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Abstract:  The development of real-time systems that 
are distributed over a wide area is a significant prob-
lem that has challenged researchers for many years.  
Such systems require precise timing of actions 
throughout, but wide area networks tend to have vari-
able delays that greatly reduce determinism.   

The framework described here supports the com-
position of wide-area real-time Distributed Virtual 
Computer systems from deterministic components to 
provide precise timing from end-to-end.  The frame-
work will use switched optical networks such as those 
being developed for the OptIPuter project for well-
regulated long-distance paths yielding low jitter.  
Within campus networks, the Time-Triggered Ethernet 
technology will provide deterministic switching of 
packets for real-time applications while supporting 
legacy IP traffic.  Finally, at the edges, the Time-
triggered Message-triggered Object (TMO) Support 
Middleware will manage resources to provide real-
time operations while supporting an easy-to-program 
interface and high-level timing specification.  

1.  Introduction 
The history of distributed computing (DC) spans 

more than three decades but the branch of the DC 
technology related to real-time (RT) applications still 
remains in an immature state.  The needs for correct-
ing this situation are becoming more acute than ever 
because exploration of new-generation DC applica-
tions which involve actions subject to relatively high-
precision timing requirements has been exploding in 
recent years.  Multi-media network based applications, 
collaborating robots, and sensor network based appli-
cations are representative of the exploding RT DC ap-
plication fields.  

At the top level the biggest fundamental research 
challenge is:  

To enable high-level high-precision real-time dis-
tributed software design and programming ac-
companied by cost-effective guaranteeing of ac-
ceptable response times.   
High-level RT DC programming is a research sub-

ject of critical importance in this decade since a vast 
number of new-generation RT DC application soft-
ware cannot be constructed in easily analyzable and 
thus highly reliable forms with acceptable costs by use 
of conventional C or assembly-level programming.   
Technologies for cost-effective guaranteeing of ac-
ceptable response times are also of great importance.  
If response time requirements are not met, then obvi-
ously applications fail.  The efforts for guaranteeing 
acceptable response times must also be affordable.  
The state of the art in this area is very weak.  

The top-level goal which the practicing commu-
nity has been longing for over many years cannot be 
realized without successful development of some key 
component technologies such as (1)  programming 
model and API; and (2) middleware possessing effec-
tive resource management capabilities.  

The essence of RT computing is to effect impor-
tant output actions within precisely specified time-
windows.  In RT DC systems, if an output action of a 
node becomes ready only after manipulating some 
data coming from another node, then the production of 
the data by the latter node and its communication to 
the former node must all occur in time for enabling the 
output action to be within the specified time-window.  
Controlling communication delays is obviously much 
easier in LAN (local area network) -based application 
systems than in WAN (wide area network) -based sys-
tems.  Naturally, research in LAN-based RT DC sys-
tems has advanced steadily over the past two decades, 
but fewer research efforts have been made in the field 
of WAN-based high-reliability RT DC systems.   

Recently, efforts for creating WAN environments 
in which bounds on communication delay jitters are 
significantly smaller than those in most major seg-
ments of the current Internet started growing.  For ex-
ample, efforts for creating optical grids yielding tightly 
bounded delay jitters are under way [Sma03].  There-
fore, we expect that research on RT wide-area DC will 
be accelerated from here on.  

At the more basic level, WAN-based DC has be-
come an active field of research, especially under the 
label of grid computing [Fos01].  As the grid comput-



 

ing research community grows, the branch of the 
community which deals seriously with the quality-of-
service (QoS) aspect is showing increasing interests in 
the potential for wide-area RT DC.  We have defined 
an RT grid (or an RT sub-grid) as:  

a grid (or a sub-grid) which facilitates both   
(RG1) message communications with easily determin-
able tight latency bounds and  
(RG2) computing node operations enabling easy 
guaranteeing of timely progress of threads toward 
computational milestones [Kim04].   

What has prevented the creation of a broad range 
of RT grids?  The issue of transferring messages with 
easily determinable tight latency bounds has been the 
main stumbling-block, particularly when coast-to-
coast latencies are greater than ten milliseconds and 
world-wide latencies are greater.  These latencies are 
often greater than the period of real-time tasks at either 
end of the connection. Therefore, scheduling of the 
communications and computations requires considera-
tion of the number of messages in flight and the com-
munication delay. 

