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Abstract. Computations of head-on collisions between two equal-mass
black holes are performed by constructing numerical solutions to the Ein-
stein equations. The gravitational waves generated from the dynamics are
extracted from the time-dependent metric and these give pulse profiles
that should be measured by gravitational wave detectors.

1. Introduction

Some of the best known predictions of general relativity are those associated
with the existence of both black holes and gravitational radiation, neither of
which have been observed directly. Therefore, one of the great challenges to
experimental relativity is to provide unambiguous evidence for the existence
of such phenomena. The challenge to computational relativity is to provide
unambiguous predictions of effects that should be observable.

A first step in understanding dynamical black hole and gravitational wave
spacetimes is described in this paper. While exactly head-on collisions between
two equal-mass black holes is rather unlikely, the results reported here do provide
some information about dynamical black holes and strong gravitational waves.
In addition, the results will provide an important test bed calculation for the
more general computations discussed by Choptuik in these proceedings.

2. Splitting Spacetime into Space and Time

Using the method of Arnowitt et al. (1962, hereafter ADM), one “slices” the
four-dimensional spacetime into three-dimensional spatial hypersurfaces (3-D
volumes) threaded together by timelike curves whose tangent vectors determine
a “time” vector. This splitting leads to a line element for the “distance” between
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infinitesimally separated spacetime points given by:
ds* = —(a® — BiB;)dt? + 26;dz’ dt + v, dat da. (1)

The Einstein summation notation (i.e., summation is implied over index pairs) is
used where the indices, 7 and j run from 1 to 3 and denote the spatial coordinates
(z',22%,23). The lapse function, o, determines the interval of proper time, dr,
between the point labeled by ¢ and point labeled by t + dt, i.e., dT = adt.
The shift vector, 3*, is the coordinate three-velocity that determines the relative
position of the spatial coordinate z* from one 3-volume to the next. Finally
the 3-metric 7;; determines the spatial distances between points that lie entirely
within a 3-D volume at a particular moment of time, t.

The lapse function and shift vectors are not dynamic variables (the Einstein
equations do not provide evolution equations for them) and the freedom to
choose them arbitrarily is often exploited to simplify the evolution equations,
avoid spacetime singularities, or stabilize a numerical method.

Defining the eztrinsic curvature (i.e., the field momentum conjugate to the
3-metric) as K;; = V;08; + V;B; — 047ij, where V; is the covariant derivative
with respect to 7;;, the vacuum Einstein equations break up into the following
sets: 1) the constraints which contain no time derivatives:

R- K;;KY + K*=0; Hamiltonian constraint

Vj(Kg - 6fK) =0; momentum constraint

and 2) the evolution equations for the 3-metric and extrinsic curvature:
Orvij = —2aKi; + ViB; + VB

0:Kij = —VVjo+o(Rij+ KijK — 2KgKF) + B*V i Kij + K ViB* + KV 85

where the the intrinsic 3-curvature R;; is determined in the standard Rieman-
nian method from the metric 4;z. The scalar 3-curvature is R = ’Yinij and
the trace of the extrinsic curvature is defined by K = Y%K i;j- The constraint
equations form a coupled set of elliptic equations and the evolution equations
are hyperbolic equations describing the propagation of the gravitational field.

The construction of a numerical solution to these equations proceeds as
follows. First one must choose a convenient coordinate parameterization in order
to provide a basis for discretizing space and time. Once a computational grid
is established, the partial derivatives appearing in the constraint and evolution
equations can be approximated by finite differences.

