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An Approach to Complexity:
Numerical Computations

Larry L. Smarr

Newton established modem mathe-
matical physics in 1687 with the publica-
tion of his Philosophiae Naturalis Prin-
cipia Mathematica, in which he showed
how infinitesimal calculus could be used
as the fundamental mathematical lan-
guage of science. Since then, calculus
has been instrumental in the discovery of
the laws of electromagnetism, gas and
fluid dynamics, statistical mechanics,

tion of the phenomena of natu
less rapid. Here, exact analy
and linear perturbation me
provided only a tiny subset c
all possible solutions (the solb
of the equations. There are pr
regions of the solution space i
character of the solutions is q
different from the character o
analytic solutions.

Summary. The use of supercomputers and modern color-imaging tec
numerical computation is beginning to fulfill von Neumann's vision
computers would become the most appropriate tool for solving nonlir
differential equations. An example of this approach, a model for the gas
vicinity of a black hole, is described. From such calculations comes a rea
the multidimensional, dynamic solutions of nonlinear partial differential eq
exhibit complex behavior compared to what one normally encounters
solutions. This complexity includes small-scale chaotic structure and
persistently ordered structure. Computational methodology and the aes
derive from it are discussed.

and general relativity. These classical
laws of nature have been described by
partial differential equations (PDE's) for
a continuum field.
The tools of calculus have also proved

powerful for discovering exact analytic
solutions of these equations. Indeed, for
linear PDE's that are separable, and thus
reduced to ordinary differential equa-
tions, such techniques as Fourier analy-
sis can give all solutions of the equa-
tions. Much of theoretical physics is
based on the results of such linear analy-
sis. However, progress in solving the
nonlinear PDE's that govern a great por-

An alternative approach is
proximate but general solutii
nonlinear PDE's by the us
differences instead of infinite,
entials. In this approach, the
continuum is replaced by
space-time lattice of event
PDE's are converted into a
coupled algebraic equationm
knowns in the algebraic equa
sent the field's values at each
lattice. With enough time,
can solve the algebraic syst
discrete solution. In principl
metry or time independenc
imposed. As the spacing of t
made smaller, the discrel
should approach the one for 1
um.
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Modem supercomputers-the com-
puters with the largest memories and the
fastest processors-are making this al-
ternative approach quite practical. The
result is a revolution in our understand-
ing of the complexity and variety inher-
ent in the laws of nature. Not- surprising-
ly, these more realistic solutions are al-
lowing a more constructive interplay
between theory and experiment or ob-
servation than has heretofore been possi-
ble.

All this was foreseen by John von

Neumann, who I believe occupies a posi-
ire has been tion similar to that of Newton. The math-
rtic methods ematician Garrett Birkoff makes this
thods have point strongly in a recent review article
ofthe set of about numerical fluid dynamics. He
ution space) paraphrases von Neumann's vision as

robably vast follows (1):
in which the

It seems clear ... that von Neumann was

envisioning fluid dynamics as a mathematical
)f the known science as had Euler, Lagrange, Stokes, Rie-

mann, and Poincare before him. His main
point was that mathematicians had nearly
exhausted analytical methods, which apply
mainly to linear differential equations and

,hniques for special geometries.... In short, von Neu-
that digital mann's proposal was that, with high speed
near partial digital computers, one could substitute nu-

flow in the merical for analytical methods, tackling non-

lization that linear problems in general geometries.
uations can Birkhoff notes that since von Neumann
in analytic made these remarks, computing ma-

large-scale chines have increased in speed by a

;thetics that factor of one billion and become cheaper

per computation by a factor of ten mil-
lion. Assessing where we are today, he
concludes (1):

s to find ap-
ions for the . .. numerical fluid mechanics has not and
se of finite will not replace either analytical or experi-
simal differ- mental fluid mechanics as a research tool, but