The issue of jitter and indeterminate delays along 
these long distance links is largely one of economic 
constraints. Dedicated paths were unaffordable for 
most applications. The situation is changing, however.  
Continuous increase in the availability of wavelengths 
of light, called Lambdas, traversing strands of optical 
fiber, combined with the steady declines of the costs of 
acquiring such lambdas, have encouraged some tech-
nological visionaries to propose to use dedicated 
Lambdas to form fully optical data paths among major 
science laboratories spread over multiple cities and 
states.  A challenge then is how to extend and adapt 
the most advanced and effective technologies estab-
lished for RT DC in LAN environments to such RT 
grid environments.  Although a fundamental obstacle 
may be absent in such dedicated optical-path WAN 
environments, there are many research questions re-
lated to achievable DC performance, optimal use of 
resources, newly enabled applications, etc.  

In fact, campus networks, including many univer-
sity campus networks and networks covering indus-
trial complexes, typically involve multiple Ethernet 
switches.  Therefore, RT message communication 
through this LAN part of the RT grids is a non-trivial 
issue.  However, there has been a breakthrough pro-
duced by Hermann Kopetz at the Vienna Univ of 
Technology (TUW).  The new RT LAN scheme in-
vented by him is called the Time-Triggered (TT) 
Ethernet [Kop05].  

2.  Real-Time Distributed Virtual 
Computers 

Once an RT grid with appropriate RT communica-
tion capabilities is established, it can be operated to 
provide a different set of RT distributed virtual com-
puters (DVCs), also called RT DC virtual machines, at 
a different time. The term DVC was used by Larry 
Smarr and Andrew Chien to refer to the configuration 
of DC resources with the following characteristics 
[Sma03, Kim04] and depicted in Figure 1.  

(DVC1)  A DVC is an image of a DC facility pre-
sented to application software.  It can be viewed as a 
dynamically established sub-grid.  It typically involves 
computing nodes, which may come from one site or 
multiple sites, and communication paths among the 
nodes.  A computing node here may contain proces-
sors, storage devices, displays, other peripherals, and 
ports leading to inter-node communication paths.   

(DVC2)  A DVC is configured dynamically in 
principle.  However, it may remain in tact for a long 
time, e.g., even for months, or for as short as a few 
minutes.  Within a DVC, multiple applications may 
run concurrently, sharing resources of the DVC.   

Ideally, a DVC should look like "a safe local clus-
ter" to the applications, rather than like the "relatively 
hostile, best-effort, open Internet" [Sma03].  However, 
the relatively long message communication latency 
inherent in WANs puts a limit on the extent to which a 
DVC can be made to look like a local cluster, at least 
to RT application developers.  

Based this DVC notion, we have established its 
specialized case for RT computing, i.e., the notion of 
RT DVC.  An RT DVC must be distinctively stronger 
than a general DVC in the following characteristics 
[Kim04]:  

(RD1)  The message paths in an RT DVC must 
have the capability of transferring messages with eas-
ily determinable tight latency bounds.  Therefore, if a 
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lambda-path were to support such RT message paths 
for one RT DVC together with message paths for other 
simultaneously-active DVCs, it must be operated to 
provide both tight latency bounds and guaranteed 
bandwidths to the RT DVC.  

(RD2)  In each computing or sensing-actuating 
site (offering computing nodes) within the RT DVC, 
participating computing nodes must exhibit timing be-
haviors which are not different from those of comput-
ing nodes in an isolated site by more than a few per-
cents.  Also, computing nodes in an RT DVC must en-
able easy procedures for assuring the very high prob-
ability of application processes and threads reaching 
important milestones on time.  This means that com-
puting nodes must be equipped with appropriate infra-
structure software, i.e., OS kernel and middleware 
with relatively easily analyzable QoS.  

(RD3)  If representative computing nodes of two 
RT DVCs are connected via RT message paths, then 
the ensemble consisting of the two DVCs and the RT 
message paths is also an RT DVC.  This makes the 
definition of RT DVC to be recursive in nature.  

An RT DVC may be dedicated to running one RT 
DC application or used to support multiple RT DC ap-
plications concurrently.  Therefore, extensive research 
is needed to establish a middleware model with the 
following capabilities:  

(M1)  Establishment of RT communication paths 
spanning wide areas, including allocation of Lambdas, 
allocation of virtual Lambdas (i.e., time-shares of 
Lambdas), and coordination of RT message-send tim-
ings;  A middleware subsystem handling these may be 
called an RT communication infrastructure manage-
ment (RCIM) subsystem.  

(M2)  On-demand creation of RT DVCs;  A mid-
dleware subsystem handling these may be called an RT 
grid resource management (RGRM) subsystem.  The 
RGRM subsystem may learn from the RCIM subsys-
tems what RT communication paths are available for 
use.  It allocates a subset of the available computing 
resources (including PC clusters in DC sites) and 
communication resources to the new RT DVC being 
created in response to a request.  