The constraint equations are solved in the initial 3-volume defined at ¢t = 0
for those components of the metric and extrinsic curvature that cannot be freely
specified. The solutions to the constraints are then used to provide the right-
hand-sides of the evolution equations which determine the metric and extrinsic
curvature on the succeeding slice of spacetime. This provides the necessary data
to evolve to the next time step via an explicit time-stepping algorithm.
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3. Coordinates and Variables for Axisymmetric Spacetimes

The spacetimes to be studied are axially symmetric. Therefore all variables are
independent of an azimuthal angle, ¢. Using standard (z! = 2, 22 = p, 2% = ¢)
cylindrical coordinates, the general axisymmetric 3-metric can be written as:

a ¢ 0
Yi; = U4 Yij = vile b 0 ) (2)
0 0 pid

The variables a, b, ¢ and d are functions of the coordinates z, p and t and are
assumed to be asymptotically flat. The conformal factor ¥ is a function of z and
p only and does not evolve in time—it is determined on the initial time slice from
a solution of the Hamiltonian constraint. For the two-black hole collision, ¥ can
be computed analytically (see below). On the initial time slice, the 3-metric is
conformally flat so,a =b=d=1,and ¢ = 0.

The Einstein equations are simplified when a conformal factor is introduced
into the extrinsic curvature in a manner similar to the 3-metric [equation (2)],

he he 0
Kiyj=U'K;=0*{h, h 0 ]|. (3)
0 0 ,02hd

The evolution equations can now be formulated as dynamical equations for the
variables (a, b, ¢, d) and (hg, hy, he, hg)-

4. Misner Initial Data

The initial data for the collision are based on the results of Misner (1960) who
constructed a pure vacuum solution to the Hamiltonian constraint equation when
K;; =0 (i.e., a time-symmetric solution) and when the metric [equation (2)] is
conformally flat. The solution contains two asymptotically flat sheets joined by
two throats. This models provides a mathematically precise isometry between
the interiors of the black holes and their exteriors.

The conformal factor ¥ps defined by

Uy =1+ Z smh(n,u < = + _1 ) , where *r, = \/p2 + [zt coth(n,u)]2

Tn

solves the Hamiltonian constraint. This data set represents two equal-mass non-
rotating black holes initially at rest where the two black hole centers are aligned
along the axis of symmetry (z-axis). The free parameter p is related to the
physical parameters, M (half the total asymptotic or ADM mass) and L (the
proper distance along the spacelike geodesic connecting the throats) by

> 1

M=2>"

— sinh(nu)’ L=z [1 24 Z smh(n#)]

The effect of increasing u is to set the two black holes further away from one
another and decrease the total mass of the system.
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Figure 1.  (left) The Cadei grid for the case p = 2.2 and displayed in a
single quadrant with cylindrical coordinates. The throats are centered on the
symmetry axis at z = & coth u. (right) The computational grid.

5. The Computational Grid

The conformal factor, ¥y, assumes that the two black hole throats are spheres,
centered on the z-axis. Since the natural boundaries (the throats and a sphere
surrounding the system far from the throats) do not lie along constant (z, p)
coordinates, it is useful to introduce the “quasi-spherical” Cadez (1971) coordi-
nates (7, £) with 7 being a logarithmic “radial” coordinate and £ an “angular”
coordinate. Cadez coordinates are related to cylindrical coordinates through the
complex conformal transformation

. 1 = 1 1

nHiE= 31 HG) -1+ 3 O (et o) @
where { = z 4+ ip, and (o = cothp is the value of ( at the throat center. The
constant 7 and £ coordinate lines lie along the field and equipotential lines of
two equally charged metallic cylinders located at z = & coth u. The coefficients
C,, are determined by a least-squares method to set the throats [defined by
p% + (2t & coth 4)? = 1/ sinh? 4] to lie on an 7 = 19 = constant coordinate line.
Both 79 and the different C,, are computed for different y using this least-squares
procedure. The C,’s are rapidly converging and the series in equation (4) can
be truncated when 10 < n < 15.

The constant Cadez coordinate lines in the cylindrical coordinate system
are shown in the left panel of Figure 1. The discretization of the Einstein
equations occurs on the rectangular grid shown in the right panel of Figure 1.
The advantage afforded by this set of coordinates is that they are spherical both
near the throats and far away in the wave zone, thus allowing one to deal with
throat boundaries and asymptotic wave form extractions in a convenient way.
The disadvantage is that the transformation in equation (4) introduces a singular
saddle point at the origin (z = p = 0) not present in cylindrical coordinates.

