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Preface
About this Document

Preface

About this Document

This document describes the architectural aspects and the features implemented in the Marvell®
ARMADA® xp Family of Highly Integrated Multi-Core ARMv7 Based SoC Processors.
It also provides full register definitions for these devices.

This document is intended to be the basic source of information for designers of new systems. All
feature descriptions and specifications described in this document do not necessarily apply to all of
the devices. Refer to Section 1, Product Overview, on page 35 for a description of the features and
interfaces relevant to each of these devices.

In this document, the MVV78230, MVV78260, and MV78460 are often referred to as “ARMADA® Xxp”
or “the device/s”.
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This Functional Specification is organized into the following parts:
m  Part 1: Overview, on page 33

Provides a general and functional overview and includes the address map and a
description of t the internal architecture, system considerations, and bootROM
firmware.

m  Part 2: CPU Subsystem, on page 119

Provides a brief description of the CPU, and a description of the Level-2 (L2)
cache add-on, the cache coherency fabric, the Multiprocessor Interrupt Controller
(MPIC) add-on, the general and watchdog timers/counters, and the debug modes.

m  Part 3: External Memory Interfaces, on page 171
Provides a description of the following external memory units:
¢ DDR3 DRAM controller
* NAND Flash controller
* Device Bus controller.
m  Part 4: Ethernet Networking Subsystem, on page 251
Provides a description of the components of the Ethernet Networking subsystem:
¢ Ethernet Networking controller
¢ Hardware Buffer Management controller
* 1G/2.5G Ethernet MAC
* Precise Timing Protocol core
m  Part 5: External Interfaces, on page 331
Provides a description of each of the external interfaces:
¢ PCI Express
¢ UBS
¢ SATA
¢ Serial Peripheral Interface
¢ Time Division Multiplexing
¢ SDIO
e
¢ UART
* Real-Time Clock
¢ General Purpose Input Output
m  Part 6: System Functions and Engines, on page 447
Provides a description of the following system functions and engines:
* Power management capabilities
* Integrated multiple Marvell® high-speed SERDES interface
¢ Cryptographic engines and security accelerators (CESA)
¢ Two dual-channel XOR engines
* IDMA controller with its four independent IDMA engines
¢ One-time programmable eFuse module
m  Appendix A: Register Set, on page 539
Details the MVV78230/78x60 registers.
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Relevant Devices

Relevant Devices

= MV78230
= MV78260
. MV78460

Related Documentation

The following documents contain additional information related to the MVV78230/78x60. For the latest
revision, contact a Marvell representative.

Table 1: Related Documents

Ref # and Title Document
Number

[1] MV78230 Hardware Specifications MV-S106687-00

2] MV78260 Hardware Specifications MV-S106688-00

[3] MV78460 Hardware Specifications MV-S106689-00

[4] ARMADA® XP MP Core Highly Integrated Marvelf® ARMv7 SoC MV-S108492-00
Processors Datasheet

[5] Serial ETM3 Common Physical (PHY) Layer Preliminary MV-S105867-00
Specifications

External Documents:
[6] SATA Il phase 1.0a specification (Extensions to SATA | specification)

[7] USB-HS High-Speed Controller Core Reference

See the Marvell Extranet website for the latest product documentation.
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Document Conventions

The following conventions are used in this document:

Signal Range

Active Low Signals #

State Names

Register Naming
Conventions

Reset Values

Abbreviations

Numbering Conventions

Doc. No. MV-S107021-U0 Rev. A
Page 28

A signal name followed by a range enclosed in brackets represents a range of logically related
signals. The first number in the range indicates the most significant bit (MSb) and the last
number indicates the least significant bit (LSb).

Example: DB_Addr[12:0]

An n letter at the end of a signal name indicates that the signal’s active state occurs when
voltage is low.

Example: INTn

State names are indicated in jtalic font.
Example: linkfail

Register field names are indicated by angle brackets.
Example: <Reglnit>

Register field bits are enclosed in brackets.

Example: Field [1:0]

Register addresses are represented in hexadecimal format.
Example: 0x0

Reserved: The contents of the register are reserved for internal use only or for future use.

A lowercase <n> in angle brackets in a register indicates that there are multiple registers with
this name.
Example: Multicast Configuration Register<n>

Reset values have the following meanings:
0 = Bit clear
1 = Bit set

B: Byte

Kb: kilobit

KB: kilobyte

Mb: megabit

MB: megabyte

Gb: gigabit

GB: gigabyte

Unless otherwise indicated, all numbers in this document are decimal (base 10).

An Ox prefix indicates a hexadecimal number.
An 0b prefix indicates a binary number.

Copyright © 2014 Marvell
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Terms and Abbreviations

The following terms and abbreviations are used throughout this datasheet:

Table 2: Terms and Abbreviations

Acronym /
Term

3DES
AER

AES
AES128/128
AES128/192
AES128/256
AMBA®"
APB

ARM

ARP

ATB

AVB

BAR

BIST
Block/data
BMD
BMU

BP

BPDU
BPU

CBC
CESA
CFB

CFU

CiB

CRC

CTI

CT™M

DA

DAP

DES
3DES

DLB

DMA

Copyright © 2014 Marvell
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Definition

Triple Data Encryption Standard
Advanced Error Reporting

Advanced Encryption Standard

128 data bits AES with 128-bit key width
128 data bits AES with 192-bit key width
128 data bits AES with 256-bit key width
Advanced Microcontroller Bus Architecture
Advanced Peripheral Bus

Advanced RISC Machine

Address Resolution Protocol

Advanced Trace Bus

Audio Video Bridging

Base Address Register

Built-In Self Test

Block of 512 bits in the authentication engine

Bandwidth Map Decode
Buffer Management Unit
Buffer Pointer

Bridge Protocol Data Unit
Branch Prediction Unit
Cipher Block Chain

Cryptographic Engines Security Accelerators

Cipher Feedback
Coherency Fabric Unit
Coherency 10 Bridge
Cyclic Redundancy Check
Cross Trigger Interface
Cross Trigger Module
Destination Address
Debug Access Port

Data Encryption Standard
Triple Data Encryption Standard
DRAM Line Buffer

Direct Memory Access
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Table 2: Terms and Abbreviations (Continued)

Acronym /
Term

DMB
DPRAM
DSA
DSB
DSCP
DSP
ECB
EDE
EDMA
EEE

EHC
EJP
ETB
ETM
FCS
FPDMA
FPGA
GbE
GPIO
HDLC
1’c

ICE
ISB
iSCSI

JTAG
LLID
LPAE
MAC
MCDMA
MCSC
MD5
MMC
MMU
MRCRXx

Doc. No. MV-S107021-U0 Rev. A
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Definition

Data Memory Barrier

Dual-Port Random Access Memory
Distributed Switching Architecture

Data Synchronization Barrier

Differentiated Service (Diff-Serv) Code Point
Digital Signal Processor

Electronic Code Book

Encryption Decryption Encryption
Enhanced-DMA

Encryption Encryption Encryption
(Cryptographic Engine and Security Accelerator (CESA))

Energy Efficient Ethernet
Enhanced Host Controller Interface
Egress Jitter Pacing

Embedded Trace Buffer
Embedded Trace Macrocell

Frame Check Sequence

First Party DMA

Field Programmable Gate Array
Gigabit Ethernet

General-Purpose 1/0 Port
High-Level Data Link Control
Inter-Integrated Circuit Interface
In-Circuit Emulation

Instruction Synchronization Barrier
Internet Small Computer System Interface
Initial Vector/Initial Value

Joint Test Action Group

Logical Link Identification

Large Physical Address Extension
Media Access Controller

Multi Channel Direct Memory Access
Multi-Channel Serial Controller
Message Digest 5

Multi-Media Card

Memory Management Unit

MCSC Channel-x Receive Configuration Register
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Table 2: Terms and Abbreviations (Continued)

Acronym /
Term

MSI
NAPT
NFP
oDT
OFB
PCle
PCM
PCS
PLS
PM
PMU
PPPoE
PRBS
PTM
PTP
PSI
PTM
QoS
QSGMII
RGMII
RISC
RMON
ROM
RTC
SA
SAR
SATA
SATAHC
SDIO
SERDES
sETM
SGL
SGMII
SHA-1
SLAC
SLIC
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Message Signaled Interrupts

Network Address Port Translation
Network Fast Processing

On-Die Termination

Output Feedback

PCI Express

Pulse Code Modulation

Physical Coding Sublayer

Power Levelling Sequence

Power Management

Power Management Unit

Point-to-Point over Ethernet
Pseudo-Random Bit Sequence

Program Trace Macrocell

Precise Timing Protocol

Physical Synchronization and Alignment
Program Trace Macrocell

Quality of Service

Quad Serial Gigabit Media Independent Interface
Reduced Gigabit Media Independent Interface
Reduced Instruction Set Computer
Remote Monitoring

Read Only Memory

Real-Time Clock

Source Address

Sample At Reset

Serial Advanced Technology Attachment
Serial-ATA 1l Host Controller

Secure Digital Input/Output
Serializer/Deserializer

Serial Embedded Trace Macrocell
SERDES Glue Logic

Serial Gigabit Media Independent Interface
Secure Hash Algorithm 1

Subscriber Line Audio-processing Circuit

Subscriber Line Interface Circuit
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Table 2: Terms and Abbreviations (Continued)

Acronym / Definition

Term

SMI Serial Management Interface

SoC System on Chip

SPI Serial Peripheral Interface

TAI Timing Applications Interface

TBI 10-Bit Interface

TC Traffic Class

TCP Transmission Control Protocol

TDM Time Division Multiplexing

TPIU Trace Port Interface Unit

TTL Time to Live

UART Universal Asynchronous Receiver/Transmitter

UDP User Datagram Protocol

USB Universal Serial Bus

UT™M Upstream Traffic Module

VID VLAN Identifier

VLAN Virtual Local Area Network

WO0...W15 Designates the 16 words in an authentication input data block; WO is the first word
and W15 is the last word.

WOL Wake On LAN

WORD 32-bit

1. AMBA are registered trademark of the ARM Corporation.
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Section 1, Product Overview
Section 2, Functional Overview
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Product Overview

1 Product Overview

The ARMADA® XP Family of Highly Integrated Multi-Core ARMv7 Based SoC Processors are a
complete system-on-chip solution based on the Marvell® Core Processor embedded CPU
technology. By leveraging the successful Marvell system controllers and extensive expertise in ARM
instruction-set-compliant CPUs, the ARMADA® XP SoCs present a new level of performance,
integration, and efficiency to raise the performance/power and performance/cost bar.

These devices integrate:

m  Dual/quad Superscalar, ARMv7-compliant Marvell® Core Processors with the latest Marvell
micro-architecture enhancements, with a double precision IEEE-754-compliant Floating Point
Unit (FPU) per core.

m  Shared Level-2 (L2) cache in a size of 1 MB or 2 MB.
m  Low-latency, high-bandwidth tightly coupled DDR3 memory controller.