(M3)  Allocation of both computing and commu-
nication resources within the DVC as demands from 
the applications arise;  A middleware subsystem han-
dling these may be called an intra-RT-DVC resource 
management (IRDRM) subsystem.  It seems reason-
able to attempt to develop an IRDRM subsystem as an 
extension of a well established middleware subsystem 
effective in LAN-based RT DC systems.  

In this paper, we present a middleware framework 
consisting of the three middleware subsystems men-
tioned above and discuss some major issues that need 
to be resolved to realize the middleware in a cost-

effective form.  

3.  RT DVC Middleware 
The structure of the RT DVC middleware is de-

picted in Figure 2.  The RCIM subsystem obtains ap-
propriate resources from both the general grid comput-
ing resource manager and the general grid communi-
cation resource manager and then establish RT com-
munication paths spanning wide areas.  The RGRM 
subsystem obtains appropriate computing resources 
from the general grid computing resource manager and 
obtains RT communication paths from the RCIM sub-
system and use them to configure one or more RT 
DVCs as demands arise.  On each RT DVC, the 
IRDRM subsystem supports multiple RT wide-area 
DC applications.   

Major issues and approaches in realizing each 
middleware subsystem are discussed below.   

3.1 Technical foundation for realizing high-
QoS WAN communication layers  

As we defined, an RT grid must facilitate message 
communications with easily determinable tight latency 
bounds.  The WAN in which an RT grid resides con-
tains typically three different regions as depicted in 
Figure 3.  For Region 2 and Region 3, a common ap-
proach for creating an environment yielding tight la-
tency bounds has been to dedicate the LAN to the 
communication among the constituencies of RT DC in 
the local area and isolate it from non-RT computing 
sites in the local area and from the general Internet.  
The economic incentives for using more flexible net-
working schemes than such isolated LAN schemes are 
strong.  Recently, a technology breakthrough that al-
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Figure 2. Structure of the RT DVC middleware 



 

lows more flexible local area 
networking without impairing the 
tight latency bounds came from 
Hermann Kopetz at TUW 
[Kop095].  The basic idea behind 
the newly invented RT LAN 
scheme, TT Ethernet, is to put a 
special mark in the message 
header that indicates whether the 
message is an RT message or a 
normal message.  Whenever an 
RT message arrives at a switch, 
the message is processed first 
even if some non-RT messages 
are already in the buffer within 
the switch.   

The generators of RT messages must cooperate so 
that the RT messages produced by them may traverse 
in collision-free manners.  This cooperation is handled 
by instantiations of the middleware running on DC 
sites and development of such middleware is an im-
portant research topic.  We have some experiences in 
building special instances of such middleware during 
the course of developing TMOSM (TMO Support 
Middleware) [Kim99].  However, the cooperation 
logic developed there is a simple TDMA support logic 
which covers simple Ethernet configurations but does 
not cover complex campus network configurations in-
volving tens of Ethernet switches.  Therefore, estab-
lishment of a middleware subsystem which schedules / 
coordinates RT message-send actions of DC sites in 
manners effective in typical campus network environ-
ments equipped with TT Ethernet switches is an open 
research issue.  

For Region 1, a new-generation WAN backbone, 
in particular, the OptIPuter core being developed un-
der the leadership of Larry Smarr at UCSD, is an at-
tractive choice.  Three possible situations must be con-
sidered in developing an RCIM subsystem dealing 
with such a WAN backbone.  In one case, Lambdas 
can be reserved for various lengths of time as a part of 
forming dedicated message paths between gateways in 
Region 2.  In this case, the network communication jit-
ter and throughput variance are negligible and thus 
such Region 1 presents no more problems in realizing 
high-QoS WAN communication layers.  In the second 
case, a time-share of a Lambda can be reserved such 
that a tight latency bound can be easily determined and 
a certain bandwidth is guaranteed to an RT message 
path from one gateway to another in Region 2.  There-
fore, certain types of high-QoS WAN communication 
layers can still be realized in this case.  In the third 
case, Lambdas cannot be reserved for dedicated use or 
guaranteed time-shares but it is possible to program 
Lambda switches to support RT messages in the man-

ner that the TT Ethernet switch does.  This will require 
the cooperation of the vendor of the Lambda switches.  
We plan to study all three cases in the context of the 
special connections being established between UCI 
and UCSD partly to enable realization of a Southern 
California OptIPuter.   

Effective integration of the middleware subsystem 
facilitating harmonious communication of RT mes-
sages through Region 2 and Region 3 with the subsys-
tem managing RT message paths in Region 1 is also an 
important research topic.  The integrated RCIM sub-
system can then handle establishment of RT commu-
nication paths spanning wide areas, including alloca-
tion of Lambdas, allocation of virtual Lambdas (i.e., 
time-shares of Lambdas), and coordination of RT mes-
sage-send timings.  