... it complements and supplements them
space-time invaluably.
a discrete

ts, and the Extending this view from a comment
large set of on fluid mechanics to a general conclu-
s. The un- sion, the mathematician James Glimm
tions repre- recently wrote (2):
Lpoint of the
a com uter Computers will affect science and technologyacompute at least as profoundly as did the invention of
tem for the calculus. The reasons are the same. As with
ile, no sym- calculus, computers have increased and will
ce need be increase enormously the range of solvable

the lattice is problems. The full development of these
te solution events will occupy decades and the rapid

progress which we see currently is a strong
the continu- sign that the impact of computing will be

much greater in the future than it is today.
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With my colleagues (3), I have been
practicing the "von Neumann ap-
proach" for the past 10 years on a wide
variety of physical problems. Out of this
research has developed a well-defined
methodology for attacking a broad range
of problems that occur in physics. Our
approach to complexity complements
other methods but has unique character-
istics of its own. Many of the techniques
and concepts that are described below
were developed by M. L. Norman and
K.-H. A. Winkler during our research on
the modeling of supersonic gas jets (4).
Since that research is well documented
in the literature, I will illustrate the meth-
odology with a more recent project I
worked on with John Hawley (5).

This project explored what happens
when gas falls toward a black hole. It is
not my purpose to explain in detail the
theory of black hole accretion; rather, I
hope the description of this project will
show the paradigmatic aspects of the
methodology used in any computational
approach to solving the PDE's that de-
fine the laws of physics. In addition, the
black hole example exhibits those fea-
tures of complexity that appear to be
common to many solutions of these non-
linear dynamic PDE's, in particular, a
large-scale persistently ordered struc-
ture, which imposes itself on the under-
lying gas flow. The coherent structure
is spatially complicated and slowly
changes with time, but the important
point is that an approximate simplicity
and certain morphological features ap-
pear at a higher level of complexity than
might have been expected.

Numerical Modeling of

Black Hole Accretion

Gas flowing toward black holes is be-
lieved to be the mechanism that drives
the "central engine" in quasars and ac-
tive galactic nuclei. Besides generating
great luminosity in the vicinity of black
holes, the gas flow may generate the
bidirectional outflowing jets of gas that
are often observed emerging from galac-
tic centers (6). Because black holes are
so small, direct observation of the gas
dynamics around them is impossible.
Therefore, our only hope for an under-
standing of this phenomenon is to solve
the equations that govern it.
To this end, Hawley and I, in collabo-

ration with James R. Wilson (7), devel-
oped a computer program that solves the
general equations that describe relativis-
tic gas dynamics in the fixed gravitation-
al field of a black hole. The program
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requires the gas flow to be axisymmetric,
but no other symmetry is imposed. The
gas obeys the ideal gas law; however,
shock discontinuities are allowed and are
modeled by an artificial viscosity (7). No
effects from real viscosity, heating or
cooling, radiation, or magnetic fields are
taken into account in the program. The
nonlinear, coupled PDE's that describe
the gas flow (7) closely resemble the
standard Newtonian ones representing
mass continuity, energy conservation,
and the change in momentum caused by
the effects of (relativistic) gravity. The
solutions of these PDE's are the five
functions needed to specify the density,
the energy density (or, equivalently, the
pressure), and the velocity fields on the
static curved space-time continuum of
the black hole.
Our goal was to discover what hap-

pens to a rotating gas flow as it falls
toward a black hole. To this end, we
performed a series of experiments nu-
merically. We chose appropriate initial
conditions and boundary values to repre-
sent such a gas flow, and then we used
the finite-difference versions of the
PDE's for relativistic gas dynamics to
calculate the change in the gas flow with
time. With modern color-imaging tech-
niques, we could watch the flow develop
as if we were watching an experiment in
a laboratory.
We model space with a grid based on

spherical coordinates. In the solutions
exhibited here, there are 160 evenly
spaced angular zones from the north pole
to the south pole and 160 radial zones
from the surface of the black hole to the
outer spherical boundary (Fig. 1). The
radial spacing is increased with distance
from the hole to keep the grid zones
approximately square. The PDE's are
converted to finite-difference equations
(FDE's) by replacing the differential op-
erators in the PDE's with Eulerian finite-
difference operators on the grid (7).
The resulting PDE's constitute a set of