The advance /O peripherals include PCI Express (PCle) Gen2.0, USB2.0 with integrated PHYs,
SATA ports, Ethernet, and TDM interfaces.

To allow an enhanced handshake and data flow, a full hardware 1/0 cache coherency scheme is
implemented between the 1/Os and the CPU.

Optimized for low-power operation and providing advanced power management capabilities, the
40 nm process-based ARMADA® XP is ideally suited for a wide range of applications that require
both high performance and minimal power consumption. The rich and diversified interface mix of the
series facilitates being the perfect solution for different types of applications and systems in various
fields, such as:

m  ARM-based servers and workstations
m  High density high performance clusters and computational farms
m  Networking control plane applications
m  Wireless infrastructure:
¢ Cellular
e WiMax
o Wifi
m  High-end consumer and enterprise appliances like laser printers
m  Surveillance Video Recorders (DVR/NVR/Hybrid)
m  Enterprise Network Storage (NAS, RAID, iSCSI) products
The innovative Coherency Fabric architecture provides a coherent interconnect between the CPUs
themselves and between the CPUs and the I/O masters. This enables the system to work either in
Symmetrical Multi Processing (SMP) mode or Asymmetric Multi Processing (AMP) mode, with 1/0

cache coherency. In addition, the efficiency of the bus enables a high-frequency, high- bandwidth,
and low-latency access time throughout the CPU memory subsystem.

The on-chip Mbus architecture, a Marvell® proprietary crossbar interconnect for non-blocking
any-to-any connectivity, enables concurrent transactions among multiple units. This design results in
high system throughput, allowing system designers to create high-performance products.

With full pin and software compatibility between the different device flavors, the ARMADA® Xp
enables full performance scalability to best fit the requirements of any specific application.

Table 3 lists the feature differences and similarities between the ARMADA® XP devices:
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s MV78230
MV78260
MV78460
Table 3: ARMADA® XP Device Differences
Feature

Marvell® Core Processor ARMv7- compliant CPU, with
a Floating Point Unit (FPU) per CPU core

Shared L2 cache

DDR3 SDRAM Interface
includes 8-bit support for Error Checking and
Correction (ECC) checking and generation.

Gigabit Ethernet Interface

GMII/MII/RGMII/SGMII/QSGMII

NOTE: The GbE interface options are multiplexed with
other functionality. For more information about
the SERDES options, see the device’s
Hardware Specifications.

SERDES Lanes
Multiplex of:

« SGMII

+ PCle

+ SATA

» sETM

« QSGMII

PCI Express (PCle) Gen2.0 Interface

NOTE: The SERDES lanes are multiplexed with other
functionality. For more information about the
SERDES options, see the device’s Hardware
Specifications.

Device Bus

Serial ATA 1l (SATA Il) Interface with Integrated PHY(s)

NOTE: The SERDES lanes are multiplexed with other
functionality. For more information about the
SERDES options, see the device’s Hardware
Specifications.

USB Interface
Cryptographic Engine and Security Accelerator (CESA)
XOR DMA Engine

Serial Peripheral Interface (SPI)

Doc. No. MV-S107021-U0 Rev. A
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and Similarities
MV78460
Differences

Quad CPU Cores @
up to 1.6 GHz

2 MB
40/72-bit Width
DDR3-1600 MHz

4 Ports

16 Lanes

4 PCle Interfaces:

* 2 units x4 or
quad x1

* 2 units x4/x1

8/16/32-bit Interface

Similarities

MV78260

Dual CPU Cores @
up to 1.6 GHz

1MB

40/72-bit Width
DDR3-1600 MHz

4 Ports

12 Lanes

3 PCle Interfaces:

* 2 units x4 or
quad x1

* 1 unit x4/x1

8/16/32-bit Interface

2 Ports

MV78230

Dual CPU Cores @
up to 1.6 GHz

1 MB
40-bit Width
DDR3-1600 MHz

3 Ports

7 Lanes

2 PCle Interfaces:

* 1 unit x4 or quad
x1

* 1 units x1

8/16-bit Interface

3 Ports USB2.0 w/ integrated PHYs

2 Engines
4 Channels

2 Ports
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Product Overview

Table 3: ARMADA® XP Device Differences and Similarities (Continued)

Feature MV78460 MV78260 MV78230
SDIO/MMC Interface Yes

Secured Boot Yes

16750-Compatible UART Interface 4 Ports

12C Interface 2 Ports

Time Division Multiplexing (SLIC/codec) Interface 32 Channels

Advanced Power Management Unit Yes

Advanced Interrupt Controller Yes
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Block Diagrams

Functional Specifications

The following figures illustrate the main functional blocks within the MV78230/78x60 device.

Figure 1:

MV78230 Block Diagram

Buffer Management

3 x GbE / >
QSGMII . ;
AAA
2 x SATAII
Yvy

PCle 2.0 x 1

Shared L2 /
SRAM 1 MB

Deposit

:

Discovery Coherency Fabric

Mbus Crossbar Switch

PCle2.0x 4/
Quad x 1

7 SERDES Lanes
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Controller + ECC

Device Bus,

N NAND Flash,
SPI, UARTs, I2C,

4 x IDMA

P
4 x XOR

- . .
Security Engines

TDM Interface
with 32 VolP
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3 x USB2.0
Host / Device

USB PHY x 3
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Figure 2: MV78260 Block Diagram

Product Overview

Buffer Management
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P
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2 x SATA I
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Figure 3: MV78460 Block Diagram
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2 Functional Overview

The following sections describe the functional blocks and features of the ARMADA® XP.

2.1 Marvell® Core Processor

The ARMADA® XP devices are based on the dual-issue, Marvell® Core Processor CPU.
This ARMv7-MP-compliant core supports the following features:

2.6 DMIPS/MHz per core
Superscalar RISC CPU with Harvard architecture that issues two instructions per cycle
Single/double precision IEEE-754-compliant Floating Point Unit (VFP3-D32)

Compliant with ARMv7-A architecture, published in the ARM Architecture Reference Manual,
Second Edition

Supports 32-bit instruction set for performance and flexibility

Thumb-2 and Thumb-EE instruction set for code density

Supports Large Physical Address Extension —up to 40-bit address space
Supports DSP instructions to boost performance for signal processing applications
MMU-ARMv7 compliant VMSA MMU

4-KB LO Instruction and data cache, direct mapping

32-KB L1 Instruction cache 4-way set-associative, physically indexed, physically tagged, parity
protected

32-KB L1 Data cache, 8-way set-associative, physically indexed, physically tagged, parity
protected

MESI Cache Coherency scheme

Hit-under-miss and multiple outstanding requests
Advanced write coalescing support

Variable stages pipeline—6 to 10 stages
Out-of-order execution for increased performance
In-order retire via a Reordering Buffer (ROB)

Advanced branch prediction—32 Branch Target Buffer (BTB) and 1K entries Branch Prediction
Unit (BPU) with GShare algorithm

Branch Return Stack Point for subroutine call
64-bit internal data bus with 64-bit load/store instructions

JTAG/ARM-compatible ICE, and Serial Embedded Trace Module (sETM) for enhanced
real-time debug capabilities

Endianess options: Little, Big, and Mixed Endianess

For further information about the Marvell® Core Processor interface, see Section 7, Marvell® Core
Processor, on page 121.
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2.2

2.3

24

Level-2 Cache

The devices integrate a shared, unified Level-2 cache.
MV78460 2 MB, 32-way set-associative cache

MV78230
MV78260

1 MB, 16-way set-associative cache
L2 cache features include:
m  Physically addressed

m  Non-blocking pipeline supports multiple outstanding requests and Hit Under Miss (HUM)
operation

Per-way configured byte addressable SRAM or L2

Direct I/O access to/from L2/SRAM for all Mbus masters, allowing data storing directly into the
L2/SRAM

m  Data/Tag ECC/Parity protected
For further information about the L2-Cache, see Section 8, Level-2 Cache, on page 122.

System Considerations

For proper and effective system operation, the device provides specific system level tools that
include:

m  Data integrity mechanisms
m  Secured boot process

The MV78230/78x60 offers multiple tools to ensure data integrity in data transfers between various
interfaces of the device.

It supports ECC (Error Checking and Correction) on SDRAM and on the L2 cache, with single error
correction and two errors detection (SEC/DED). It supports read-modify-write access for partial
writes. If a non-correctable ECC error occurs, an interrupt is set and the transaction address and
data are registered.

The PCI Express link is LCRC protected, as defined by PCI Express specification.

The device also supports parity protection on its internal data path and internal memory arrays,
providing end-to-end data integrity.

ECCl/parity errors are optionally propagated between the interfaces, and can be reported to the host
processor via a maskable interrupt.

For further information about the Data integrity capabilities, see Section 5, System Considerations,
on page 82.

BootROM Firmware

The bootROM firmware is executed according to the sample at reset configuration bits in the Sample
at Reset Register (Table 1286 p. 1434).

The bootROM firmware performs basic and fundamental initialization of the device. It also loads and
executes code from any of the following boot devices:

Serial (SPI) flash

NAND flash

NOR flash

SATA interface

PCI Express interface

UART interface (using the Xmodem protocol)
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Boot from the UART interface (using the Xmodem protocol) is attempted before a boot from any of
the other interfaces. The device attempts to detect the various UART interfaces before proceeding
with boot from the selected interface.

The firmware can also perform a flexible multi-core initialization, and support the device's advanced
power save capabilities.

For further information about the Boot ROM, see Section 6, BootROM Firmware, on page 93.

Secured Boot

The trusted boot framework uses the embedded secured boot firmware and the embedded One
Time Programmable (OTP) memory to perform secured and authenticated boot sequences of one or
more CPUs. This framework is based on a flexible chain of trust using an industry standard
public/private key cryptographic scheme. Using the authenticated boot sequence, the boot loader
can be loaded from several resources, including SPI Flash, Flash memory (both NAND and NOR),
and SATA. The operating system software can be loaded from additional resources, including the
network (using TFTP).

The secured boot flow and boot device is enforced by an OTP memory configuration that also
disables the JTAG debug interface.

For further information about the secured boot process, see Section 6, BootROM Firmware,
on page 93.

Coherency Fabric

The Coherency Fabric provides a flexible, high speed, low latency switching structure for routing the
CPUs and I/O initiated transactions to the target modules. The device manages cache-to-cache
coherency between the different coherent processors and forwards I/O initiated transactions that are
tagged with a shared attribute onto the processors snoop engine, allowing on-chip caches to snoop
these transactions (I/O cache coherency). Any access to the DRAM either by an 10 master or by a
CPU may result in a snoop transaction driven through the peer CPUs’ caches. In the case of a hitin
a modified line in the CPU cache, the most updated line is delivered directly to the requester.