3.2   An RT grid resource management 
(RGRM) middleware subsystem handling 
on-demand creation of RT DVCs 

The RGRM subsystem responds to requests from 
users for creation of RT DVCs.  It must first be able to 
keep an RT subgrid by obtaining computing node fa-
cilities, RT communication paths, and peripherals from 
the grid.  RT communication paths can be obtained 
from the RCIM subsystem while computing nodes can 
be obtained from the general grid computing resource 
manager.  

The RGRM subsystem allocates a subset of the 
available computing resources, including PC clusters 
in DC sites, and communication resources to the new 
RT DVC being created in response to a request.  When 
the lifetime of the RT DVC is over, all the resources 
used to form the RT DVC are returned to the RGRM 
subsystem.  Since the costs of computing node facili-
ties are still declining at a steady rate, it seems reason-
able to consider only dedicated use of computing 
nodes in each RT DVC.  However, significant seg-
ments of each RT communication path available in the 
RT grid may be virtual links or path-segments to begin 
with.  Therefore, the allocation of RT communication 
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paths by RGRM to an RT DVC may involve splitting 
of a virtual path into multiple virtual paths of narrower 
bandwidths and increased delay bounds.  As a system-
atic splitting technique is needed in the RCIM subsys-
tem, a similar technique is needed in this RGRM sub-
system as well.   

The Grid Resource Allocation and Management 
(GRAM) service, a part of the Globus toolkit [Fos97, 
Fos98], will need to be extended to support RGRM.  It 
has been pretty much CPU-usage oriented, with RSL 
(Resource Specification Language) attributes like 
hostCount, maxCpuTime, maxMemory, etc.  RT DVC 
is additionally concerned with RT communication 
paths.  Attributes for such connectivity with associated 
latency and bandwidth characteristics will need to be 
added to GRAM and RSL.  

3.3   An intra-RT-DVC resource management 
(IRDRM) middleware subsystem and an 
RT DVC programming model  

The IRDRM subsystem handles allocation of both 
computing and communication resources within the 
DVC as demands from the applications arise.  The ul-
timate goal of the resource acquisition of an RT DC 
application is to execute its logic in time for timely 
execution of output actions.  Past research on resource 
management in RT DC systems has taught us two im-
portant lessons:  

(CI1)  Many DC actions occur concurrently and 
involve use of both computing and communication re-
sources.  Past research dealing with computing re-
source allocation was extensive but largely conducted 
in separation from the research on allocation of com-
munication resources.  An exceptional case is the work 
by the Kopetz' group although the application pro-
gramming model adopted there is of a somewhat re-
strictive type [Kop97].  To maximize the computa-
tional efficiency of many concurrent RT DC actions, a 
well orchestrated allocation of both computing re-
sources and communication resources is desirable and 
is an important research challenge in this decade.  

(CI2)  Efficient resource management in RT DC 
systems is not possible without reasonably accurate 
derivation of resource demands from the specifications 
of RT DC applications, i.e., RT DC application pro-
grams.  Accurate derivation of resource demands from 
RT DC programs is very difficult with RT DC pro-
grams specified in low-level programming styles, i.e., 
the styles practiced in C or assembly languages.   

In the past decade, much of our research was di-
rected toward establishing a high-level RT DC object 
model, the Time-triggered Message-triggered Object 
(TMO), which includes parameters that can be easily 
interpreted by the resource manager (i.e., the node 
kernel and the resource management middleware sub-

system) and lead to efficient resource management.  
The main goal has been to relieve the RT DC applica-
tion designers and programmers of the burden of deal-
ing with low-level programming tools and low-level 
abstractions of computing and communication envi-
ronments [Kim97, Kim00, Kim02a].   

During the initiation of the TMO model, we 
thought that desired RT DC object models must in-
clude timing specification mechanisms which were in-
tuitive and simple to use and yet possessed strong ex-
pressive power.  Such timing specifications must en-
able relatively easy interpretation by the DC resource 
management middleware subsystem.  The TMO model 
reflects our judgment that supporting programmers to 
specify start-time-windows and completion deadlines 
of RT computation-segments in convenient manners, 
rather than simplistically specifying priority numbers, 
is very important.  After all, it is natural for RT appli-
cation programmers to think about start-time-windows 
and completion deadlines rather than priority numbers.   

In addition, it is desirable to support programmers 
to specify a deadline for result arrival in association 
with a remote method call.  It will enable systematic 
composition of higher-level services with timeliness 
assurances out of lower-level services.   

