way [Kim97, Kim00].

(TM8) An underlying design philosophy of the
TMO scheme is that an RT computer system will al-
ways take the form of a network of TMOs, which may
be produced in a top-down multi-step fashion
[Kim97]. For example, the earthquake monitoring and
coordinated response application can be implemented
in the form of a TMO network as depicted in Figure 5.
Each earthquake monitoring station sends its pre-
analyzed sensing reports to one or more earthquake re-
sponse control centers (ERCCs). Each ERCC ana-
lyzes the received sensing reports and makes a judg-
ment on the needs for issuing alert notices to various
sensitive factories, e.g., nuclear power plants, hospitals
with surgery rooms, semiconductor manufacturing
plants, biological experimentation laboratories, etc. If
proper alert notices arrive in time, then each receiving
factory can take actions aimed for averting or mini-
mizing the damages to its facilities. The timeliness of
the actions of all components involved in this scenario
is of crucial importance. Without highly reliable RT
DVCs, this kind of applications cannot be realized.

The attractive nature of the TMO scheme as a
starting point for establishment of an RT DVC pro-
gramming model, can be summarized as follows:

(TA1) The high-level nature of the scheme makes
application programming with the RT DVC easier than
the programming in other lower-level styles.

(TA2) The extremely broad application coverage
of the TMO network programming scheme enable re-
searchers dealing with issues such as RT DVC mid-
dleware, optimal executions of RT DVC application
software, and so on to focus on handling all possible
types of TMO instances. Once they have considered

all possible TMO instances, then they know that they
have in effect considered all possible practical situa-
tions of RT DVC applications.

(TA3) The use of global time and convenient
support for TCoDA provided by the TMO scheme en-
able both RT DVC middleware designers and RT DVC
application software designers to exploit TCoDA for
optimizing the performance of their products. The
large communication latency inherent in an RT DVC
occupying a large geographical region makes it com-
pelling to exploit TCoDA. Compared to conventional
hand-shaking message-based coordination of DC ac-
tions, this TCoDA approach can be multiple times
more efficient and reliable. For example, three end-
points can be designed to simultaneously start at
10AM to take certain coordinated courses of actions
without exchanging any synchronization messages if
they observe certain conditions by 9:59AM.

5. TMOSM as a starting point for
establishment of an IRDRM
middleware subsystem
TMOSM was devised to support the execution of

TMOs with the use of a minimal set of computing and
communication resources while satisfying all the time-
liness requirement specifications embedded in TMOs.
Once the high-level specifications of timeliness re-
quirements are registered with TMOSM, then the mid-
dleware does its best to meet the specifications by us-
ing the CPU scheduler and other resource schedulers
in the underlying node OS and the network infrastruc-
ture. While devising the TMOSM architecture, an
emphasis was on making both the analysis of the
worst-case time behavior of the middleware and the

Figure 5. A network of RT objects
handling earthquake monitoring

and coordinated response

TMO

Earthquake monitor

Earthquake
response
control center

analysis of the execution time be-
havior of application TMOs as easy
as possible without incurring any
significant performance drawback.
As a result, use of mechanisms
such as semaphore which leads to
frequent blockings of threads inside
the middleware was avoided com-
pletely and instead, a new exten-
sion of the Non-Blocking Writer
mechanism invented by Kopetz
[Kop97], called the Non-Blocking
Buffer (NBB) mechanism [Kim05],
was used extensively.

As depicted in Figure 6, within
TMOSM, the innermost core is a
super-micro thread called the
WTST (Watchdog Timer & Sched-
uler Thread). It is a "super-thread"
in that it runs at the highest possi-
ble priority level. It is also a "mi-
cro-thread" in that it manages the scheduling / activa-
tion of all other threads in TMOSM. Even those
threads created by the node OS kernel before TMOSM
starts are executed only if WTST allocates some time-
slices to them. Therefore, WTST is in control of the
processor and memory resources with the cooperation
of the node OS kernel.

WTST leases processor and memory resources to
three virtual machines (VMs) in a time-sliced and pe-
riodic manner. Each VM can be viewed conceptually
as being periodically activated to run for a time-slice.
Each VM is responsible for a major part of the func-
tions of TMOSM. Each VM maintains a number of
application threads. In fact, whenever WTST assigns
a time-slice to a VM, the VM in turn passes the time-
slice onto one of the application threads belonging to
itself. The component in each VM that handles this
“time-slice relay” is the application thread scheduler.
For example, VM-A has the application-thread-
scheduler VM-A-Scheduler. The application thread
scheduler is actually executed by WTST. To be more
precise, at the beginning of each time-slice, a timer-
interrupt results in WTST being awakened. WTST
then determines which VM should get this new time-
slice. If VM-A is chosen, WTST executes VM-A-
Scheduler and as a result, an application thread be-
longing to VM-A is activated to run for a time-slice as
WTST enters into the event-waiting mode.