The Coherency Fabric allows the system architecture to use the CPUs in the most efficient way that
fits the given application. The CPUs may be used to run in a Symmetrical Multi-Processing (SMP)
mode, in which all of the CPUs are running the same OS. Or, in an Asymmetrical Multi Processing
(AMP) mode in which all of the CPUs can run different OS images or bare metal code.

The high performance of the Marvell® CPU cores and the flexibility of the Coherency Fabric enable
system applications to combine between the two modes. For instance, some CPUs can run in SMP
mode, and the remaining cores can run in AMP mode. Or, it is possible to create two SMP groups,
with two CPUs per group. An example of such a system can be a networking application in which
two CPUs are running the networking control plane stack in SMP mode. This provides intense
computing power for the demanding requirements of the control plane. Meanwhile, the other two
CPUs are running asymmetrically different images of light bare-metal code performing data plane
tasks.

Using a snoop affinity scheme, the logic ensures that a memory access from an 1/0O master only
snoops the CPUs that were assigned to handle this I/O master, preventing unnecessary disturbance
to other CPU group’s work.
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2.7

2.8

Multiprocessor Interrupt Controller (MPIC)

The Multiprocessor Interrupt Controller (MPIC) is a single functional unit placed in the device
Coherency Fabric. It provides multiprocessor interrupts management, and is responsible for
receiving interrupts from different sources, prioritizing them, and distributing them to the target
CPUs.

The interrupt controller can generate two CPU interrupts:
m  Interrupt Request (IRQ)
m  Fast Interrupt Request (FIQ)

Each interrupt has its own masking option that enables for the presentation of different events on
different CPU interrupt pins.

The interrupt controller provides an advanced priority mechanism that assigns a priority to an
interrupt to create an interrupt hierarchy. Running at coherency fabric clock frequency enables
low-access latency for the processors to the interrupt registered information.

The interrupt controller also supports generation and broadcasting of interrupts between all of the
multi-processing processors.The separated masking options provide the capability to assign a
specific system event to a specific CPU core, while not affecting the other CPUs’ operation.

The device’s GPIO lines can also be configured to act as interrupt inputs that enables registration of
external interrupts toward the Marvell® Core Processors.

The PCI Express port supports receiving interrupt messages (MSlIx) from PCI Express endpoints
and route them to the local hosts. When configured to act as a PCI Express endpoint, it is also
capable of generating MSI messages.

For further information about the Multiprocessor Interrupt Controller, see Section 9, Multiprocessor
Interrupt Controller (MPIC), on page 139.

Timers, Counters, and Watchdog

The device integrates four 32-bit wide general purpose global timers/counters and one global
watchdog that can reset the device. Each can be selected to operate as a timer or as a counter.

In addition, the device integrates three 32-bit wide timers/counters—two general purpose and one
watchdog, that are dedicated per CPU core. These are private timers/counters and are not visible to
other CPU cores or external hosts.

The device provides the option of an interrupt assertion upon timer expiration, and the capability to
enable a global reset in case of watchdog expiration.

For further information about the timers and counters, see Section 10, Timers, Counters, and
Watchdog, on page 157.

CPU Debug Capabilities

The Serial Embedded Trace Module (sETM) is a CoreSight™ component designed for use with the
CoreSight Design Kit. CoreSight is an ARM extensible, system-wide debug and trace architecture.

The sETM generates a real-time trace that can be configured to include instruction tracing controlled
by programmable filtering and triggering. The trace generated by the sETM is in a highly
compressed form, and it is traced out to the on-chip embedded buffers.

The device also incorporates a Cross Trigger Interface (CTI) per CPU Core that allows for debug
event synchronization between the cores.

For further information about the debug features, see Section 11, Debug Capabilities, on page 161.
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2.9 DDR3 SDRAM Controller

The SDRAM interface for each device is as follows:

MV78260 40-bit or 72-bit DDR2 and DDR3 SDRAM interface (32/64-bit data +
MV78460 8-bit ECC)

MV78230 40-bit DDR2 and DDR3 SDRAM interface (32-bit data + 8-bit ECC)

The DRAM controller supports up to four DRAM ranks and all device densities up to 8 Gb DDR3, up
to a total of 16 GB memory space. Flexible configuration of different DIMM and on board DRAM
components may be implemented.High frequencies are supported, even with a heavy load
configuration, by the supported 2T and 3T modes. The controller offers support for the DDR3 fly-by
topology architecture including:

m  Read and write leveling

m  Address mirroring

= Other Marvell® proprietary training mechanisms that allow fluent work with a fast interface as
high-speed DDR3.

The MV78230/78x60 device architecture is oriented to reduce CPU-to-DRAM access time. The
Marvell® Core Processor, the Coherency Fabric, and the DRAM interface all run synchronously. The
CPU-Coherency Fabric-DRAM supported clock ratios provide maximum flexibility, by using 1:N and
2:N divisible options between the different clock domains.

The DRAM Controller have interfaces to the Coherent Fabric and to the Mbus interconnects. Mbus
masters can access the DRAM Controller directly over the Mbus for non coherent transactions or
through the Coherency Fabric for coherent transactions.

The DRAM controller is designed to best utilize DRAM bandwidth and latency through the following
features:

m  Up to 128B memory access in a single transaction from MBus masters

m  Support for up to 32 simultaneous open pages

m  Support for DDR3 BL8

m  Issue an effective bank interleave

With the low power architecture of the MV78230/78x60, the devices provide options for putting the

DRAM into power save modes, such as self refresh and power down, to minimize the overall system
power consumption in low power states.

For further information about the DRAM controller, see Section 12, DRAM Controller, on page 173.

210 NAND Flash Controller (NFC)

Only the NFC version 1.0 can be used in parallel with the Device Bus. This option is not supported in
the enhanced NFC version 2.0/

The NFC version 2.0 provides an 8/16 bits interface to NAND flash components over, and up to, four
physical ranks. Each rank can host NAND Flash devices supporting 32/64/128/256 page block sizes
and page sizes of either 512B, 2 KB, 4 KB, or 8 KB.

The controller has an integrated Error Correction Code (ECC) computation mechanism that corrects
single-bit errors and detects 2-bit errors per page using Hamming ECC. Alternatively, it can compute
ECC and correct up to 16 errors per 512B (including spare, if enabled and parity bits themselves)
while using BCH ECC.

For further information about the NFC, see Section 13, NAND Flash Controller (NFC), on page 203.
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Device Bus Controller

The supported device bus controller width for each device is as follows:

MV78260 8/16/32-bit multiplexed address/data interface, and provides up to 8 data beats per

MV78460 access.

MV78230 8/16-bit multiplexed address/data interface, and provides up to 8 data beats per
access.

The device bus controller supports different types of memory and 1/O devices such as Flash, ROM,
or an application-specific Field Programmable Gate Array (FPGA). It supports flexible timing
parameters that enable accesses to slow asynchronous devices.

The device bus controller also supports a glueless interface to NOR Flash devices on any of its
5 physical ranks. Each rank can be address mapped up to 512 MB.

For further information about the Device bus interface, see Section 14, Device Bus Controller,
on page 237.
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212 Ethernet Networking Controller

The Network Ethernet ports for each device are:

Four 10/100/1000 Mbps, full duplex network Ethernet ports, with a configured
selection of RGMII/SGMII/GMII/MII interfaces.
For the configuration options, see Table 4.

Three 10/100/1000 Mbps, full duplex network Ethernet ports, with a configured
MV78230 selection of RGMII/SGMII/GMII/MII interfaces.
For the configuration options, see Table 5.

MV78260
MV78460

Table 4: Four 10/100/1000 Mbps Network Ethernet Ports—Configuration Options

Ethernet Port Option 1 Option 2 Option 3
Port 0 RGMII / SGMII GMII Mil
Port 1 RGMII / SGMII SGMII SGMII
Port 2 SGMII SGMII SGMII
Port 3 SGMII SGMII SGMII

Table 5: Three 10/100/1000 Mbps Network Ethernet Ports—Configuration Options

Ethernet Port Option 1 Option 2 Option 3
Port 0 RGMII / SGMII GMIl Mil
Port 1 RGMII / SGMII SGMII SGMII
Port 2 SGMII SGMII SGMII

EI Each port can be set as Not Connected (NC) if not used.
Note

While working in SGMII mode, all of the ports can support a standard SGMII link with a net data rate
of 1 Gbps (running at a baud rate 1.25 GHz) or a faster SGMII link with a net data rate of 2.5 Gbps
(running at a baud rate of 3.125 GHz).

Receive and transmit buffer management is based on a buffer-descriptor list. Descriptors and data
transfers are performed by the port-dedicated SDMA.

The Ethernet port includes advanced DA address filtering on received packets. It also detects packet
type/encapsulations that can be used by the Marvell® Core Processor core for packet routing:

m  Layer 2: BPDU, programmable VLAN-Ethertype (VLAN), Ethernet v2, LLC/SNAP

m  Layer 3: IPv4, IPv6 (according to Ethertype), other (no MPLS detection)

m  Layer 4: TCP, UDP, other

Each port has 8 receive and transmit priority queues. Queuing is performed based on DA,

VLAN-Tag, and IP-TOS. The ports also support Marvell® proprietary Marvell Header or DSA Tag,
resulting in significant CPU off-load when interfacing with Marvell switches.

Each port supports long frames, up to 10 KB. The port also supports TCP and UDP over IPv4/v6
checksum calculation on receive and generation on transmit, for off loading CPU’s work.
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214

The port also supports precise time stamping for packets, as defined in IEEE 1588 Precise Time
Protocol (PTP) v1 and v2 and IEEE 802.1AS standards.

The Ethernet ports also support extended Wake On LAN (WOL) options for power save modes, and
Energy Efficient Ethernet (EEE) LPI mode, for overall minimal system power consumption in power
save modes.

For further information about the Network Ethernet Ports, see Section 15, Ethernet Networking
Controller, on page 253.

Hardware Buffer Management (BM) Controller

The BM block may off load the software from the intensive task of memory buffer allocation for
incoming or outgoing packets. On the ingress flow, the Ethernet port can pull a buffer from the BM
with no software intervention. On the egress path, the Ethernet port may release the buffer back to
its pool immediately after the packet is transmitted. In addition, the BM block provides the Marvell®
core processor with the option to pull or release buffers during run time.

The BM block consists of four buffer pools that can be characterized by the size and memory
location of the buffer. To improve performance, the BM locally stores in its FIFOs a configurable
amount of buffers per pool for fast assignment. Watermarks are used to avoid overflow conditions.
When the watermark is crossed, the BM empties some of the locally stored buffers back to the main
buffer pools in memory. A similar watermark is used to fetch more buffers from the main pool into the
local BM FIFOs.