We have been enabling TMO programming with-
out creating any new language or compiler.  Instead, a 
middleware model called the TMOSM (TMO Support 
Middleware) provides execution support mechanisms 
and can be easily adapted to a variety of commercial 
kernel+hardware platforms compliant with industry 
standards [Kim99].  TMOSM uses well-established 
services of commercial OSs, e.g., process and thread 
support services, short-term scheduling services, and 
low-level communication protocols, in a manner 
transparent to the application programmer.  The 
TMOSM architecture was devised to contribute to 
simplifying the analysis of the execution time behavior 
of application TMOs running on TMOSM.  

TMOSM has been found to be easily adaptable to 
most commercial hardware + kernel platforms, e.g., 
PCs or similar hardware with Windows XP, Windows 
CE, Linux, etc. [http://dream.eng.uci.edu/ TMO-
download/].  Our experiences indicate that even this 
middleware extension of a general-purpose OS such as 
Windows XP can support application actions with the 
10ms-level timing accuracy.  A Windows CE based 
prototype of TMOSM has been developed and is under 
continuous optimization with the goal of supporting 
application actions with better-than-10ms-level timing 
accuracy.  Multiple prototype implementations of 
TMOSM and similar middleware based on the Linux 
platform also exist [KimH02].  

A friendly programming interface wrapping the 
execution support services of TMOSM has also been 



 

developed and named the TMO Sup-
port Library (TMOSL) [Kim00].  It 
consists of a number of C++ classes 
and approximates a programming 
language directly supporting TMO as 
a basic building-block.  The pro-
gramming scheme and supporting 
tools have been used in a broad range 
of basic research and application pro-
totyping projects in a number of re-
search organizations and also used in 
an undergraduate course on RT DC 
programming at UCI [http://dream. 
eng.uci.edu/eecs123/serious.htm].  
TMO facilitates a highly abstract pro-
gramming style without compromis-
ing the degree of control over timing 
precisions of important actions.  
However, research on the TMO 
scheme has been largely confined to 
the cases of RT local-area DC.  

It seems reasonable to attempt to 
develop an IRDRM subsystem as an 
extension of a well established mid-
dleware subsystem effective in RT lo-
cal-area DC systems.  We plan to ex-
tend the TMO programming scheme into a desirable 
programming model for use in RT wide-area DC ap-
plication programming.  A desirable programming 
model should allow natural intuitive specification of 
not only the timeliness and other QoS requirements 
inherent in RT local-area DC applications but also 
those in RT wide-area DC applications.  Similarly, we 
believe that TMOSM is a solid starting base for devel-
oping a desirable IRDRM middleware subsystem 
model.  Rationales for these adoptions are elaborated 
in the sections to follow.   

4 . The TMO scheme as a starting point 
for establishment of an RT DVC 
programming model 
The key features of the TMO programming and 

specification scheme are reviewed.  
(TM1)  All time references in a TMO are refer-

ences to global time in that their meaning and correct-
ness are unaffected by the location of the TMO 
[Kop97].  If GPS receivers are incorporated into the 
TMO execution engine, then a global time base of mi-
crosecond-level precision can be established.  Within a 
cluster computer a master-slave scheme, which in-
volves time announcements by the master and exploi-
tation of the knowledge on the message delay between 
the master and the slave, can be used to establish a 
global time base of sub-millisecond level precision.   

(TM2)  TMO has been devised to contain only 
high-level intuitive and yet precise expressions of tim-
ing requirements.  Start-time-windows and completion 
deadlines for object methods and time-windows for 
output actions are used but no specification in indirect 
terms (e.g., priority) are required.  Deadlines for result 
arrivals can also be specified in the client's calls for 
service methods.  

(TM3)  TMO is a high-level program construct in 
that conventional low-level program abstractions such 
as processes, threads, priorities, and socket communi-
cation protocols are transparent to TMO programmers.  
Yet, it offers a powerful structure which is capable of 
representing all conceivable practical RT and non-RT 
applications in easy-to-analyze forms.   

(TM4)  TMO is a natural, syntactically minor, and 
semantically powerful extension of the conventional 
object(s).  The basic structure is depicted in Figure 4.  
TMO is a DC component and thus TMOs distributed 
over multiple nodes may interact via remote method 
calls and another mechanism (see TM6).  

(TM5)  TMO is also an autonomous active DC 
component.  Its autonomous action capability stems 
from one of its unique parts, called the time-triggered 
(TT) methods or the spontaneous methods (SpMs), 
which are clearly separated from the conventional ser-
vice methods (SvMs).  The SpM executions are trig-
gered upon reaching of the real-time clock at specific 
values determined at the design time whereas the SvM 
executions are triggered by service request messages 
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from clients.  For example, the triggering times may 
be specified as "for t = from 10am to 10:50am  every  
30min  start-during (t, t+5min)  finish-by t+10min".  
By using SpMs, global time based coordination of dis-
tributed actions (TCoDA), a principle pioneered by 
our international collaborator Hermann Kopetz 
[Kop97], can be easily designed and realized.   