coupled, nonlinear algebraic equations.
The unknowns are the 160 x 160 =
25,600 values of the five physical varia-
bles at each time step. The computations
are started at some instant of time by
assigning all the unknowns initial values,
and then the equations are solved for
discrete steps in time. A typical experi-
ment makes use of at least 10,000 time
steps. Thus, the finite-difference solution
is a set of five variables on a space-time
lattice of 250 million points, that is, the
solution is 1.25 billion numbers. One of
the key issues I deal with in this article is
how to translate this hopeless pile of
numbers into recognizable science.

In the problem described here (8), we
assumed that a new supply of gas had
begun to fall toward a black hole that had
previously consumed all the gas in its
vicinity. To specify the rotation law for
the gas, we assumed that all the gas had
the same value of specific angular mo-
mentum. The calculation was started at
the time when the inner edge of the
infalling gas had reached a boundary
radius 50 times the black hole's diame-
ter, and the gas was assigned a radial
free-fall velocity appropriate to gas that
has fallen from infinity. Thereafter gas
continually poured in across the outer
boundary. If the gas reached the surface
of the hole, it was removed from the
grid.
What was the final state of the gas

flow? Before we made our calculations
there had been little insight into the near-
hole dynamics of nonspherical gas flow.
However, a number of analytic studies
(7) had given us clues to the character of
any such flow. In the exactly soluble
time-dependent, nonrotating, spherical
case, the gas flow became supersonic
before the gas fell into the hole. There-
fore, as the flow became nonspherical in
the general case, we expected that shock
waves would become important.

In another exactly soluble case, for
time-independent, nonspherical, rotating
equilibrium, the natural state for a hot
pressure-supported gas with constant
specific angular momentum was an orbit-
ing thick disk. Such a thick disk (Fig. 1)
is shaped like a bagel with the black hole
at the center of the bagel hole. The
closed pressure-contour lines show how
the pressure decreases with distance
from a maximum near the surface of the
black hole. Because constant specific
angular momentum results in a vortex
flow, the rotational velocity rises with-
out limit as the axis is approached.
Therefore, the centrifugal acceleration of
the gas will always overcome the gravita-
tional inward acceleration, resulting in
an excluded funnel interior to this vortex
flow. The static funnel wall threads
through the opening in the bagel hole.
The first use of these analytic solu-

tions was as calibrators for our program.
We extensively tested (7) various differ-
encing schemes in our program to deter-
mine which ones most accurately repro-
duced the analytic solutions. Second, the
analytic solutions suggested features for
us to look for in the general problem. For
example, do shock fronts develop? How-
ever, analytic considerations could take
us only so far. The detailed solution of
the fully nonlinear, time-dependent, mul-
tidimensional, coupled PDE's was need-

SCIENCE, VOL. 228

 o
n 

N
ov

em
be

r 
6,

 2
00

7 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


ed to see whether the incoming, nearly
spherical, supersonic flow could form a
highly nonspherical, subsonic, orbiting
thick disk.

Exploring the Solution Space

Having set up our experiment, we
began to explore the properties of the
solution space. The first step was to
define the dimensionless parameters that
span the space. For a given value of one
parameter specifying the flow, the spe-
cific angular momentum, the flow will
change with the variation of another pa-
rameter, the ratio of the solid angle of the
incoming flow to the angle subtended by
the funnel wall. In Fig. 1, the boundary
conditions for the two extremes of thick
and thin inflow are indicated.
Thus, with the initial conditions and

these boundary values, we selected the
solution space of the PDE's to be a two-
parameter (thickness, angular momen-
tum) family of gas flows in the fixed
space-time of the black hole. Each com-
puter run, which shows the development
of the gas flow in time, is determined by
one point in that two-parameter solution
space. Our strategy was to spot-check
the solution space by computing the re-
sults for both thick and thin inflows at a
number of angular momenta.
The values of angular momentum were