PCI Express Interface

The PCle interface for each device is as follows:

MV78460 4 PCle units Gen2.0
Two of those units can be configured as x4 or quad x1 lanes. The other 2 units
are x4 or x1.

MV78260 3 PCle units Gen2.0

Two units can be configured as x4 or quad x1 lanes.
One unit is x4/x1.

MV78230 2 PCle units Gen2.0.
One unit can be configured as x4 or quad x1 lanes. The other unit is x1.

The ports are PCI Express Base 2.0 compliant (according to the list in the table above) and may run
at 5 Gbps in each direction per lane. Each of the lanes support lane polarity inversion and link
reversal.

The PCle port supports a single Virtual Channel (VC).

Upon CPU or DMA access to a PCle address space, the PCle port acts as a master. In master
mode, it supports memory, I/O, and configuration cycles. It supports a maximum of 128B read and
write requests, and up to four outstanding master read requests.

When it receives memory read/write requests from an external device, the PCle port acts as a
target. It supports up to four read requests, with a maximum read request size of 4 KB. As a target, it
supports PCI Express accesses to all of the device’s internal registers, as well as all other chip
resources.

The PCle port uses 64-bit addressing, as a master or target and supports:
m  Extended PCI Express configuration space

m  Advanced error reporting, power management

m  LOs and L1 ASPM active power state support
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m Software L1 /L2 support for interrupt emulation message and error messages (MSIx)
m  P2P bridging (non-transparent bridge) between each of the lanes

For further information about the PCle controller, see Section 19, PCI Express Interface (PCle) 2.0,
on page 333.

Universal Serial Bus (USB 2.0) Interface

The MV78230/78x60 supports three USB 2.0 compliant ports, including integrated PHY's. Each port
can be configured as a USB host or USB peripheral.

Each port integrates a USB controller (including a DMA and protocol engines) and an embedded
USB 2.0 compatible PHY.

A common USB bridge connects all ports to the Mbus interconnect via an arbiter.

The USB ports are EHCI-compatible as hosts. When configured as a host, the port supports a direct
connection to all peripheral types (LS, FS and HS).

As a peripheral, it supports up to six independent endpoints supporting control, interrupt, bulk, and
isochronous data transfers and connects to all host types (FS or HS) and hubs.

For further information about the USB interface, see Section 20, Universal Serial Bus (USB 2.0)
Interface, on page 352.

Serial-SATA (SATA) Il Interface

The device includes two SATA Il compliant ports, with integrated SERDES.

There is full support for the SATA Il Phase 1.0 specification. The following advanced SATA |l Phase

2.0 specification features are also supported:

m  SATA Il 3-Gbps speed

m  Advanced SATA PHY characteristics for SATA backplane support

m  SATA Il Port Multiplier advanced support

m  SATA Il Port Selector control
(Generates the protocol-based Out of Band (OOB) sequence to select the active host of the
SATA |l Port Selector.)

m  Compliant with SATA Il Phase 1 specifications

¢ Supports SATA Il Native Command Queuing (NCQ), up to 128 outstanding commands per
port

¢ First party DMA (FPDMA) full support
¢ Backwards compatible with SATA | devices
m  Supports SATA |l Phase 2 advanced features
¢ 3 Gbps (Gen2i) SATA |l speed
e Port Multiplier (PM)
Performs FIS-based switching as defined in SATA working group PM definition
¢ Port Selector (PS)
Issues the protocol-based Out-Of-Band (OOB) sequence to select the active host port
Supports device 48-bit addressing
Supports ATA Tag Command Queuing
Enhanced-DMA [EDMA] for the SATA port
* Automatic command execution without host intervention
¢ Command queuing support up to 128 outstanding commands
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* Separate SATA request/response queues
* 64-bit addressing support for descriptors and data buffers in system memory

m  Read ahead
m  Advanced interrupt coalescing
m  Advanced drive diagnostics via the ATA SMART command

For further information about the SATA interface, see Section 21, Serial-ATA (SATA) Il Interface,
on page 354.

Serial Peripheral Interface (SPI)

The device integrates two general-purpose Serial Peripheral Interface (SPI) ports. The SPlis a
synchronous serial data protocol used for transferring data simply and quickly from one device to
another.

The device supports a boot sequence from an SPI flash. A different usage for the SPI interface can
be managing the SLIC/SLACs used for voice sampling. The device provides 8 physical ranks (chip
selects).

For further information about the SPI interface, see Section 22, Serial Peripheral Interface (SPI),
on page 378.

Time-Division Multiplexing (TDM) Controller

The device includes a Time-Division Multiplexing (TDM) interface (a.k.a Multi Channel
TDM—TDMMC).

The TDM is a generic interface for standard SLIC/SLAC/Codec devices. It is compatible with
standard PCM highway formats, supports 32 channels, and up to 128 time slots. The unit’s flexible
configuration allows each of the 128 slots to be assigned to any of the 32 channels or be configured
as inactive. It also has dedicated Rx and Tx DMAs per channel that are used to transfer the voice
samples from/to the interface, or to/from memory, while minimizing CPU intervention.

The unit supports compound (A-law, U-law), linear or wideband voice samples.

It can also be configured to generate or receive the clock and frame sync signals independently. It
can also use different clock polarities and frame sync while sampling/driving the data.

SLIC/SLAC/codec registers read/write access is done through the device’s SPI interface which
offers up to eight physical ranks to lower access and search time during interrupt or access events.

Each of the TDM channels can be also used in High-Level Data Link Control (HDLC) Bit Oriented
protocol mode. In the HDLC mode, the unit offloads the CPU from HDLC link management by
performing flag generation and stripping, bit stuffing and stripping, address recognition (8/16-bits
addresses), CRC generation and checking, and line condition monitoring and so on.

For further information about the TDM interface see Section 23, Time-Division Multiplexing (TDM)
Controller, on page 386.

Secure Digital Input/Output (SDIO) Controller
The device integrates an SD/SDIO/MMC host controller.

This controller functions as a host for the SD/MMC bus to transfer data through between SDMem,
SDIO, and MMC cards on one side and the internal system buffers on the other side. Dedicated
DMA is used to do the data transfers.

The controller supports:

m  1-bit/4-bit SDMem, SDIO, and MMC cards

m  Hardware generate/check CRC on all command and data transactions on the card bus
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m  SDHost1.0
m  SD PHY 1.1 up to 50 MHz

For further information about the SDIO interface, see Section 24, Secure Digital Input/Output (SDIO)
Controller, on page 413.

Inter-Integrated Circuit Interface (1C)

The device integrates two generic 12c ports that can be configured as a master or a slave interface.
One of the ports can also be used for serial ROM initialization.

The I1°C interface fully supports multiple 1°C master environments (clock synchronization, bus
arbitration). The I2C interface can be used for multiple applications such as:

m A master to control other 12C based on-board devices
m  To read the DIMM SPD ROM
m  To auto-load values from an external serial ROM device.

The I12C interface can also be used as a slave for communication with other on-board 12C masters.

For further information about the 12C interface, see Section 25, Inter-Integrated Circuit Interface
(12C), on page 420.

UART Interface

The device integrates four 16750-compatible Universal Asynchronous Receiver/Transmitter (UART)
ports. Each port has 2 pins for transmit and receive operations and 2 pins for modem control
functions.

One port also supports an integrated transmit DMA, capable of up to 64-KB transfer.

For further information about the UART interface, see Section 26, Universal Asynchronous
Receiver/Transmitter (UART) Interface, on page 432.

Real Time Clock (RTC)

The device integrates an RTC unit that records the second, minute, hour, date, day, month, and
year.

When the system power is off, a backup battery (3V) can keep the RTC unit operational.
The RTC unit operates with an external 32.768 kHz crystal input.

It also supports driving an alarm signal to the external power regulator for restoring power to the
system at a specific time even when device power is down.

For further information about the RTC interface, see Section 27, Real-Time Clock (RTC),
on page 439.

General Purpose 1/0s (GPIO) Ports

The device includes general purpose input/output pins, as follows, multiplexed on Multiple Purpose
Pins (MPP):

MV78260
MV78460

MV78230 49 pins

67 pins

Each MPP can be assigned to act as a general purpose input or output pin and can be used to
register external edge or level sensitive interrupts, when assigned as an input pin.
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The reset strap of the device is configured by a subset of the MPPs. To reduce design complexity,
MPPs which are part of the reset strap subset should not be configured as general purpose input
unless the state of the pin is guaranteed to be compatible with the reset strap at reset. They can be
configured as general purpose output.

For further information about the general purpose 1/Os, see Section 28, General Purpose
Input/Output Ports, on page 444.

Power Management

With the increasing requirement for greener environment and the world wide governmental energy
save regulations, the MV78230/78x60 includes extensive power management and power reduction
options for controlling and limiting the device and system power, assisting overall power reduction
for meeting these tight low power requirements.

Instead of running in a full operational Run mode, the CPUs and their sub-system in the device may
operate in a power save mode. For example, the throttle power save mode means that the CPU
speed is reduced to match the DRAM interface speed, to save some dynamic power. In the retained
state Idle mode, the CPU clocks are gated to save all of the dynamic power. In Deep Idle mode, the
CPU cores and their sub-systems are completely powered down to save the dynamic and static
power.

The ARMADA® XP provides the infrastructure to maintain system coherency while entering into one
of these power save modes, and allows for a very fast recovery time when maintaining full
operational mode is needed. As the device implements internal power switches to control the CPU
power domain, power restore and recovery time from Deep Idle state is very fast as it does not
involve switching the on board power regulator on (it remains on at all times).

The key power save options provided by the devices include:

m  CPU Idle (dynamic clock gating)

L2 Idle (dynamic clock gating)

m  CPU Deep Idle (CPU and L2 are powered down, context is stored in the DRAM and coherent
1/0 transactions are routed directly to the DRAM)

DRAM self refresh and power down modes

EEE (Energy Efficient Ethernet) and LPI (Low Power Idle) support
SERDES power down options

USB interface placed in suspend mode

Shutdown or clock gating of non-used units and interfaces

PCle power save states

The device also provides many wake-up options from the power save modes. These include:

= An extended Wake On LAN (WOL) definition

m  Wake on USB

m Wake by a System Timer / RTC Alarm

m Wake on GPIO interrupt

The internal power-sensitive structure of the device, the advanced 40 nm process technology, and

the power save options yields a very power-aware device with ultra-low power consumption for its
class.

For further information about the Power Management capabilities, see Section 34, Power
Management, on page 524.
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Functional Overview
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High-Speed Integrated SERDES Interface

MV78460 Integrates 16 high-speed SERDES lanes
MV78260 Integrates 12 high-speed SERDES lanes.
MV78230 Integrates 7 high-speed SERDES lanes.