(TM6)  TMOs can use another interaction mode 
in which messages can be exchanged over logical mul-
ticast channels of which access gates are explicitly 
specified as data members of involved TMOs.  The 
channel facility is called the Real-time Multicast and 
Memory-replication Channel (RMMC) [Kim00].  The 
RMMC scheme facilitates RT publish-subscribe chan-
nels in a powerful form.  It supports not only conven-
tional event messages but also state messages based on 
distributed replicated memory semantics [Kop97].  

(TM7)  The TMO incorporates several rules for 
execution of its components that make the analysis of 
the worst-case time behavior of TMOs to be system-
atic and relatively easy while not reducing the pro-
gramming power in any way [Kim97, Kim00].  

(TM8)  An underlying design philosophy of the 
TMO scheme is that an RT computer system will al-
ways take the form of a network of TMOs, which may 
be produced in a top-down multi-step fashion 
[Kim97].  For example, the earthquake monitoring and 
coordinated response application can be implemented 
in the form of a TMO network as depicted in Figure 5.  
Each earthquake monitoring station sends its pre-
analyzed sensing reports to one or more earthquake re-
sponse control centers (ERCCs).  Each ERCC ana-
lyzes the received sensing reports and makes a judg-
ment on the needs for issuing alert notices to various 
sensitive factories, e.g., nuclear power plants, hospitals 
with surgery rooms, semiconductor manufacturing 
plants, biological experimentation laboratories, etc.  If 
proper alert notices arrive in time, then each receiving 
factory can take actions aimed for averting or mini-
mizing the damages to its facilities.  The timeliness of 
the actions of all components involved in this scenario 
is of crucial importance.  Without highly reliable RT 
DVCs, this kind of applications cannot be realized.  

The attractive nature of the TMO scheme as a 
starting point for establishment of an RT DVC pro-
gramming model, can be summarized as follows:  

(TA1)  The high-level nature of the scheme makes 
application programming with the RT DVC easier than 
the programming in other lower-level styles.   

(TA2)  The extremely broad application coverage 
of the TMO network programming scheme enable re-
searchers dealing with issues such as RT DVC mid-
dleware, optimal executions of RT DVC application 
software, and so on to focus on handling all possible 
types of TMO instances.  Once they have considered 

all possible TMO instances, then they know that they 
have in effect considered all possible practical situa-
tions of RT DVC applications.   

(TA3)  The use of global time and convenient 
support for TCoDA provided by the TMO scheme en-
able both RT DVC middleware designers and RT DVC 
application software designers to exploit TCoDA for 
optimizing the performance of their products.  The 
large communication latency inherent in an RT DVC 
occupying a large geographical region makes it com-
pelling to exploit TCoDA.  Compared to conventional 
hand-shaking message-based coordination of DC ac-
tions, this TCoDA approach can be multiple times 
more efficient and reliable.  For example, three end-
points can be designed to simultaneously start at 
10AM to take certain coordinated courses of actions 
without exchanging any synchronization messages if 
they observe certain conditions by 9:59AM.  

5.  TMOSM as a starting point for 
establishment of an IRDRM 
middleware subsystem 
TMOSM was devised to support the execution of 

TMOs with the use of a minimal set of computing and 
communication resources while satisfying all the time-
liness requirement specifications embedded in TMOs.  
Once the high-level specifications of timeliness re-
quirements are registered with TMOSM, then the mid-
dleware does its best to meet the specifications by us-
ing the CPU scheduler and other resource schedulers 
in the underlying node OS and the network infrastruc-
ture.  While devising the TMOSM architecture, an 
emphasis was on making both the analysis of the 
worst-case time behavior of the middleware and the 
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analysis of the execution time be-
havior of application TMOs as easy 
as possible without incurring any 
significant performance drawback.  
As a result, use of mechanisms 
such as semaphore which leads to 
frequent blockings of threads inside 
the middleware was avoided com-
pletely and instead, a new exten-
sion of the Non-Blocking Writer 
mechanism invented by Kopetz 
[Kop97], called the Non-Blocking 
Buffer (NBB) mechanism [Kim05], 
was used extensively.  