determined by the results of analytic
theory. In Newtonian theory, any parti-
cle falling toward a llr gravitational po-
tential finds a turning point at some
radius. In general relativity, the gravita-
tional pull increases faster than l/r; so
for sufficiently small angular momenta,
gravity overwhelms centrifugal accelera-
tion, and the particle falls into the black
hole, even though its Newtonian turning
point would be outside the surface of the
black hole (7). There is a critical value of
specific angular momentum at which this
effect first occurs. Therefore, for our
computations we chose values of angular
momenta that were more than, about,
and less than this critical value, expect-
ing qualitatively different behavior in the
resulting solutions.

I will describe in detail only one com-
puter run (8), which resulted from the
choice of one point in the two-parameter
solution space. My description will focus
on the scientific results only insofar as
they illustrate the scientific methodology
used in this approach.
As gas pours onto the grid from the

outer boundary, it begins to fall toward
the hole (9). Figure 2 (10) represents a
cross section of the density field at an
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rotation

early stage in the development of the
flow, when the gas has just bounced off
the centrifugal barrier near the hole. A
single computer run would be represent-
ed by thousands of such images. The
spectral order of colors creates a color
scale (subdivided into 73 intervals) that
we chose to be proportional to the loga-
rithm of density, with blue representing
the lowest value and red the highest
value. In each image, each grid zone is
assigned a color from this scale to repre-
sent the density of the gas in that zone at
that moment. No color smoothing is
done (the individual zones can be seen
near the edge of the grid), so the color
image accurately represents the results
from the computation.
The central black hole and the evacu-

ated funnel north and south of it are
visible. From the outer boundary to
smaller radii, the color gradually shifts
from orange to redder colors, represent-
ing the adiabatic compression of the gas.
There is a black, empty region surround-
ing the outside of the funnel wall bor-
dered by thick red lines in an hourglass
shape. The sudden jump from orange to
red denotes a funnel-wall standoff shock
front. This shock front is caused by the
centrifugal deceleration of the incoming
supersonic gas. It causes the gas to turn
abruptly and slide down the inner edges
of the standoff shock front.
When the two sliding gas flows (whose

density has become so high that they are
shown as dark red) meet at the equatorial
plane, the gas is diverted inward and
shoots toward the hole. As this rotating

Fig. 1. A schematic diagram of
the black hole accretion prob-
lem. The black hole in the cen-
ter creates the gravitational
field in which the gas flows.
The gas is orbiting the hole

lick with a constant value of spe-nflow cific angular momentum. The
axis of rotation is vertical, and
the equatorial plane is hori-
zontal. The diagram is a cross
section of the gas flow, and the
contours of pressure for a
thick disk at static equilibrium
are shown. The pressure de-
creases outward from the
pressure maximum near the
hole. The static funnel wall is
the closest to the axis the gas
can come, given its angular
momentum. Inside this wall
the funnel is empty. There are
two classes of boundary con-
ditions: thin inflow, with gas
only entering the grid near the
equatorial plane, and thick in-
flow, with gas flowing in at all
angles not excluded by the
funnel interior.

gas flow nears the hole, its centrifugal
acceleration increases faster than the in-
tense gravitational attraction of the black
hole. At the last moment, the gas splash-
es backward off the centrifugal barrier.
To avoid the continually incoming gas,
the gas that splashes back must flow
above and below the equatorial plane.
During this process, some of the gas
begins to build up a thick disk in precise-
ly the region predicted by analytic the-
ory. Remarkably, very little gas -flows
into the hole.
The color image on the cover shows

the density field of the flow at a later
time, after a quasi-steady state has been
established; Fig. 3 shows the pressure
field at that time. Because a strong shock
front causes a much larger jump in pres-
sure than in density, the color image of
the pressure field is ideal for locating
shock fronts (the color scale is propor-
tional to the logarithm of the pressure).
An abrupt jump from dark blue (lowest
pressure) to bright blue or green across
the funnel-wall standoff shock front is
shown. Figures 2 and 3 also show that
the shock front migrates to a larger radi-
us with time. This is caused by the
continual buildup of a high back pressure
in the thick disk (the red heart-shaped
region), which pushes the shock front
outward.