The set of VMs is fixed at the TMOSM start time.
One iteration of the execution of a specified set of
VMs is called a TMOSM cycle. For example, one
TMOSM cycle may be: VCT VMAT VAT VMAT. The
following three VMs handle the core functions:

(VM1) VCT (VM for Communication Threads):
The application threads here are those dedicated to
handling the sending and receiving of middleware
messages.

(VM2) VMAT (VM for Main Application
Threads): The application threads here are those dedi-
cated to executing methods of TMOs with maximal
exploitation of concurrency. In every one of our pro-
totype implementations of TMOSM, the application
thread scheduler in VMAT uses a kind of a deadline-
driven policy for choosing an MAT to receive the next
time-slice [Kim02b].

(VM3) VAT (VM for Auxiliary Threads): Auxil-
iary threads await orders to execute certain application
program-segments and such orders come from main
application threads in execution of TMO methods.

Also, WTST provides the services of checking for
deadline violations and if a violation is found, it pro-
vides an exception signal to the user. We believe that
structuring of VMs as periodic VMs is a fundamen-
tally sound approach which leads to easier analysis of
the worst-cast time behavior of the middleware with-
out incurring any significant performance drawback.

Although TMOSM serves as a convenient starting
point, establishment of a desirable IRDRM middle-
ware subsystem requires intensive research on the fol-
lowing issues.

(SM1) Top-level deadlines such as method com-
pletion deadlines and deadlines for arrivals of results
from remote service methods and start-time-windows
for TMO methods are provided by TMO program-
mers. However, systematic top-down resource alloca-
tion requires derivation of intermediate deadlines as-
sociated with intermediate milestones falling before
the method completion points. A heuristic has been

Figure 6. Virtual machines and threads in TMOSM

Logical connections ⊃ Remote TMO Calls, RMMCs

WTST

Communication Network

COTS OS platform

VMAT

RT Clock and
Interval Timer

Activate thread
Message

Thread

Virtual
MachineTMOSM

TMO TMO TMO

Application •••

ATAT

VAT

other
processes

⊗
⊗ ⊗

SpM ThrSvM Thr

••
•

••
•

VCT

CT
CT

⊗

derived and used so far but intense research in this op-
timization area has not been performed yet.

(SM2) VCT instantiations running on DC nodes
schedule their communication threads associated with
a shared LAN (i.e., Ethernet) such that message-send
operations by DC nodes over the LAN occur in a
TDMA (time-division multiple access) fashion. Ways
to orchestrate the scheduling activities of VMAT with
those of VCT need to be studied.

(SM3) Attempts to adapt TMOSM to PC clusters
have just begun and it opens several new issues. First,
distribution of TMO components, i.e., service meth-
ods, spontaneous methods, and data-member-groups,
among multiple CPUs in a DC node, needs to be ex-
plored. Secondly, the feasibility of distributing TMO
components among multiple nodes in a cluster need to
be investigated thoroughly. A 32-node cluster built by
co-author Jenks over the past several years is one of
our experimental research tools here [Jen02].

(SM4) With the current TMOSM architecture,
TMOSM instantiations running on different DC nodes
cooperate and interact frequently among themselves.
Even though the TMOSM architecture has been vali-
dated extensively in LAN environments over the past
several years, its extension to fit into the RT DVC re-
quires substantial changes in the patterns of interaction
among its instantiations. This is due to the large
communication latency inherent in an RT DVC occu-
pying a large geographical region. The current
TMOSM is expected to show rather poor performance
when it is ported to such RT DVC without substantial
refinement. We feel that a promising research direc-
tion in this area is to add another attribute of funda-
mental nature to the TMO model.
As building-blocks of RT local-area DC application
systems, TMOs were treated as all equal neighbors.
This notion of distance-unaware TMOs needs to be
changed to derive a newly extended TMO model
called the distance-aware TMO (DA-TMO) which is
effective in constructing RT wide-area DC systems.
Then DA-TMO programmers should expect that
TMOSM instantiations supporting nearby TMOs will
interact with a relatively high frequency whereas
TMOSM instantiations supporting TMOs separated by
long distances will interact less frequently. They
should also expect that a call by a client TMO for a
service offered by a remote TMO can involve searches
for information not readily available in the local
TMOSM instantiation. TMOSM can now be aware of
when an RMMC covers a large geographical area.