The SERDES lanes provide a physical SERDES link to the following interfaces:

PCI Express Gen2.0 up to 5 Gbps, and Gen1.1 up to 2.5 Gbps operational modes

SGMII (both 1.25 Gbps and 3.125 Gbps)

QSGMII (up to 5 Gbps)

SATA in both Gen1 (1.5 Gbps) and Gen2 (3 Gbps)

sETM

The SERDES lanes multiplex options are listed in the Hardware Specifications of this device. Each

lane can be configured independently for the required link type, according to the specified
application. If a lane is unused, it can be turned off.

For more information about the SERDES configuration flows, see Section 29, High-Speed
Integrated SERDES Interface, on page 449.

Cryptographic Engines and Security Accelerators
(CESA)

To support data encryption and authentication, the device integrates 2 Cryptographic Engines and
Security Accelerators (CESA) that are useful for offloading networking security protocols, such as
IPSec, and for storage encryption and de-duplication.

In Enhanced Software Flow mode, the CESA reduces the CPU overhead of IPSec intensive
cryptographic algorithms by performing complete, descriptor based, IPSec packet processing
(encryption and authentication) on the packet buffer without software intervention.

The Cryptographic Engine supports:

m  AES, DES, and 3DES encryption algorithms

m  SHAT1, SHA2, and MD5 authentication algorithms

Dedicated DMAs are used to feed the hardware engines.

For further information about the Cryptographic engines, see Section 30, Cryptographic Engines
and Security Accelerators (CESA), on page 457.

XOR Engines

The device incorporates 4 XOR DMA engines, that are useful for Redundant Array of Independent
Disks (RAID) applications. The XOR DMA engines can also be used for normal DMA operation.

Each XOR DMA runs on a linked list of descriptors. It can read from up to eight sources, perform
bitwise XOR between the eight sources, and write the result to a destination.

Each DMA can also be configured to:

m  Initialize memory (Efficiently zero a section in memory)

m  Clean single bit ECC errors in DRAM (memory ECC errors cleanup operation—memory
scrubbing)

m  Calculate iCSCI CRC32 on a data buffer
m  Act as a high-performance general purpose DMA engine

For further information about the XOR engines, see Section 31, XOR Engines, on page 492.
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2.28 Independent DMA (IDMA) Controller

The device incorporates an Independent DMA (IDMA) controller with four IDMA engines. Each
IDMA engine can transfer data between any interface.

The DMA can run in Chain mode, via a linked list of descriptors, and transfer up to 16 MB per
descriptor. The DMA independently supports increment/hold on source and destination addresses.

For further information about the IDMA engines, see Section 32, Independent DMA (IDMA)
Controller, on page 511.
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Address Map

The ARMADA® XP has a fully programmable address map. There is separate address map for each
of the master units (units that can initiate transactions over the device Mbus). Each of the Mbus
masters described below includes programmable address windows that enables it to access the
different device resources.

The Mbus masters are:

Marvell® Core Processor(s)

PCI Express port x

GbEx MAC

USBx MAC

SATA MAC

Security accelerator

IDMA channels 0-3

XOR DMA channels 0-3

Buffer Management unit

SDIO

TDM

I2C Serial Initialization

EI Throughout this section, the term BAR means Base Address Register.
Note

Marvell® Core Processor Address Decoding

The Marvell® Core Processor address decoding map consists of 29 configurable address windows
that include:

m 4 windows dedicated for accessing the SRAM in case part of the L2 is configured as such.

m 4 windows dedicated for core access to the 4 DRAM chip selects (CS)
m 1 window for core access to the device internal registers space
= 1 window dedicated for core accesses to the device resources."
m 20 windows for core access to the rest of the device’s resources
The address decoding from the original address to the final destination uses the
EI following order:
1. Internal register
Note 2. SRAM (in case part of the L2 was configured as SRAM)
3. Device resources (Mbus Bridge Window)
4. DRAM
5. Other device resources (I/O mapping)
1. The MBus Bridge Window overrides the window that is defined by the DRAM CS window.
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Each of the four SRAM windows have a minimum of 64 KB of address space and up to 512 KB, in
64 KB resolution. The SRAM windows may override any of the other CPU address windows. These
windows are only relevant if part/all the L2 is defined as SRAM. In case there is no SRAM
assignment, these windows need to be disabled.

The device supports up to 16 GB of DRAM memory space.

Each DRAM window can have an address space of between 16 MB and 4 GB. Each window is
defined by a Base and Size registers. The base and size are 8-bits wide, corresponding to address
bits[31:24]. The size must be programmed as a set of 1s (starting from the LSB) followed by a set of
0s. The set of 1s defines the size. For example, if Size[7:0] is set to 0xOF, it defines a size of 256 MB
(number of 1s is 4, 2*4 x 16 MB = 256 MB). In addition, each window has additional bits on its base
register for supporting Large Physical Address Extension (LPAE). These bits are compared to the
high bits of the address (bits[35:32] of the address) for exact match with no masking option.

E | | m  Different LPAE extensions to the same CS are not allowed.
m An SRAM address above 4 GB must hit an SDRAM CS window.
Note m  An SRAM address below 4 GB may miss all the SDRAM CS window.

By default, each of the DRAM windows corresponds to a different DRAM chip select (M_CSn[3:0]).
However, each window can be set to support any of the DRAM chip selects. This feature provides
more flexibility in mapping DRAM space.

other interface in the device, instead of through the four dedicated DRAM windows.

Do not overlap the CPU’'s DRAM dedicated windows with CPU windows that
access DRAM through the Mbus.

EI m  The CPU can also be configured to access the DRAM through the Mbus as any

Note

Apart from the DRAM and SRAM windows, each of the configurable address windows can have a
minimum of 64 KB of address space and up to 4 GB. Each window is defined by a Window Base
register and by the Window Control register’s <Size> field. The Base and Size are 16 bits wide,
corresponding to address bits[31:16]. The Size must be programmed as a set of 1s (starting from the
LSB) followed by a set of 0s. The set of 1s defines the size. For example, if Size[15:0] is set to
0x03FF, it defines a size of 64 MB (number of 1s is 10, 210 x 64 KB = 64 MB)

The device’s internal registers window has a 1 MB fixed size (has Base register only, no Size
register).

Address decoding starts with the address being compared with the values in the various Base
Address registers. The Size sets the address bits that are significant for the comparison. In the
previous example of a 64 MB size, the CPU address bits[31:26] are compared with the Base
Address bits[15:10] (the Size masks address bits[25:0]). An address is considered as a window hit if
it matches the Base Address register bits (the bits that are not masked by the Size).

m  Never program the Base and Size registers so that they result in an address
| ;|| windows overlap.

The address decoding scheme restricts the address window to a size of 2" and to a

Note start address aligned to the window size.

Upon a hit in one of the 21 configurable windows, the transaction is forwarded to a specific target
interface specified by the Window Control register’s <Target> bits[7:4], and with specific transaction
attributes specified by the Window Control register’s configurable <Attr> bits [15:8].
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Table 6 is a summary of target units IDs and attributes. It is relevant for access from the CPU core
only.

Table 6: CPU Interface Mbus Decoding Units IDs and Attributes

Field Description

Target Unit ID 0x0 = DRAM
0x1 = Device bus, BootROM, SPI, and DMA-based UART
0x2 = Reserved
0x3 = Ethernet 1 (Ports 2 and 3)
0x4 = PCI Express port 0 and port 2
0x5-0x6 = Reserved
0x7 = Ethernet 0 (Ports 0 and 1)
0x8 = PCI Express port 1 and port 3
0x9 = Security accelerator SRAM
0xA—-0xB = Reserved
0xC = Buffer Management unit
0xD = NAND Flash Controller v2.0
OxE-OxF = Reserved
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Table 6: CPU Interface Mbus Decoding Units IDs and Attributes (Continued)
Field Description

Attributes[7:0] If the target is the DRAM interface:
Bits[7:0] = Memory chip select:
0x0E = M_CSJ[0] request in DRAM controller
0x0D = M_CSJ1] request in DRAM controller
0x0B = M_CS[2] request in DRAM controller
0x07 = M_CS[3] request in DRAM controller
All other values are reserved.

If the target is the Device bus interface:

Bits[7:0] = chip select:
0x1 = DMA based UART request
0x1E = SPI0 CSO0 request
O0x5E = SPIO CS1 request
0x9E = SPI0 CS2 request
0xDE = SPI0 CS3 request
0x1F = SPI0 CS4 request
0x5F = SPI0 CS5 request
0x9F = SPI0 CS6 request
0xDF = SPI0 CS7 request
0x1A = SPI1 CSO0 request
0x5A = SPI1 CS1 request
0x9A = SPI1 CS2 request
0xDA = SPI1 CS3 request
0x1B = SPI1 CS4 request
0x5B = SPI1 CS5 request
0x9B = SPI1 CS6 request
0xDB = SPI1 CS7 request
0x3E =- DevCS|0] request
0x3D = DevCSJ[1] request
0x3B = DevCSJ2] request
0x37 = DevCSJ[3] request
0x2F = BootCS request
0x1D = BootROM request

All other values are reserved.

If the target is the NAND Flash Controller v2.0 interface:

Bits[7:0] = Must be 0x20

NOTE: To enable NAND external access, set to 1 the <NfAddressMaskEn> field in
the SoC Device Multiplex Register (Table 1433 p. 1513).

NOTE: When addressing SPI and working in Single Window mode, configure these
bits to (Section 22.5.3, SPI Timing, on page 384):

0x1E for addressing SPI0 CS 0-7

0x1A for addressing SPI1 CS 0-7

When addressing SPI and working in Double Window mode configure these bits to:
0x1E for addressing SPI0 CS0-3

0x1F for addressing SPI0 CS4-7

0x1A for addressing SPI1 CS0-3

0x1B for addressing SPI1 CS4-7
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Table 6: CPU Interface Mbus Decoding Units IDs and Attributes (Continued)

Field

Attributes[7:0]
(Continued)

Description

If the target is the PCI Express interface:
Bits[2:0] = Reserved. Must be 0x0.
Bit[3] = Memory/IO select:
0x0 =1/0
0x1 = Memory
Bits[7:4] = PCIE lane select (Any other value is reserved):
0xF = PCle portX, Lane0 (X=2,3)
OxE = PCle portX, Lane0 (X=0,1)
0xD = PCle portX, Lane1 (X=0,1)
0xB = PCle portX, Lane2 (X=0,1)
0x7 = PCle portX, Lane3 (X=0,1)
While accessing a port that is configured as x4, Lane0 must be accessed.