In Fig. 3 the arrows represent the
direction of the flow. Note that the shape
of the thick disk is distorted from the
equilibrium form shown in Fig. 1 by the
ram pressure of the inflowing gas, just as
might be expected intuitively. The in-
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flowing gas is pushed away by the high
pressure of the thick disk; however, it is
trapped between the static funnel wall,
where it is excluded by centrifugal accel-
eration, and the standoff wall shock. Its
only means of escape is to flow out
vertically as a hollow biconical jet. In
doing so it adiabatically expands, and the
pressure decreases, as shown by the
colors changing from red to green to
blue. The key features of the flow are the
quasi-stationary patterns shown by the
colors; the arrows show that gas contin-
ually flows through those patterns.
The question now becomes which of

the features of the particular flow we
have computed are generic. To answer
this we have performed many computer
runs, varying first one parameter and
then the other (8). We have found that as
long as the inflow is thick, the standoff
shock fronts occur. As the angular mo-
mentum decreases, the general relativis-
tic effect mentioned above opens a
"spillway" from the inner edge of the
thick disk into the hole [an effect predict-
ed from analytic calculations by Pac-
zynski (11)]. As more and more gas flows
into the hole, the flow out of the jet is
reduced. Finally, when the angular mo-

mentum is close to the critical value
expected from general relativistic the-
ory, all the gas inside the standoff shock
fronts goes into the hole, and no thick
disk or jet forms.
With thin inflow, a similar sequence of

structures occurs in the thick-disk re-
gion. However, outside of the disk, no
standoff shock fronts form and the nar-
row jet becomes a wide billowy wind. A
black and white image of this configura-
tion can be seen in a previous issue of
Science (12). In the extreme case of thin
inflow and very low angular momentum,
the gas falls steadily into the hole.

In summary, we have found that the
two-parameter solution space decom-
poses into regions within which the solu-
tions share common morphological fea-
tures. These features are not details of
the flow but rather large-scale coherent
patterns in it. For each distinct region of
the solution space one can make a para-
digmatic cartoon film of the solution.
This procedure for characterizing a nu-
merical function is not so different from
what one does with analytic functions.
Consider a sine function. One can draw a
periodic, oscillatory, constant-amplitude
graph to represent it without worrying

Fig. 2. The gas flow, in the thick-inflow case, at the moment the gas begins to splash back from
the funnel wall near the hole. The quantity represented is density. The color scheme and
features are explained in detail in the text.
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about the particular values of the two
parameters, period and amplitude. In
both the analytic and numerical case, the
important feature is the form of the func-
tion.
One of the key differences between

numerical functions and simple analytic
functions is that numerical functions
have multidimensional spatial forms that
are dynamic. That is, both Figs. 2 and 3
are frames from the same solution; the
behavior in both figures must be includ-
ed in the cartoon film representing this
portion of solution space. The only way
to understand the solution is to watch the
color films that represent the solution in
terms of different physical variables (13).

In summary, our approach is to com-
pute discrete solutions to the finite-dif-
ference PDE's and then to convert these
numbers into color images that change in
time. In these images we can observe
coherent large-scale structures in the
flow. By performing additional computa-
tions, we can determine which of these
structures are generic and over how
large a region of solution space these
structures are present. The boundaries
between qualitatively different struc-
tures can be identified by this procedure.
Finally, analytic methods and intuition
are used to explain why the structures
should be there. In some cases, this
process reveals new phenomena for
which complete analytic theories can be
worked out.

I call this practical approach "explor-
ing the phenomonology of solution
space." This approach has a long history
that was recently summarized by Za-
busky (14). He terms the interplay be-
tween computing, analytic methods, and
graphic visualization "computational
synergetics." It is an important method-
ology of science and one that is becom-
ing more widespread.