As depicted in Figure 6, within 
TMOSM, the innermost core is a 
super-micro thread called the 
WTST (Watchdog Timer & Sched-
uler Thread).  It is a "super-thread" 
in that it runs at the highest possi-
ble priority level.  It is also a "mi-
cro-thread" in that it manages the scheduling / activa-
tion of all other threads in TMOSM.  Even those 
threads created by the node OS kernel before TMOSM 
starts are executed only if WTST allocates some time-
slices to them.  Therefore, WTST is in control of the 
processor and memory resources with the cooperation 
of the node OS kernel.   

WTST leases processor and memory resources to 
three virtual machines (VMs) in a time-sliced and pe-
riodic manner.  Each VM can be viewed conceptually 
as being periodically activated to run for a time-slice.  
Each VM is responsible for a major part of the func-
tions of TMOSM.  Each VM maintains a number of 
application threads.  In fact, whenever WTST assigns 
a time-slice to a VM, the VM in turn passes the time-
slice onto one of the application threads belonging to 
itself.  The component in each VM that handles this 
“time-slice relay” is the application thread scheduler.  
For example, VM-A has the application-thread-
scheduler VM-A-Scheduler.  The application thread 
scheduler is actually executed by WTST.  To be more 
precise, at the beginning of each time-slice, a timer-
interrupt results in WTST being awakened.  WTST 
then determines which VM should get this new time-
slice.  If VM-A is chosen, WTST executes VM-A-
Scheduler and as a result, an application thread be-
longing to VM-A is activated to run for a time-slice as 
WTST enters into the event-waiting mode.  

The set of VMs is fixed at the TMOSM start time.  
One iteration of the execution of a specified set of 
VMs is called a TMOSM cycle.  For example, one 
TMOSM cycle may be: VCT VMAT VAT VMAT.  The 
following three VMs handle the core functions:  

(VM1)  VCT  (VM for Communication Threads):  
The application threads here are those dedicated to 
handling the sending and receiving of middleware 
messages.   

(VM2)  VMAT (VM for Main Application 
Threads):  The application threads here are those dedi-
cated to executing methods of TMOs with maximal 
exploitation of concurrency.  In every one of our pro-
totype implementations of TMOSM, the application 
thread scheduler in VMAT uses a kind of a deadline-
driven policy for choosing an MAT to receive the next 
time-slice [Kim02b].  

(VM3)  VAT (VM for Auxiliary Threads):  Auxil-
iary threads await orders to execute certain application 
program-segments and such orders come from main 
application threads in execution of TMO methods.   

Also, WTST provides the services of checking for 
deadline violations and if a violation is found, it pro-
vides an exception signal to the user.  We believe that 
structuring of VMs as periodic VMs is a fundamen-
tally sound approach which leads to easier analysis of 
the worst-cast time behavior of the middleware with-
out incurring any significant performance drawback.   

Although TMOSM serves as a convenient starting 
point, establishment of a desirable IRDRM middle-
ware subsystem requires intensive research on the fol-
lowing issues.  

(SM1)  Top-level deadlines such as method com-
pletion deadlines and deadlines for arrivals of results 
from remote service methods and start-time-windows 
for TMO methods are provided by TMO program-
mers.  However, systematic top-down resource alloca-
tion requires derivation of intermediate deadlines as-
sociated with intermediate milestones falling before 
the method completion points.  A heuristic has been 

Figure 6.  Virtual machines and threads in TMOSM 
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derived and used so far but intense research in this op-
timization area has not been performed yet.   

(SM2)  VCT instantiations running on DC nodes 
schedule their communication threads associated with 
a shared LAN (i.e., Ethernet) such that message-send 
operations by DC nodes over the LAN occur in a 
TDMA (time-division multiple access) fashion.  Ways 
to orchestrate the scheduling activities of VMAT with 
those of VCT need to be studied.     

(SM3)  Attempts to adapt TMOSM to PC clusters 
have just begun and it opens several new issues.  First, 
distribution of TMO components, i.e., service meth-
ods, spontaneous methods, and data-member-groups, 
among multiple CPUs in a DC node, needs to be ex-
plored.  Secondly, the feasibility of distributing TMO 
components among multiple nodes in a cluster need to 
be investigated thoroughly.  A 32-node cluster built by 
co-author Jenks over the past several years is one of 
our experimental research tools here [Jen02].   