This creates certain numerical difficulties that are discussed in Anninos et al.
(1994b).
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Figure 2. (left) The lapse function for the case p = 1.2 at ¢ = 24 M. (right)
The lapse function for p = 3.25 at ¢t = 22.5M

6. Computational Results: The Near Field

The physical attributes of the initial data for six separate Misner two-black-hole
data sets are summarized in Table 1, where M represents the mass of a single
black hole, and L/M gives the separation between the throats. Also shown is
the initial structure of the apparent and event horizons.

L M | L/M | Apparent horizon | Event horizon
1.2 | 1.85 | 4.46 single single

1.8 1 0.81 1 6.76 separate critical

2.2 1050 8.92 separate separate
2.7 10.29 | 12.7 separate separate
3.0 {0.21} 15.8 separate separate
3.25 ) 0.16 | 19.1 separate separate

Table 1.  The physical parameters for initial data sets.

The metric and extrinsic curvature components are computed on each time
slice and physically relevant information must be extracted from these quan-
tities. For example, the lapse function for the cases p = 1.2 (¢ = 25M) and
p = 3.25 (t = 22.5M) are shown in the left and right panels of Figures 2 re-
spectively. In the left panel of Figure 2, the lapse goes to zero in the region
near the throats, “freezing” all dynamics there. As a result, the proper dis-
tance between grid points grows in coordinate time in regions just outside the
horizon. This produces a “grid stretching” which presents one of the main dif-
ficulties in evolving black hole spacetimes in any numerical simulation utilizing
a singularity-avoiding lapse function.

For comparison, the right panel of Figure 2 shows the lapse for the case
1 = 3.25 where the throats are much more separated. The initial data consist of
two separated horizons. The plot corresponds to an early time in the evolution
of the system where the two holes are acting essentially independently of each
other as they begin to fall together. After the holes coalesce, the lapse collapses
spherically around both throats which are contained within the final black hole.
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Apparent Horizon Masses

Figure 3.  The apparent horizon mass for 4 = 1.2 (solid) and g = 2.2
(dashed). For p = 1.2 there is a single horizon initially. For u = 2.2, two
horizons exist until ¢ & 17M when a single horizon surrounds both holes.

One can define an effective mass of a black hole based on its apparent
horizon via the Hawking (1973) relation:

Mh:\/Ah/lﬁﬂ', (5)

where Ay, is the intrinsic area of the apparent horizon. This relationship gives a
lower limit for the mass of the black hole, since the apparent horizon should lie
at or inside the event horizon. When the system is nearly stationary, equation
(5) provides a good estimate of the black hole mass as the apparent and event
horizons almost coincide (see Anninos, et al., 1994a).

In Figure 3, the evolution of the horizon mass computed from equation (5)
is shown for two different cases. The numerical data for the case p = 1.2 are
shown as a solid line. The mass of the hole M}, is normalized to units of the
total ADM mass of the spacetime, so ideally My < 1 for all time. However,
the horizon is always found near the peak of 4,,, and therefore M}, is extremely
sensitive to the precise position of the horizon. When the horizon lies between
grid points, the overestimated surface area results from choosing the outer grid
location.

Also shown in Figure 3 is the result for the case u = 2.2 where the initial
horizons are separate and contain only about 79% of the total mass of the
spacetime. These surfaces are tracked only until another trapped surface forms
across the equator (z = 0) to surround both throats.

