


### **NPN Power Silicon Transistor**

Rev. V1

#### **Features**

- JANS and JANSR Qualified to MIL-PRF-19500/560
- JEDEC Registered 2N5154
- · Lightweight & Low Power
- Ideal for Space, Military, and Other High Reliability Applications
- Surface Mount U3 Package



#### **Electrical Characteristics**

| Parameter                                                                             | Test Conditions                                                                                                   | Symbol               | Units | Min.           | Max.        |  |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------|-------|----------------|-------------|--|--|--|--|
| Off Characteristics                                                                   |                                                                                                                   |                      |       |                |             |  |  |  |  |
| Collector - Emitter Breakdown Voltage                                                 | I <sub>C</sub> = 50 mAdc                                                                                          | V <sub>(BR)CEO</sub> | Vdc   | 100            | _           |  |  |  |  |
| Collector - Emitter Cutoff Current                                                    | $V_{CE} = 100 \text{ Vdc}$<br>$V_{CE} = 90 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$                                 | I <sub>CEO</sub>     | μAdc  | _              | 100<br>1.0  |  |  |  |  |
| Collector - Base Cutoff Current                                                       | V <sub>CB</sub> = 100 Vdc                                                                                         | I <sub>CBO</sub>     | μAdc  |                | 1.0         |  |  |  |  |
| Emitter - Base Cutoff Current                                                         | V <sub>EB</sub> = 6.0 Vdc                                                                                         | I <sub>EBO</sub>     | μAdc  | _              | 100         |  |  |  |  |
| On Characteristics <sup>1</sup>                                                       |                                                                                                                   |                      |       |                |             |  |  |  |  |
| Forward Current Transfer Ratio                                                        | $I_C$ = 0.5 Adc, $V_{CE}$ = 2.0 Vdc<br>$I_C$ = 2.0 Adc, $V_{CE}$ = 2.0 Vdc<br>$I_C$ = 5.0 Adc, $V_{CE}$ = 2.0 Vdc | H <sub>FE</sub>      | -     | 60<br>60<br>40 | <br>240<br> |  |  |  |  |
| Collector - Emitter Saturation Voltage                                                | $I_C = 2.0 \text{ Adc}, I_B = 0.2 \text{ Adc}$<br>$I_C = 5.0 \text{ Adc}, I_B = 0.5 \text{ Adc}$                  | V <sub>CE(SAT)</sub> | Vdc   | _              | 0.7<br>1.2  |  |  |  |  |
| Emitter - Base Saturation Voltage                                                     | $I_C$ = 2.0 Adc, $I_B$ = 0.2 Adc<br>$I_C$ = 5.0 Adc, $I_B$ = 0.5 Adc                                              | V <sub>BE(SAT)</sub> | Vdc   | _              | 1.2<br>1.8  |  |  |  |  |
| Dynamic Characteristics                                                               | Dynamic Characteristics                                                                                           |                      |       |                |             |  |  |  |  |
| Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio | $I_C = 0.5 \text{ Adc}, V_{CE} = 10.0 \text{ Vdc}, f = 10 \text{ mHz}$                                            | H <sub>FE</sub>      | -     | 3              | 15          |  |  |  |  |
| Output Capacitance                                                                    | V <sub>CB</sub> = 10 Vdc, I <sub>E</sub> = 0, 100 kHz ≤ f ≤ 1 MHz                                                 | C <sub>OBO</sub>     | pF    | _              | 250         |  |  |  |  |
| Input Capacitance                                                                     | V <sub>BE</sub> = 2 Vdc, I <sub>C</sub> = 0, 100 kHz ≤ f ≤ 1 MHz                                                  | C <sub>IBO</sub>     | pF    | _              | 1000        |  |  |  |  |
| Safe Operating Area                                                                   |                                                                                                                   |                      |       |                |             |  |  |  |  |

 $\begin{array}{lll} \text{DC Tests:} & & & & & & & & & \\ \text{Test 1:} & & & & & & & \\ \text{Test 2:} & & & & & & \\ \text{Test 3:} & & & & & & \\ \end{array} \begin{array}{ll} & & & & & & \\ \text{Test 2:} & & & & & \\ \text{V}_{\text{CE}} = 2 \text{ Vdc, I}_{\text{C}} = 5 \text{ Adc} \\ \text{V}_{\text{CE}} = 5 \text{ Vdc, I}_{\text{C}} = 2 \text{ Adc} \\ \text{V}_{\text{CE}} = 90 \text{ Vdc, I}_{\text{C}} = 55 \text{ mAdc} \\ \end{array}$ 

1. Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$ 2.0%.