(SM4)  With the current TMOSM architecture, 
TMOSM instantiations running on different DC nodes 
cooperate and interact frequently among themselves.  
Even though the TMOSM architecture has been vali-
dated extensively in LAN environments over the past 
several years, its extension to fit into the RT DVC re-
quires substantial changes in the patterns of interaction 
among its instantiations.  This is due to the large 
communication latency inherent in an RT DVC occu-
pying a large geographical region.  The current 
TMOSM is expected to show rather poor performance 
when it is ported to such RT DVC without substantial 
refinement.  We feel that a promising research direc-
tion in this area is to add another attribute of funda-
mental nature to the TMO model.   
As building-blocks of RT local-area DC application 
systems, TMOs were treated as all equal neighbors.  
This notion of distance-unaware TMOs needs to be 
changed to derive a newly extended TMO model 
called the distance-aware TMO (DA-TMO) which is 
effective in constructing RT wide-area DC systems.  
Then DA-TMO programmers should expect that 
TMOSM instantiations supporting nearby TMOs will 
interact with a relatively high frequency whereas 
TMOSM instantiations supporting TMOs separated by 
long distances will interact less frequently.  They 
should also expect that a call by a client TMO for a 
service offered by a remote TMO can involve searches 
for information not readily available in the local 
TMOSM instantiation.  TMOSM can now be aware of 
when an RMMC covers a large geographical area.   

6.  Pipelined execution model for RT wide-
area DC 

A coarse-grain pipelined execution model will al-

low simultaneous use of DC resources without the 
long waits associated with distributed synchronization.  
Such an execution model, in which a series of compu-
tational stages can be performed concurrently with the 
results of one stage being passed on to the next stage, 
is known, but not commonly used in conventional sci-
entific computing [Cul99].  Rather than a strict linear 
pipeline, a multi-path pipeline may be used if the ap-
plication warrants it. 

For example, consider the following scenario.  
Data is acquired by an electron microscope and fed 
into the local cluster computer CC1 located in San 
Diego, where it may be preprocessed and/or stored for 
archival purposes.  From there, it is sent to two remote 
clusters, CC2 and CC3, for further processing.  At the 
cluster CC2, perhaps more data from a local sensor 
could be added to the data stream.  The two "process-
ing" clusters CC2 and CC3 perform some (presumably 
different) processing on the data and then pass it on to 
the visualization cluster CC4 located in Irvine, which 
further processes the pre-digested data and presents it 
to researchers via display panels.  Each of these steps 
takes place concurrently with different chunks of data 
being sent from San Diego to Irvine.  This allows us to 
visualize data from one period of measurement time, 
while the data from the next period is being processed 
and the data from the period after that is being ac-
quired.  CC4 may also perform a remote control func-
tion related to the electron microscope in San Diego 
and other sensors in other regions, in which case RT 
control is taking place over a long distance.   

In order to orchestrate this DC pipeline with its 
high-volume data transfers and at the same time pro-
vide RT service guarantees, we need to manage and 
schedule all the cooperating clusters and communica-
tion paths forming the pipeline together for timely 
computation and communication actions.  An exten-
sion of the IRDRM subsystem to support such a pipe-
lined execution model is a non-trivial challenge.  

To operate the pipelines efficiently, pipeline 
stages spread over wide areas must act synchronously 
and this requires use of a good-quality globally refer-
enced time base.  The communication between clusters 
must also show highly predictable timing behavior.  In 
principle, the middleware models and the DA-TMO 
programming model discussed in preceding sections 
should enable efficient programming of such wide-
area pipelines.  When the implicit (message-less) time-
based synchronization and other forms of TCoDA are 
properly exploited, a program on one cluster will 
know in advance when to expect the next message 
from the other clusters.   

Another approach potentially beneficial in such 
pipeline programming is to apply within each cluster 
the Single-Program Multiple-Data (SPMD) program-



 

ming model [Dar86], in which the same program runs 
on all nodes, but each node can execute a different 
path through the program based on the node's identity, 
program inputs, and other factors.  An interesting ap-
proach to explore here is to integrate the SPMD pro-
gramming model with the DA-TMO programming 
model toward the goal of making the wide-area pipe-
line programming relatively easy.  

7. Conclusion 
By composing a real-time wide-area distributed 

computing middleware framework from demonstrably 
deterministic components, including OptIPuter-
enabled dedicated light paths, TT-Ethernet switches, 
and TMO middleware, we have employed unique 
technology to design deterministic infrastructure that 
was not possible until now. This RT DVC will enhance 
Grid and DVC mechanisms for allocation of re-
sources, including computers and network links, with 
timeliness requirements at the forefront. Applications 
that run on RT DVCs will use timing-based specifica-
tions to define their real-time requirements, which 
makes programming logical and reasonable. Our de-
sign accommodates the many millisecond delay inher-
ent in long-distance links and will be able to schedule 
distant events to rendezvous precisely and will support 
multiple messages in-flight when latency exceeds 
transmission period. The framework will provide un-
precedented support for wide-area globally coordi-
nated actions based on time and events – capabilities 
now only available for smaller real-time systems. 
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