7. Waveform Extraction and Total Energy Loss

The main method used to calculate waveforms is based on the gauge-invariant
extraction technique developed by Abrahams & Evans (1990) and applied in
Abrahams et al. (1992) to black hole spacetimes. The basic idea is to split the
spacetime metric into a spherically-symmetric (static) background and a small
perturbation in the region where the curvature is dominated by the mass content
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Figure 4.  The ¢ = 2 waveform for the case yp = 1.2 measured at r = 40M.
The solid line represents the numerical result and the dashed line the fit to
the quasi-normal mode perturbation.

of a small compact object. The metric perturbation is expanded in m = 0
spherical harmonics Yy(8) and their tensor generalizations. The Regge-Wheeler
perturbation functions are then extracted from the numerically computed metric
components and used to construct the gauge-invariant Zerilli function . The
wavelike part of the metric ¢ is radiative at large distances from the source
and is commonly used in semi-analytic calculations of black hole normal mode
frequencies (e.g., Chandrasekhar, 1983). The asymptotic energy flux carried by
gravitational waves can be computed for each £ mode contribution from

dE 1 (67#)2.

dt ~ 32r \ 0t

(6)

For all of the cases studied in this paper, both the £ = 2 and £ = 4 waveforms
at radii of 30, 40, 50, 60, and 70M have been extracted. By comparing results at
each of these radii, the propagation of the waves and the consistency of energy
flux calculations can be monitored.

Figure 4 shows the £ = 2 waveform (solid line) extracted at a radius of 40M/
for the case p = 1.2. A single horizon surrounds both throats in this case and the
system evolves as a single perturbed black hole from the outside. Therefore, the
radiation is dominated by the quasi-normal modes of the black hole. The dotted
line in Figure 4 shows the fit of the lowest two (fundamental and first overtone)
¢ = 2 modes of a black hole of mass (2M ), over the range 70 < ¢t/M < 160,
obtained from Leaver (1985) and Seidel & Iyer (1990). The first overtone quasi-
normal mode is more strongly damped than the fundamental, and hence does
not contribute appreciably to the fit at late times. Its main effect is to increase
the accuracy of the fit to the first peak in the extracted waveform.

Figure 5 shows the { = 2 and ¢ = 4 waveforms respectively for the case
i = 2.7. The holes are initially separated by about 12.6 M. The solid lines are
the waveforms extracted at a distance r = 40M. In this case, the fits to pertur-
bation theory are still reasonably good, but are not as close as the calculations
performed for holes that are initially closer together. The wavelengths of the

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997ASPC..123..314H&amp;db_key=AST

et
&
ml
[}

SPC. Z 1737

(=4}
i~
&

!

CoLLISIONS OF Two BLAcK HOLES 321
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Figure 5.  The waveforms for 4 = 2.7 measured at r = 40M. (left) The
£ =2 mode. (right) The £ = 4 mode.

extracted waveforms are somewhat too long. The calculation requires a longer
period of time before the onset of quasi-normal ringing, so the peak in the ra-
dial metric function becomes more difficult to resolve as the accuracy declines.
This leads to an error in the effective gravitational scattering potential which is
critical in determining the quasi-normal frequencies.

The total radiated energy E can be computed from the Zerilli function
using equation (6). The results are shown in Figure 6. The six clusters of
unconnected symbols represent the numerical simulations based on the six u
parameter values. Each of the five symbols within a cluster corresponds to the
total integrated £ = 2 energy computed at the five different “detector” positions.
For reference, the results of Smarr & Eppley (Smarr, 1979) are plotted as x’s
with error bars based on values suggested by Smarr in his 1979 review. Within
the large errors quoted, those early results are remarkably consistent with the
results presented here.

The results in Figure 6 show two distinct regimes. For p < 1.8 (i.e., when
L/M = 6.69), the initial data contain one black hole, and the energy radiated
falls off exponentially. For p > 1.8, there are two holes and the energy radiated
is somewhat independent of the initial separation. Finally, we note that the
energy radiated is very small compared with the upper limits based on the
horizon area theorem which are represented by connected circles in Figure 6.
More details concerning the energy loss can be found in Anninos et al. (1993;
1995). Ultimately, the total energy radiated by these systems is on the order of
0.002M (where M is half the ADM mass of the spacetime). This implies that
at least for head-on collisions of black holes, such systems cannot be considered
to be efficient generators of gravitational radiation.
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Figure 6.  The total gravitational wave energy output for six values of u
as measured at “detectors” located at different fixed radii from the source.
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