The Ubiquity of Complexity

Just how prevalent is the phenomenon
of complexity? Wolfram (15) gives an
excellent overview of this question with
particular emphasis on why the comput-
er is so well matched to the study of
complexity. It seems that most systems
in nature can exhibit both simple and
complex behavior. To date, theoretical
physics has mostly concerned itself with
simple behavior, since analytic tools
were well matched to that study. How-
ever, as computational resources be-
come more powerful and accessible,
more studies are being performed on the
complex behavior of simple systems.

SCIENCE, VOL. 228

 o
n 

N
ov

em
be

r 
6,

 2
00

7 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


A clear statement of the ubiquity of
complexity, with examples from theoret-
ical physics, can be found in "Prospec-
tus for Computational Physics" (16),
commonly referred to as the Press Re-
port. This report shows that complexity
can arise in a variety of ways: in moving
from a few degrees of freedom to many
degrees offreedom, from ordinary differ-
ential equations to PDE's, from simple
or one-dimensional models of physical
processes to multidimensional models,
from low-order to high-order expan-
sions, from scalar systems to vector or
tensor systems, and from linear systems
to nonlinear systems.

In summary, the Press Report con-
cludes:

One sees, then, that complexity arises not
from 'bad taste in the choice of problems', but
inevitably as theory advances ....

A similar statement could be made in
every field of theoretical science. Ulti-
mately, this is because nature is com-
plex. Consider the dynamics and forma-
tion of galaxies, where a hundred billion
stars interact gravitationally to produce
the beautiful spiral arms familiar from
astronomical photographs. At the oppo-
site extreme of scale, the macromol-
ecules that underlie life itself perform
their biological functions largely because
of the manner in which their thousands
of component atoms arrange themselves
in highly ordered large-scale structures.
We are beginning to acquire the compu-
tational tools and scientific methodology
that will allow us to attack these and
other complexities head on.

Coexisting Aesthetics

Finally, let me turn to a disturbing
feature of the revolution in computing
techniques. Too often misunderstand-
ings arise between scientists trained in
classical analytic methods and those for
whom numerical methods are the pri-
mary research tool. One often hears:
"Numerical solutions are inelegant," or
"Analytic solutions are simplistic."
Such comments reveal a clash between
two coexisting aesthetics derived from
the nature of the computational tools
that are used. Rather than define precise-
ly the principles of both camps, I will
give examples of their calculational
goals.
Much scientific effort in the three cen-

turies since Newton has been directed
toward discovering the form of the basic
laws of physics. Analytic methods have
been precisely the right tool for that job.
26 APRIL 1985

However, although analytic solutions
have given us a skeletal view of the
content of those laws, they have not
revealed the true complexity of the solu-
tion space. Therefore, the search for
form is shifting from the laws to the
solutions of the equations describing
those laws. Computational methods are
the appropriate tools for this latter
search.
Many of the classic analytic solutions

are for fundamental static equilibria.
What is becoming clear in many areas is
that there is a new class of dynamic
equilibria which are just as fundamental.
These are large-scale coherent structures
with long lifetimes compared to the un-
derlying system's dynamical time scales.
Although many are being studied obser-
vationally (for example, Jupiter's red
spot), a growing number are being dis-
covered numerically. As is the case for
the soliton (14), the prototype of dynam-
ic equilibria, for most of these structures
some underlying mathematical principle
is at work. It seems to be a general
property of nonlinear systems that they
"lock on" to coherent structures that are
far from the linear regime.
Many analytic solutions exhibit high

degrees of spatial or internal symmetry.