6. Pipelined execution model for RT wide-
area DC

A coarse-grain pipelined execution model will al-

low simultaneous use of DC resources without the
long waits associated with distributed synchronization.
Such an execution model, in which a series of compu-
tational stages can be performed concurrently with the
results of one stage being passed on to the next stage,
is known, but not commonly used in conventional sci-
entific computing [Cul99]. Rather than a strict linear
pipeline, a multi-path pipeline may be used if the ap-
plication warrants it.

For example, consider the following scenario.
Data is acquired by an electron microscope and fed
into the local cluster computer CC1 located in San
Diego, where it may be preprocessed and/or stored for
archival purposes. From there, it is sent to two remote
clusters, CC2 and CC3, for further processing. At the
cluster CC2, perhaps more data from a local sensor
could be added to the data stream. The two "process-
ing" clusters CC2 and CC3 perform some (presumably
different) processing on the data and then pass it on to
the visualization cluster CC4 located in Irvine, which
further processes the pre-digested data and presents it
to researchers via display panels. Each of these steps
takes place concurrently with different chunks of data
being sent from San Diego to Irvine. This allows us to
visualize data from one period of measurement time,
while the data from the next period is being processed
and the data from the period after that is being ac-
quired. CC4 may also perform a remote control func-
tion related to the electron microscope in San Diego
and other sensors in other regions, in which case RT
control is taking place over a long distance.

In order to orchestrate this DC pipeline with its
high-volume data transfers and at the same time pro-
vide RT service guarantees, we need to manage and
schedule all the cooperating clusters and communica-
tion paths forming the pipeline together for timely
computation and communication actions. An exten-
sion of the IRDRM subsystem to support such a pipe-
lined execution model is a non-trivial challenge.

To operate the pipelines efficiently, pipeline
stages spread over wide areas must act synchronously
and this requires use of a good-quality globally refer-
enced time base. The communication between clusters
must also show highly predictable timing behavior. In
principle, the middleware models and the DA-TMO
programming model discussed in preceding sections
should enable efficient programming of such wide-
area pipelines. When the implicit (message-less) time-
based synchronization and other forms of TCoDA are
properly exploited, a program on one cluster will
know in advance when to expect the next message
from the other clusters.

Another approach potentially beneficial in such
pipeline programming is to apply within each cluster
the Single-Program Multiple-Data (SPMD) program-

ming model [Dar86], in which the same program runs
on all nodes, but each node can execute a different
path through the program based on the node's identity,
program inputs, and other factors. An interesting ap-
proach to explore here is to integrate the SPMD pro-
gramming model with the DA-TMO programming
model toward the goal of making the wide-area pipe-
line programming relatively easy.

7. Conclusion
By composing a real-time wide-area distributed

computing middleware framework from demonstrably
deterministic components, including OptIPuter-
enabled dedicated light paths, TT-Ethernet switches,
and TMO middleware, we have employed unique
technology to design deterministic infrastructure that
was not possible until now. This RT DVC will enhance
Grid and DVC mechanisms for allocation of re-
sources, including computers and network links, with
timeliness requirements at the forefront. Applications
that run on RT DVCs will use timing-based specifica-
tions to define their real-time requirements, which
makes programming logical and reasonable. Our de-
sign accommodates the many millisecond delay inher-
ent in long-distance links and will be able to schedule
distant events to rendezvous precisely and will support
multiple messages in-flight when latency exceeds
transmission period. The framework will provide un-
precedented support for wide-area globally coordi-
nated actions based on time and events – capabilities
now only available for smaller real-time systems.

Acknowledgment: The research reported here is sup-
ported in part by the NSF under Grant Numbers 02-
04050 (NGS) and 03-26606 (ITR), and in part by the
NSF under Cooperative Agreement ANI-0225642 to
UCSD for "The OptIPuter". No part of this paper
represents the views and opinions of any of the spon-
sors mentioned above.

References
[Cul99] D. E. Culler, J. P. Singh, and A. Gupta, 'Parallel

Computer Architecture: A Hardware/Software Ap-
proach', San Francisco, Morgan Kaufmann, 1999.