TS~~~

If the target is the Security Accelerator SRAM:
Bits[1:0] = Data swapping
0x0 = Byte swap
0x1 = No swap
0x2= Byte and word swap
0x3 = Word swap
Bit[3:2] = Engine select:
0x2 = Engine0
0x1 = Engine1
Bits[7:4] = Reserved. Must be 0.
If accessing any other target unit set bits[7:0] to 0x00.

Each of the 4 DRAM windows and the 21 configurable windows has an Enable bit (Size register’s
<En> bit[0]). When set to 1, the window is enabled. When cleared to 0, the window is disabled and
does not take part in the address decoding process. A CPU address that is going through the
address decoding scheme is 34-bits wide.

Table 7 shows the default Marvell® Core Processor memory map following reset de-assertion.

Table 7:  Marvell® Core Processor Default Address Map

Decoder

SRAM Window 0
SRAM Window 1
SRAM Window 2
SRAM Window 3

DRAM M_CSn|[0]

DRAM M_CSn[1]

Address Range Target Unit ID Target Attribute
NOTE: Disabled in default. NA NA

NOTE: Disabled in default. NA NA

NOTE: Disabled in default. NA NA

NOTE: Disabled in default. NA NA

0x0 to 0x0.0FFF.FFFF NA NA

256 MB

NOTE: Disabled in default.

0x0.1000.0000 to 0x0.1FFF.FFFF NA NA

256 MB

NOTE: Disabled in default.

Copyright © 2014 Marvell
May 29, 2014, Preliminary

Doc. No. MV-S107021-U0 Rev. A
Document Classification: Proprietary Information Page 59



—

= MV78230/78x60

M ARVELL®

Table 7:

Decoder

DRAM M_CSn[2]

DRAM M_CSn[3]

Reserved

Configurable Window 0

Configurable Window 1

Configurable Window 2

Configurable Window 3

Configurable Window 4

Configurable Window 5
Configurable Window 6
Configurable Window 7
Reserved

Configurable Window 8

Reserved

Internal Registers

Reserved

Configurable Window 9

Configurable Window 10

Configurable Window 11

Configurable Window 12

Doc. No. MV-S107021-U0 Rev. A
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Address Range

0x0.2000.0000 to 0x0.2FFF.FFFF

256 MB
NOTE: Disabled in default.

0x0.3000.0000 to 0x0.3FFF.FFFF

256 MB
NOTE: Disabled in default.

0x4000.0000 to Ox7FFF.FFFF

0x8000.0000 to 0x87FF.FFFF
128 MB

0x8800.0000 to Ox8FFF.FFFF
128 MB

0x9000.0000 to 0x97FF.FFFF
128 MB

0x9800.0000 to Ox9FFF.FFFF
128 MB

0xA000.0000 to OXA7FF.FFFF
128 MB

NOTE: Disabled in default.

NOTE: Disabled in default.

NOTE: Disabled in default.

0xC000.0000 to 0xC800.FFFF

0xC801.0000 to 0xC801.FFFF

64KB

0xC802.0000 to OXCFFF.FFFF

0xD000.0000 to OxDOOF.FFFF
1 MB

0xD030.0000 to 0xD37F.FFFF

0xD800.0000 to OXDFFF.FFFF
128 MB

0xE000.0000 to OXE7FF.FFFF
128 MB

0xE800.0000 to OXEFFF.FFFF
128 MB

0xF000.0000 to OxF7FF.FFFF
128 MB

Marvell® Core Processor Default Address Map (Continued)

Target Unit ID

NA

NA

NA

0x4
(PCle0)

0x4
(PCle0)

0x4
(PCle0)

0x4
(PCle0)

0x8
(PCle1)

NA
NA
NA
NA

0x9
(Security Accelerator
SRAM)

NA

NA

NA

0x1
(Device bus)

0x1
(Device bus)

0x1
(Device bus)

0x1
(Device bus)

Document Classification: Proprietary Information

Target Attribute

NA

NA

NA

OxE8
(Memory, port 0.0)

OxE8
(Memory, port 0.0)

OxE8
(Memory, port 0.0)

OxE8
(Memory, port 0.0)

OxE8
(Memory, port 1.0)

NA
NA
NA
NA

0x09
(Engine0, no data
swap)

NA

NA

NA

Ox2F
(BOOT_CS)

OXx3E
(DEV_CS[0])

0x3D
(DEV_CS[1])

0x3B
(DEV_CS[2])
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Decoder

Configurable Window 13

Configurable Window 14

Configurable Window 15

Configurable Window 16

Configurable Window 17

Configurable Window 18

Configurable Window 19

Address Range

0xF800.0000 to OxFFFF.FFFF
128 MB

0xD400.0000 to OXD7FF.FFFF
64MB

0xD030.0000 to 0xD0O30.FFFF
64KB
NOTE: Disabled in default

0xD031.0000 to 0xD031.FFFF
64KB
NOTE: Disabled in default

0xD032.0000 to 0xD032.FFFF
64KB
NOTE: Disabled in default

0xD380.0000 to OxD3FF.FFFF
8MB

0x0000.0000 to 0x07FF.FFFF
128MB

Address Map

Marvell® Core Processor Address Decoding

Marvell® Core Processor Default Address Map (Continued)

Target Unit ID

0x1
(Device bus)

0x1
(Device bus)

NA

NA

NA

0xC
(Buffer Management
unit)

0x0
(DRAM)

Target Attribute

According to boot
device type:

0x2F (=
DevBOOTCS) or
0x1E (= SPI0 ROM)
or

0x1D (= BootROM)

Ox1E
(SPI0 CS[0])

NA

NA

NA

0x00

OXOE
(M_CS[0])

The device’s internal registers space has a fixed size of 1 MB, even though only part of this space is
actually populated by the device’s internal registers. Upon a write to a non-implemented register,
data is discarded. A read to a non-implemented register returns undefined data.

The registers are spread around the device’s different units (distributed register file). Therefore,
ordering is not guaranteed upon a CPU back-to-back write to different registers. If ordering is

required, perform a read after each write.

| ;| | Access to internal registers is limited to WORD boundary (no support of burst access to
reg files). This means that register file space must never be cacheable.

Note
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3.11

3.1.2

3.1.3

3.2

Marvell® Core Processor-to-PClI Express Address
Remapping
The device supports address remapping on Marvell® Core Processor accesses to the PCI Express

interface. This enables relocating a CPU-to-PCl Express address window to a new location in the
PCI Express address space, de-coupling the core and the PCl Express memory allocation.

Configurable windows 7—-0 have associated Remap registers. Upon a hit in one of these windows,
the upper bits of the CPU address are replaced by the corresponding bits of the Remap Low
register, before being transferred to the PCI Express interface unit. The number of bits to be
replaced is determined by the Size register. For example, with a 64 MB window, the CPU address
bits[31:26] are replaced with bits[31:26] of the Remap Low register.

Each of these windows also has a 32-bit Remap High register, which can be used for 64-bit
addressing on the PCI Express interface. When this register is not cleared to 0, a CPU address hit in
this window results in the device’s PCI Express master generating a 64-bit addressing transaction.

| ;] | Address window 13 has remap registers as well. They can be useful to allow boot from

a 32b address SPI flash.
Note

Accessing Buffer Management Controller from the Marvell®
Core Processor

One of the CPU address windows may be used to access the buffer management controller. While
hitting this window, an additional sub-decoding is performed on the incoming address:

m  ADDR[17] = 0: Buffer management controller is accessed.

CPU Address Decoding Errors

In the case of an address decoding error (for example, no hit in any of the address windows):
1. Aninterruptis set.
2. Ifitis a write transaction, it is discarded. If it is a read, dummy data is driven back to the

Marvell® Core Processor with an erroneous data indication (resulting in an CPU external abort
exception).

PCIl Express Address Decoding

Each of the device’s PCI Express ports has its own address map. The PCI Express interface
address map consists of three Base Address Registers (BARs) that map the device address space.
One BAR is dedicated to the device’s internal registers space. The other two BARs are further
sub-decoded by six programmable address windows to the different interfaces of the device.

The three BARSs are 64-bit wide BARs. The internal registers space has a fixed size of 1 MB. The
other two BARs have corresponding size registers. Each window can have a minimum of 64 KB of
address space and up to 4 GB of space.

PCI Express address decoding is similar to the CPU address decoding scheme. An address is
considered as a window hit if it matches the Base Address register bits. These are the bits not
masked by the Size register.
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m Do not program the Base and Size registers so that they result in an address
| §|| window overlap.

The PCI Express address decoding scheme restricts the address window to a size

Note of 2", and to a start address that is aligned to the window size.

Each of the two BARs has an Enable bit. If a BAR is disabled, no address decoding is performed
against it.

Upon an address hit, the address is further sub-decoded against six address windows. Each of
these windows also consists of Base and Size registers. Based on this address decoding, the
transaction is forwarded to a specific target interface (e.g. DRAM controller), with specific
transaction attributes (e.g., M_CSJ0]). Table 8 is a summary of target units IDs and attributes.

Table 8: Units IDs and Attributes

Field Description

Unit ID 0x0 = DRAM
0x1 = Device bus, BootROM, SPI, and DMA-based UART
0x2 = Reserved
0x3 = Ethernet 1 (Ports 2 and 3)—packet modification tables
0x4 = PCI Express port 0 and port 2
0x5-0x6 = Reserved
0x7 = Ethernet 0 (Ports 0 and 1)—packet modification tables
0x8 = PCI Express port 1 and port 3
0x9 = Security accelerator SRAM
0xA—0xB = Reserved
0xC = Buffer Management unit
0xD = NAND Flash Controller v2.0
OxE—OxF = Reserved
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Table 8: Units IDs and Attributes (Continued)
Field Description

Attributes[7:0] If the target is the DRAM bus interface:
Bits[3:0] = Memory chip select:
OxE = M_CS|0] request in DRAM controller
0xD = M_CSJ1] request in DRAM controller
0xB = M_CS|2] request in DRAM controller
0x7 = M_CSJ3] request in DRAM controller
All other values are reserved.

Bits[5:4] = Shared Memory Area With CPU (Coherency Status). Shared area forces
sending the transaction through the coherency block. A Non-Shared transaction is
driven directly to DRAM.

0x0 = Non-Shared transaction

0x1 = Shared transaction and no L2 read/write allocate (no L2 Deposit)

0x2 = Reserved

0x3 = Shared transaction + L2 write allocate (L2 Deposit)

Bits[7:6] = 10 Snoop Affinity group (meaningful only if bit[4] is 0x1):

0x0 = Originator belongs to 10 snoop group 0.

0x1 = Originator belongs to 10 snoop group 1.

0x2 = Originator belongs to 10 snoop group 2.

0x3 = Originator belongs to 10 snoop group 3.
For further details about 10 snoop affinity refer to Section 9.6.3, 1/0O Snoop Affinity ,
on page 154.