Indeed the power of group theory in
science attests to symmetry being a fun-
damental property of nature. However,
many of the phenomena of nature are
inherently unsymmetrical and time-de-
pendent. The beauty of the ever chang-
ing three-dimensional structure of clouds
is surely as great as the beauty of a
perfect crystal. To explore such phe-
nomena as the clouds requires the abili-
ty, which numerical tools give us, to
probe complexity.
Much of the beauty of analytic func-

tions comes from their encoding what is
visually beautiful. For example, the peri-
odic and oscillatory nature of the sine
function is better perceived by a graph of
the function than by looking at its name.
Just so, the eye can perceive fundamen-
tal properties of complex solutions by
using color images or other computation-
al devices in situations where closed
analytic forms are impossible. Thus, the
visual representation of mathematical
functions may become the common bond
between simple analytic functions and
complex numerical ones.
As I have attempted to show in my

example of a black hole, scientists need
to have an intuition formed from both
aesthetics. There is no inherent conflict

Fig. 3. The gas flow at a later time for the same conditions as in Fig. 2. The colors represent the
pressure gradient. The arrows indicate the direction of the flow.
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between these two views; both are useful
for discovering parts of the whole. I hope
that students today are being trained
with equal emphasis on analytic and nu-
merical methodologies.

Prospectus

In summary, the prodigious growth in
computing power is ushering in new ap-
proaches to complexity in many areas of
science. Although the shift of method-
ology and aesthetics was foreseen by
von Neumann over 30 years ago, the
fulfillment of his vision is only beginning.
For his vision to be realized, there are
two major requirements. First, comput-
ers must continue their rapid rate of
increase in speed so that more and more
complex problems can be attacked on
human time scales. Second, there must
be much greater accessibility to the full
range of computational tools that are
needed so that a "critical mass" of sci-
entists can work in each field of interest.
Both of these requirements are likely to
be met.
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The chemical synthesis of organic
molecules has proceeded at an accelerat-
ing pace for more than a century and a
half. Since the Wohler synthesis of urea
in 1828, organic synthesis has had an
enormous impact on civilization and on
the development of science itself. Ad-
vances in the understanding of chemical
structure, chemical reactivity, stereo-
chemistry, and biochemistry have been
due in no small part to discoveries in
organic synthesis. Yet all of the synthe-
ses of the 19th century and most of those
of the first half of this century were
developed from a relatively primitive
conceptual base. Many syntheses, espe-
cially in the 19th century, were discov-
ered serendipitously (or opportunistical-
ly) in the sense that they were accom-
plished as unplanned results of explor-
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atory studies of chemical interactions
between different types of molecules.
Other syntheses used a series of estab-
lished reactions to convert a basic struc-
ture into a somewhat larger molecule.
Such syntheses involved the successive
attachment of functional or substituent
groups through the use of replacement,
condensation, or coupling reactions.
Thus, the dyes alizarin (1869) and indigo
(1890) were synthesized by elaboration
of anthracene and aniline, respectively,
and the alkaloid tropinone was made
from cycloheptene (1901). In contrast to
the vast majority of these early synthe-
ses, which were based on the availability
of starting materials that contained a
major portion of the final atomic frame-
work, a few syntheses emerged whose
design depended on the knowledge of

certain ring-forming reactions that could
be used to build an atomic framework.
Among the best examples of these are
the syntheses of a-terpineol (W. H. Per-
kin, 1904), camphor (G. Komppa, 1903;
W. H. Perkin, 1904), tropinone (R. Rob-
inson, 1917), and equilinin (W. Bach-
mann, 1939) (1).

In the post-World War II period, syn-
thesis attained a different level of sophis-
tication partly as a result of the conflu-
ence of five stimuli: (i) the formulation of
detailed electronic mechanisms for the
fundamental organic reactions, (ii) the
introduction of conformational analysis
of organic structures and transition
states based on stereochemical princi-
ples, (iii) the development of spectro-
scopic and other physical methods for
structural analysis, (iv) the use of chro-
matographic methods of analysis and
separation, and (v) the discovery and
application of selective chemical re-
agents. As a result, the years 1945 to
1960 saw the accomplishment of a num-
ber of highly sophisticated syntheses of
complex molecules, including vitamin A
(0. Isler, 1949), cortisone (R. Wood-
ward, R. Robinson, 1951), strychnine (R.
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