[Dar86] F. Darema-Rogers, D. A. George, V. A. Norton,
and G. F. Pfister., "Single-Program-Multiple-Data
Computational Model for Epex/Fortran", IBM T. J.
Watson Research Center, Yorktown Heights, Technical
Report RC 11552, Nov. 1986.

[Fos97] I. Foster and C. Kesselman, "Globus: A Metacom-
puting Infrastructure Toolkit", Int'l Jour. of Supercom-
puter Applications, vol. 11, no. 2, pp. 115-128, 1997.

[Fos98] I. Foster, and C. Kesselman (Eds.), 'The Grid:
Blueprint for a New Computing Infrastructure', San
Francisco, CA, Morgan Kaufmann, 1998.

[Fos01] I. Foster, C. Kesselman, and S. Tuecke, "The Anat-

omy of the Grid: Enabling Scalable Virtual Organiza-
tions", Int'l Journal of Supercomputer Applications,
vol. 15, no. 3, 2001.

[Jen02] S. Jenks, "How to Build a Rackmount Linux Clus-
ter", July 3, 2002, available from
http://www.ece.uci.edu/~sjenks/Cluster/index.html.

[Kim97] Kim, K.H., "Object Structures for Real-Time Sys-
tems and Simulators", IEEE Computer, August 1997,
pp.62-70.

[Kim99] Kim, K.H., Ishida, M., and Liu, J., "An Efficient
Middleware Architecture Supporting Time-Triggered
Message-Triggered Objects and an NT-based Imple-
mentation", Proc. ISORC '99 (IEEE CS 2nd Int'l Symp.
on Object-oriented Real-time distributed Computing),
May 1999, pp.54-63.

[Kim00] Kim, K.H., "APIs Enabling High-Level Real-Time
Distributed Object Programming", IEEE Computer,
June 2000, pp.72-80.

[Kim02a] Kim, K.H., "Commanding and Reactive Control
of Peripherals in the TMO Programming Scheme",
Proc. ISORC 2002 (5th IEEE CS Int'l Symp. on OO
Real-time distributed Computing), Crystal City, VA,
April 2002, pp.448-456.

[Kim02b] Kim, K.H., and Liu, J.Q., "Going Beyond Dead-
line-Driven Low-level Scheduling in Distributed Real-
Time Computing Systems", in B. Kleinjohann et al.
eds., 'Design and Analysis of Distributed Embedded
Systems' (Proc. IFIP 17th World Computer Congress,
TC10 Stream, Montreal, Can., Aug 2002), Kluwer,
pp.205-215.

[Kim04] Kim, K.H., "Wide-Area Real-Time Distributed
Computing in a Tightly Managed Optical Grid- An Op-
tIPuter Vision", Proc. AINA 2004 (Proc. 18th Int'l
Conf. on Advanced Information Networking and Appli-
cations), Fukuoka, Japan, March 29 - 31, 2004, Volume
1, pp.2-11 (Keynote paper).

[Kim05] Kim, K.H., "A Non-Blocking Buffer Mechanism
for Real-Time Event Message Communication", to ap-
pear in Real-Time Systems - The International Journal
of Time-Critical Computing Systems.

[KimH02] Kim, H.J., Park, S.H., Kim, J.G., and Kim, M.H.,
"TMO-Linux: A Linux-based Real-time Operating Sys-
tem Supporting Execution of TMOs", Proc. ISORC ’02
(IEEE 5th CS Int'l Symp. on Object-Oriented Real-time
Distributed Computing), Washington D.C., April 2002,
pp. 288-294.

[Kop97] Kopetz, H., 'Real-Time Systems: Design Principles
for Distributed Embedded Applications', Kluwer Aca-
demic Pub., ISBN: 0-7923-9894-7, Boston, 1997.

[Kop05] Kopetz, H., Ademaj, A., Grillinger, P., and Stein-
hammer, K., "The Time-Triggered Ethernet (TTE) De-
sign", to appear in Proc. ISORC 2005 (IEEE CS 8th
Int'l Symp. on Object-oriented Real-time distributed
Computing), Seattle, WA, May 2005.

[Sma03] Smarr, L.L., Chien, A.A., Defanti, T., Leigh, J.,
and Papadopoulos, P.M., "The OptIPuter", Comm.
ACM, Nov. 2003, Vol. 46, No. 11, pp.59-67.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