If the target is the Device bus interface:

Bits[7:0] = chip select:
0x1 = DMA based UART request
0x1E = SPI0 CSO0 request
O0x5E = SPIO CS1 request
0x9E = SPI0 CS2 request
O0xDE = SPI0 CS3 request
0x1F = SPI0 CS4 request
0x5F = SPI0 CS5 request
0x9F = SPI0 CS6 request
0xDF = SPI0 CS7 request
0x1A = SPI1 CSO0 request
0x5A = SPI1 CS1 request
0x9A = SPI1 CS2 request
0xDA = SPI1 CS3 request
0x1B = SPI1 CS4 request
0x5B = SPI1 CS5 request
0x9B = SPI1 CS6 request
0xDB = SPI1 CS7 request
0x3E = DevCS[0] request
0x3D = DevCSJ[1] request
0x3B = DevCSJ2] request
0x37 = DevCSJ[3] request
0x2F = BootCS request
0x1D = BootROM request

All other values are reserved.
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Table 8: Units IDs and Attributes (Continued)
Field Description

Attributes[7:0] If the target is PCI Express interface:
(Continued) Bits[2:0] = Reserved. Must be 0x0.

Bit[3] = Memory/IO select:
0x0 =1/0
0x1 = Memory

Bits[7:4] = PCle lane select (Any other value is reserved):

O0xF = PCle portX, Lane0 (X=2,3)

O0xE= PCle portX, Lane0 (X=0,1)

0xD = PCle portX, Lane1 (X=0,1)

0xB = PCle portX, Lane2 (X=0,1)

0x7 = PCle portX, Lane3 (X=0,1)

While accessing a port that is configured as x4, Lane0 must be accessed.

If the target is the Security Accelerator SRAM:
Bits[1:0] = Data swapping

0x0 = Byte swap

0x1 = No swap

0x2 = Byte and word swap

0x3 = Word swap

Bit[3:2] Engine select:
0x2 = Engine0
0x1 = Engine1

Bits[7:4] = Reserved. Must be 0.
If accessing any other target unit, set bits[7:0] to 0x00.

3.2.1 PCI Express to Memory Address Remapping

The device supports PCI Express address remapping. Each of the 6 PCI Express address windows
has a Remap Register associated with it. The upper bits of the address, that are found to be a hit in
one of the PCI windows, are replaced by the corresponding bits of the Remap register before being
transferred to the target interface. The number of bits to be replaced is determined according to the
Size register.

Windows 4 and 5 also have Remap High registers. This is useful for 64-bit addressing if the target
interface supports 64-bit addressing (for example, PCI Express to PCI Express bridging).

Each Remap register has an Enable bit. If it is disabled, no remap action takes place and the original
address is transferred to the destination.

3.2.2 PCI Express Address Decoding Errors

If the device’s PCI Express port receives a transaction that does not match any of the BARs:

1. Aninterrupt is set and the error is registered.

2. The transaction is terminated as an unsupported request.

If the device’s PCI Express port receives a transaction that does hit one of the BARs, but does not
match any of the sub-decoding windows:

1. Aninterrupt is set and the error is registered.

2. The transaction is forwarded to a default target, as defined in the PCI Express Default Window
Control Register (x=0-0, x=0-3, y=2-3, y=0-1) (Table 862 p. 1156).
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3.2.3

3.3

3.4

3.5

|:: | | Set the PCI Express Default Window Control Register (x=0-0, x=0-3, y=2-3, y=0-1) to
point to a dummy target device, so that no destructive operation is performed due to the
Note address decoding error.

Accessing Buffer Management Controller from the PCI
Express Interface

One of the PCle address windows may be used to access the buffer management controller. While
hitting this window, an additional sub-decoding is performed on the incoming address:

To access the buffer management controller, address bit[17] has to be 0.

IDMA Address Decoding

The four IDMA channels share a single address decoding logic, which consists of eight address
windows, each defined by a Base and Size register. Each window can map a space of 64 KB, up to
4 GB. Each of the eight windows can be configured to a specific target interface and to specific
transaction attributes, as shown in Table 8.

The IDMA channels also support an address override capability. This feature is useful for decoupling
the memory and PCI Express address space. When address override is enabled, the IDMA address
is not compared against the eight windows. Instead, the transaction is forwarded to a pre-defined
target interface. This feature makes it possible to set the same Source and Destination Address, and
still make the source be the DRAM and the destination be the PCI Express.

Four out of the eight windows also have a Remap High register. Use these registers to generate an
address beyond the standard 4 GB space. This is useful for 64-bit PCl Express addressing or for a
memory space which is larger than 4 GB.

When an IDMA channel attempts to access an unmapped address, an interrupt is set, the error
status is registered, and the channel halts.

XOR DMA Address Decoding

The two XOR DMAs share a single address decoding logic consisting of eight address windows.
Whenever one of the ports generates a read or a write transaction (e.g., fetch descriptor), the
address is compared against these address windows, to determine which interface must be
accessed.

The address decoding scheme is shown in Table 8.

Ethernet Networking Controllers Address Decoding

The Ethernet networking controllers address decoding logic consists of 6 address windows.
Whenever the port's SDMA generates a read or a write transaction (for example, fetch descriptor),
the address is compared against these address windows to determine which interface must be
accessed.

The address decoding scheme is the same as the IDMA logic with one exception. In the case of an
address miss match, the SDMA transaction is retargeted to a fixed address and the target interface,
as defined in the Ethernet Unit Default Address (EUDA) Register (i=0-3) (Table 577 p. 923).
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3.6

3.7

3.8

3.9

Address Map
USB Address Decoding

|:: | | The GbE port is restricted to access only the DRAM interface (M_CS[3:0]), or the
Buffer Management unit. Setting Ethernet port address decoding windows differently
Note results in unpredictable behavior.

The address decoding scheme is shown in Table 8.

USB Address Decoding

Each USB port uses an address decoding logic consisting of four address windows. Whenever one
of the ports generates a read or a write transaction (for example, fetch descriptor), the address is
compared against these address windows, to determine which interface must be accessed.

| ;] | The USB port is restricted to access only the DRAM interface (M_CS[3:0]). Setting USB

Not port address decoding windows differently results in unpredictable behavior.
ote

The address decoding scheme is shown in Table 8.

SATA Address Decoding

The SATA port DMA uses an address decoding logic consisting of four address windows. The
address decoding scheme is shown in Table 8.

| ;I | The SATA port is restricted to access only the DRAM interface (M_CS[3:0]). Setting

Not SATA port address decoding windows differently results in unpredictable behavior.
ote

Security Accelerator Address Decoding

The Security Accelerator DMA uses an address decoding logic consisting of four address windows.
The address decoding scheme is shown in Table 8.

|§ | | The Security accelerator DMA is restricted to access only the DRAM interface
(M_CS[3:0]). Setting security accelerator DMA address decoding windows differently
Note results in unpredictable behavior.

Buffer Management Address Decoding

Each pool in the buffer management unit can be configured to work with a different area in memory,
through configurable target destination and attributes. For example, pool0 may be configured to
work with M_CSJ[0] by configuring to 0x0 and to OxE. Similarly, pool2 may be configured to with
M_CS[1] by setting to 0x0 and to 0xD.

The address decoding scheme is shown in Table 8.
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N

Note

* The Buffer management Unit is restricted to access only the DRAM interface
(M_CSJ[3:0]). Setting Buffer Management pools attributes differently results in
unpredictable behavior.

* Asingle buffer pointers pool cannot not reside in two different DRAM chip selects.

» ltis forbidden to configure the DRAM memory accesses of the buffer management
as “Shared”, i.e bit[4] of the Mbus transaction attribute must be cleared to 0x0, as
shown in Table 8.

3.10 SDIO Address Decoding

The SDIO unit uses an address decoding logic consisting of 4 address windows. The address
decoding scheme is shown in Table 8.

N

Note

The SDIO unit is restricted to access only the DRAM interface (M_CS[3:0]). Setting
SDIO unit’'s address decoding windows differently results in unpredictable behavior.

3.1 TDM Address Decoding

The TDM unit uses an address decoding logic consisting of 12 address windows. The address
decoding scheme is shown in Table 8.

N

Note

The TDM unit is restricted to access only the DRAM interface (M_CSJ[3:0]). Setting
TDM unit’s address decoding windows differently results in unpredictable behavior.

3.12 I’C Address Decoding

The device’s 12C serial ROM initialization allows for access to the entire device’s internal resources.

The serial ROM initialization access to the device resources consists of a 32-bit address followed by
32-bit data. Bit[0] of the transaction address must be cleared to O for register access.
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Address Map
Accessing the L2SRAM from Mbus Masters

3.13 Accessing the L2/SRAM from Mbus Masters

The device provides the capability for any of the Mbus 10 masters to store/load data directly from the
L2/SRAM. This is useful in order to bring data closer to the CPU and reduce the latency for CPU
access to this data (for example, storing Ethernet descriptor headers).

L2/SRAM access from an 10 master is configured through setting attribute bits[5:4] of the relevant IO
master address decoding window to 0x3 as listed in Table 8. This setting will force an 10 transaction
that hits this address window to access the L2 cache as follows:

m  Full cache line writes will be stored in the L2 cache while evicting existing line in case of
L2-miss, or override existing data in case of L2-hit.

m  Partial write accesses will only be written into the L2/SRAM hitting an existing valid line. If line is
not valid in the L2 cache, it will be forwarded to DRAM.

m  An IO read access will get its data back directly from the L2/SRAM in case of hitting a valid line,
or from the DRAM in case of a miss.

While accessing the SRAM from one of the 10 masters, the user may choose to map the SRAM as
part of the DRAM address space. In this case, no need to define a special SRAM address window in
the 10 master, but instead use the DRAM address window where the SRAM address range is
mapped, and set for this window the window attribute bits[5:4] to 0x3 (Shared transaction + L2 write
allocate (L2 Deposit)) as listed in Table 8. The transaction will be directed from the 10 master to the
Coherency Fabric where it will be assigned internally to the SRAM according to the CPU dedicated
SRAM address windows. See Section 3.1, Marvell® Core Processor Address Decoding for more
details on how the SRAM windows are mapped by the CPU core.

| ;] | In case of hitting an SRAM window, write data will be written to the SRAM regardless of

its size.
Note

Transactions that hit this IO master DRAM window, but are not mapped to SRAM, are forwarded to
the DRAM by the Coherency Fabric.

For example, the SRAM is mapped in the system as base address 0x0 with a size of 128 KB, and
DRAM CS|0] is mapped by one of the 10 master address decoding windows as 256 MB starting at
address 0x0.

Setting the attribute bits [5:4] of this window to 0x3 will send every transaction in the address range
between 0x0 to OXOFFF.FFFF to the Coherency Fabric, while only transactions with an address
range of 0x0 to 0x0001.FFFF will access the SRAM. Other transactions are forwarded to DRAM.

