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The vast collection of microbial cells, referred to as the human microbiome, forms
an ecology of diverse microbial organisms that lives with us in symbiosis. Since the
human microbiome ecology differs dramatically in different body sites and individuals,
understanding how and what changes in the ecology are of crucial importance. In this
study we investigate Topological Data Analysis (TDA) as an unsupervised learning
and data exploration tool to identify changes in microbial states. We compare TDA
with other well-established methods, such as Principle Component Analysis (PCA)
and Principle Coordinate Analysis (also known as Multidimensional Scaling or MDS),
using a previously published dataset of high-resolution time series of the microbiome
from 3 different sites (mouth, hands, and gut) from 2 healthy (one female, one male)
subjects. Since previous studies have shown that microbial communities of healthy
subjects are highly stable over time (unless disturbed by an external variable), we
expect to identify 6 total microbial communities corresponding to the different body
site and subject combinations in our dataset. We show that PCA and MDS reveal
3 distinct clusters that correspond to the three different body sites. However, these
methods do not discriminate samples based on the subjects. We find here that TDA
identifies distinct groups that discriminate between the female and male gut samples
and also separate between the skin and tongue body sites as well. This suggests that
TDA is able to identify groups of clusters that other methods may potentially miss.

1 Introduction and background

In this study we investigate several unsupervised learning methods to identify clusters or
subsets of samples in longitudinal data that correspond to different microbial states. Since
the lack of ground truth on what constitutes different microbial states makes evaluating
unsupervised learning methods challenging, we apply our methods on a dataset [3] (available
publicly through [2]) that is a high-resolution time series of the microbiome from 2 healthy
subjects sampled from 3 different body sites. Therefore, our data has at least 6 known states
corresponding to the different body site and subject combinations. The female (F4) and
male (M3) subjects were sampled daily for 15 and 6 months respectively at the gut (feces),
the mouth (saliva), and the skin (left and right palms) body sites. We have a total of 1,433
samples for M3 and 534 samples for F4. The details of the sequencing and the data can be
found in [3].
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Using this dataset, we compare Topological Data Analysis (TDA) [4, 9] with several
well-established unsupervised methods that are commonly used in ecology and microbiome
studies such as Principle Component Analysis (PCA) and Multidimensional Scaling (MDS)
[10, 11] (for example, see Figure 4 in [6, 11]). TDA can be used as a general framework for
unsupervised learning to embed high dimensional datasets into graph-based representation.
In PCA and MDS, however, for visualizing high dimensional data we are limited to projecting
data to a small number of dimensions (typically 2-3). TDA on other hand can use an arbitrary
number of projections to embed in the graph and uses the method of persistent homology
so that the analysis is robust against noise and scale of data. In this work we apply TDA
to embed the microbial samples of this dataset into a graph that distinguishes between the
two subjects and their respective three body sites.

2 Methods

To establish baseline comparisons, we compute PCA on our dataset using the relative abun-
dances of the taxonomic families of microbes for each sample [5, 10, 11]. As discussed in [5]
(amongst others), using a non-Euclidean metric for measuring biological and ecological diver-
sity is preferred over PCA. We therefore also compute MDS [10,11] using the Bray-Curtis [5]
distance that’s commonly used in Ecology for comparison. Additionally, we also also com-
pute MDS using the unweighted UniFrac distance [8] as another more biologically meaningful
measure of biological diversity that uses domain knowledge of the phylogenetic tree of the
microbes.

We compare these methods with TDA as implemented by the Ayasdi webapp software [1].
TDA is a general framework for embedding high dimensional datasets in a graph (for a
general overview of TDA see [9]). To construct the graph, TDA requires a metric and a
set of functions that map data points to a real valued vector space. In this study, the
data that we use are the relative abundances of the taxonomic families (one can use other
levels as well) of microbes for each sample, and we use the unweighted UniFrac metric.
The set of functions that we use here for mapping the data is based on the Stochastic
Neighbor Embedding [7] algorithm referred to as the Neighborhood Lens by Ayasdi (in two
dimensions). The resolution we use for the Neighborhood Lens for both dimensions is 200
points with a gain of 80% overlap. Note, however the our results (and TDA in general) is not
sensitive to the specific parameters. Single linkage clustering is performed and the heuristics
for the optimization are described in [12].

3 Results

Figure 1 shows three commonly used unsupervised methods (PCA, MDS using Bray-Curtis
distance, and MDS using the unweighted UniFrac distance) applied to the samples in our
data. As was also shown in [3], we see that over the course of the samples there is a clear
separation between the three different body sites. However, these unsupervised methods
do not discriminate clearly between the microbial states corresponding to the two subjects
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Figure 1: Left panel shows the PCA using of the family relative abundances of our data set.
Middle panel shows the MDS of using the Bray-Curtis distance and the right panel is MDS
using the UniFrac distance.From this analysis it appears that the samples from the male and
female are not significantly different within body sites

in our data. Figure 2 on the other hand shows applying TDA using Ayasdi [1] with the
Neighborhood Lens [7] and unweighted UniFrac [8] metric applied. For each panel, we color
the nodes in the graph by the proportion of samples that belong to a subject and body site
(red corresponds to higher proportion of samples). Note that in TDA each node in the graph
corresponds to several samples and edges drawn based on overlap of samples between nodes.
We see that as we shift from every subject and body site, the central density of the nodes
in the graph changes accordingly. In Figures 2 (a) and 2 (b), corresponding to the female
and male stool samples respectively, we see the most dramatic shift as the majority of nodes
in the graph consist of two separate connected components. These two separate connected
components fit as natural candidates of being distinct groups (which, given that we know
the labels in the data, we know in fact correspond to two different subjects). Figures 2 (c)
and 2 (d), corresponding to the saliva samples, also show a separation between the female
and male subjects as the shift in color in the heatmap indicates. Finally, in Figures 2 (e)
and 2 (f) corresponding to skin samples we observe discrimination, but the separation is not
as strong as the other body sites.

4 Discussion and Future Work

In this paper we applied TDA to a previously published high-resolution time series of hu-
man microbiome data for discriminating between microbial states. We find that the graph
embedding that TDA establishes discriminates between the 6 states that correspond to 2
subjects and the 3 different body sites in the data, while MDS only distinguishes between the
body sites. We used this previously published dataset to establish benchmarks for identify-
ing subsets of samples that are distinct (that is, finding clusters of samples that discriminate
between the two subjects and three different body sites in the data). The flexibility of TDA
as a general unsupervised framework provides an ideal tool for Exploratory Data Analy-
sis of unlabelled data. Having established this method on well-studied dataset for healthy
subjects, for future work we will apply TDA on subjects with disease conditions.
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(a) Female stool samples (b) Male stool samples

(c) Female saliva samples (d) Male saliva samples

(e) Female skin samples (f) Male skin samples

Figure 2: Unsupervised Topological Data Analysis (TDA, computed using Ayasdi [1]): the
color of nodes indicates the proportion of data samples corresponding to the specific subject
and body site (red means higher). In (a) and (b) there are two connected components
corresponding to female and male stool samples. In (c) and (d) there is little overlap in the
samples corresponding to the female and male saliva samples. In (e) and (f), the significant
proportions of samples between female and male samples are in shifted in the graph.
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