# **NPN Power Silicon Transistor**

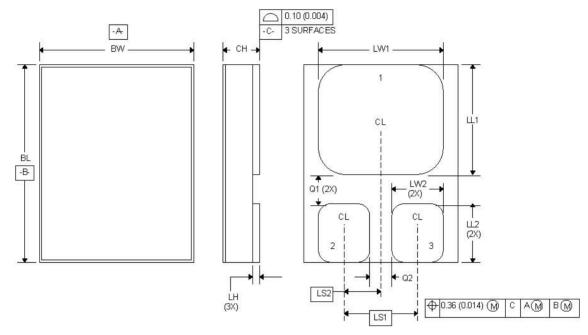
Rev. V1

# **Absolute Maximum Ratings<sup>1</sup>**

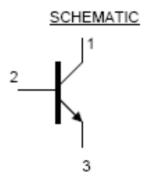
| Ratings                                                                 | Symbol                             | Value           |
|-------------------------------------------------------------------------|------------------------------------|-----------------|
| Collector - Emitter Voltage                                             | $V_{CEO}$                          | 100 Vdc         |
| Collector - Base Voltage                                                | $V_{CBO}$                          | 100 Vdc         |
| Emitter - Base Voltage                                                  | V <sub>EBO</sub>                   | 6 Vdc           |
| Base Current                                                            | I <sub>B</sub>                     | 1 Adc           |
| Collector Current                                                       | Ic                                 | 5 Adc           |
| Total Power Dissipation @ T <sub>A</sub> = 25°C @ T <sub>C</sub> = 25°C | P <sub>T</sub>                     | 1.0 W<br>75 W   |
| Operating & Storage Temperature Range                                   | T <sub>OP</sub> , T <sub>STG</sub> | -65°C to +200°C |

<sup>1.</sup> Derate linearly 434 mW/°C for T<sub>C</sub> > 25°C

#### **Thermal Characteristics**


| Characteristics                      | Symbol         | Max. Value |
|--------------------------------------|----------------|------------|
| Thermal Resistance, Junction to Case | $R_{	heta JC}$ | 2.3°C/W    |




#### **NPN Power Silicon Transistor**

Rev. V1

# **Outline Drawing (U3)**



- 1. Dimensions are in inches.
- Millimeters are given for general information only.
   In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
- 4. Terminal 1 collector, terminal 2 -base, terminal 3 emitter.



|                 | Dimensions |        |             |       |  |  |
|-----------------|------------|--------|-------------|-------|--|--|
| Ltr             | Ltr Inches |        | Millimeters |       |  |  |
|                 | Min.       | Max.   | Min.        | Max.  |  |  |
| BL              | 0.395      | 0.405  | 10.03       | 10.29 |  |  |
| BW              | 0.291      | 0.301  | 7.40        | 7.65  |  |  |
| CH              | 0.1085     | 0.1205 | 2.76        | 3.06  |  |  |
| LH              | 0.010      | 0.020  | 0.25        | 0.51  |  |  |
| LW <sub>1</sub> | 0.281      | 0.291  | 7.14        | 7.39  |  |  |
| LW <sub>2</sub> | 0.090      | 0.100  | 2.29        | 2.54  |  |  |
| LL <sub>1</sub> | 0.220      | 0.230  | 5.59        | 5.84  |  |  |
| LL <sub>2</sub> | 0.115      | 0.125  | 2.92        | 3.18  |  |  |
| LS <sub>1</sub> | 0.150 BSC  |        | 3.81 BSC    |       |  |  |
| LS <sub>2</sub> | 0.075 BSC  |        | 1.91 BSC    |       |  |  |
| Q <sub>1</sub>  | 0.030      | -      | 0.762       | -     |  |  |
| $Q_2$           | 0.030      | -      | 0.762       | -     |  |  |

# 2N5339U3



#### **NPN Power Silicon Transistor**

Rev. V1

#### MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

4