In cases where the user chooses not to map the SRAM as part of the DRAM address map, rather as
a separate area, a dedicated address window has to be assigned for accessing the SRAM in the 10
master address window registers. The register setting of the target unit should be “DRAM” (0x0) and
attribute bits[5:4] should be set to 0x3 (attribute bits [3:0] may be set to any of the allowed values
according to Table 8).
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4

Internal Architecture

The ARMADA® XP Family of Highly Integrated Multi-Core ARMv7 Based SoC Processors
implements a high-bandwidth, high-speed, and low-latency coherent interconnect between the CPU
cores, shared L2 cache, and memory interface. Dedicated ports allow the 10 masters to issue
coherent requests and maintain coherency with the CPU on shared memory areas.

The devices’ I/0 sub-system internal architecture is based on a 64-bit full duplex data path
connecting the different units in the Mbus, a Marvell® proprietary crossbar interconnect, optimized
for high performance and high bandwidth traffic.

The advanced power management enables the device to power down any CPU, L2, and Coherency
Fabric in the Deep Idle low power state. It supports flexible clock domains with each domain using its
own optimal clock configuration (see Table 9).

Table 9 lists the primary clock domains. The CPU(s), Coherency Fabric and DRAM clock domains
are synchronous to each other (all generated from the CPU PLL). The core clock domain is
generated from the MISC PLL and is asynchronous to the former domains.

Table 9: Primary Clock Domains

Clock Domain Description

Px CPUx clock domain
This clock can be gated off in the Idle low power state.

NB L2 and Coherency Fabric clock domain

H DRAM controller clock domain
The DRAM interface can run at 1:1 or 2:1 ratio to the H clock domain, refer to
the device Hardware Specifications.

T Core (Mbus crossbar switch and Mbus units) clock domain

Unit Specific Each Mbus unit supports its own specific clock or multiple clocks (for example,
PHY or I/O interfaces)
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Internal Architecture

Figure 4: ARMADA® XP Clock and Power Domains
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The following sections outline the device’s internal bus architecture.
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4.1

Coherency Fabric

The Coherency Fabric uses the AXI protocol (see the AMBA AXI Protocol v1.0 Specification) as the
internal interface to the rest of the device. The Coherency Fabric maintains cache coherency
between the 10 masters and the CPU caches, and coherency between the CPUs caches in a
multi-CPU environment. An IO transaction that addresses a shared memory area goes through the
Coherency Fabric and snoops the CPU caches before accessing the DRAM. An IO transaction that
accesses a non-shared memory area is routed directly to DRAM, without snooping the CPU caches.

In addition, the device implements a dedicated AXI-based fast path between the Marvell® Core
Processors and L2 interface to the DRAM controller, in order to reduce CPU to DRAM latency. This
is a full duplex,256-bit wide interface running at H clock domain. The H clock domain can be a 1:N or
2:N fraction of the CPU clock domain. Since the Marvell® Core Processors and the DRAM clocks
are edge-aligned, no synchronization is required on CPU access to DRAM, thereby resulting in
minimum latency.

The AXI protocol enables high-performance, high-frequency interconnect to the L2 cache, the
device peripheral, and to the DRAM controller. It is intended to maximize the device DRAM
throughput, and to minimize the bus read latency. The AXI interconnect provides the following
features:

m  Separate address/control and data channels—burst-based transactions with only start
addresses:

¢ Enables multiple outstanding read transactions.
* Enables new read/write requests during the read response data phase.
* Enables new read transfer requests during the write data phase.
¢ Supports unaligned data transfer using byte strobes.
m  Separate data interfaces for read and write.
¢ Enables write data transfer and read response data transfer to occur simultaneously.
* Guarantees streaming read response transfer, with no acknowledgment needed.
m  Separate read and write response channels
* Enables out-of-order transaction completion.
¢ Enables point-to-point read/write ordering.
m  Supports the implementation of atomic access primitives.
* Lock access to enable the atomic processor write and read pair.

¢ Exclusive access mechanism enables the implementation of semaphore type operations
without locking the bus.

Supplies outer cache hits, controlling the shared Level-2 cache policy.
Coherency extension.
¢ Supplies different snoop hit on the regular AXI transactions.
¢ Independent snoop probes and snoop response channels.
¢ Enables snoop pipelining and out-of-order snoop responses.
m  Separate interfaces to Level-2 cache, SDRAM controller and to Mbus bridge:
¢ Enables simultaneous transactions to Level-2 cache, SDRAM controller and to Mbus bridge.
¢ Guarantees streaming read response transfer, no acknowledgment needed.
m  Transaction ID is attached to the transaction command:
* Enables out-of-order transaction completion.
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Figure 5 is a block diagram illustrating the Coherency Fabric interconnect to the Mbus peripherals

and to the DRAM controller.

Figure 5: Coherency Fabric Interconnect to Mbus and DRAM Controller
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4.2 DRAM Controller Interface Interconnect

The DRAM controller interface works with the AXI interface and the Mbus interface.

AXI Interface

m The DRAM controller provides three read/write transaction buffers for CPU based transactions:
¢ Supports multiple outstanding transactions
¢ Enables back-to-back transactions over the DRAM memory

m  The fast path interface between the Coherency Fabric and the DRAM controller has two levels
of arbitration:

* A round-robin arbitration scheme between the CPUs and Coherent I/0 Bridge (CIB) while
accessing DRAM. The Coherency Fabric resolves address collision cases as read after
write, and write after write, and guarantees correct order of execution.

¢ Arbitration between the outcome of the arbiter mentioned above with the L2 outgoing
transactions (evictions).

For additional information about the DRAM controller AXI interconnect see Section 12, DRAM
Controller, on page 173.

Mbus Interface
In software Cache Coherency mode of operation, enables high throughput of the DRAM, the
device’s DRAM controller interfaces the Mbus fabric with two 64-bit Mbus ports.

The DRAM controller resolves any address collisions between CPU and Mbus transactions, and
guarantees correct ordering on the DRAM bus. A controllable arbitration scheme between mbus
traffic and CPU traffic applies.

For further details, see Section 12.4, Arbitration and Ordering, on page 179.

4.3 Mbus Interconnect

The Mbus fabric is a Marvell proprietary, high-bandwidth, full duplex any-to-any interconnect. It
supports transaction pipelines, split transactions, and out-of-order completion. Moreover, it allows
concurrent data transfers between different interfaces. For example, it is possible for the Ethernet
Network Controller to read from the DRAM, while simultaneously the Marvell® Core Processors
writes to PCI Express port0, and the DMA transfers data from DRAM to PCI Express Port1.

4.3.1 Mbus Traffic

The device units can act as Mbus masters that generate read/write transactions over the Mbus, or
as an Mbus slave unit that responds to read/write transactions.
The Mbus master units include the following:

Marvell® Core Processor(s) (via the Coherency Fabric)
IDMA

XOR DMA

PCI Express

Security Acceleration Engine

I°C serial EEPROM

SATA DMA

USB DMA

Ethernet Networking Controller DMA

TDM DMA

Audio DMA
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m SDIO DMA
m  Buffer Management unit

The Mbus slave units include the following:
DRAM controller

Device bus controller

UART controller

SPI controllers

NAND Flash Controller

RTC

Security Acceleration Engine local SRAM
PCI Express

Integrated bootROM

All registers files (which are distributed in all units)

The Mbus supports the following traffic routes between the master and slave units:

m  CPU read/write from/to all of the device interfaces and registers

m  PCI Express read/write from/to all of the device interfaces and registers (including itself—see
note below)
I2C Serial ROM initialization access to all the device interfaces and registers
Network ports, read/write access to DRAM, and Buffer Management Unit
IDMA, read/write access to DRAM, Device bus, and PCI Express. In addition it supports write
access to the UART interface for DMA based UART
XOR read/write access to DRAM, Device bus, SPI' and PCI Express
USB, SATA, TDM, SDIO, Buffer Management unit, and Cryptographic Engine read/write access
to DRAM.

between the x1 lanes is possible.

EI m When the PCI Express port is configured as quad x1 lanes, peer-to-peer traffic
The device supports peer-to-peer traffic between different PCle ports (for example,

Note traffic from PCle0.x lane—that is port 0 lane x—to PCle1.y lane and vice versa).
m  Access to internal registers is restricted not to exceed a 32-bit word boundary (no
burst access to the device registers).
4.3.2 Mbus Arbitration

Since multiple Mbus master units may attempt to simultaneously access the same target unit, there
is an arbiter per each target resource.

Most of the device units act as targets for register access (for example, USB and SATA), and are
typically managed only by the Marvell® Core Processor. These unit arbiters are fixed round-robin
arbiters. Other target units, like the DRAM controller, use programmable arbitration mechanisms to
optimize device performance, according to system requirements, as shown in Figure 6.

1. Read only from SPI Flash
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Figure 6: SDRAM Interface Arbitration
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The programmable arbiter is a user-defined round-robin arbiter (called a “Pizza Arbiter”). Each slice
of the arbiter can be assigned to a specific master unit ID. The following list defines the unit ID code
on the Mbus, and may be used to create the Pizza Arbiter priority and scheduling scheme:

0x1 — DMA based UART and 12C serial init

n
m 0x2 — ARMv7-A Cortex™-A9 processor
m  0x3 — Network ports 2,3
m 0x4 — PCle ports 0.x and 2.x
m  0x5-USB
m  0x6 — 4 IDMA engines and XOR engines 0 and 1
m  0x7 — Network ports 0,1
m  0x8 — PCle ports 1.x and 3.x
m 0x9 — Security Engines 0 and 1
m  OxA — SATAO and SATA1
m  0xB-TDM
m  OxC — Buffer Management unit
m  0xD - SDIO and NAND Flash controller
m  OxF — XOR engines 2 and 3
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Figure 7 illustrates the DRAM controller arbiter setting.

Figure 7: Configurable Weights Arbiter
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By default, there are 32 slices in the pizza arbiter. It is possible to define each of the slices of this
pizza arbiter. This arbiter works on a per transaction basis. A transaction can vary from one up to
16 Qwords (Qword = 64-bit data transfer). In the above example, if all units are constantly
requesting access to the device DRAM, almost 50% of N transactions running on the DRAM
interface will be Network Port0 transactions.

The pizza arbiter configuration also allows the user to guarantee minimum latency. Even if the
Network Port0 does not require its 50% transaction allocation, the above configuration guarantees
that, in the worst case, the Network Port0O request needs to wait for one access from another unit
before being served.

The pizza arbiter is based on Mbus transactions. This means that it does not always reflect DRAM
bandwidth allocation. For example, UnitA can have a typical Mbus transaction size of 128B and
UnitB can have a typical Mbus transaction size of 32B. By setting the pizza arbiter to the same
number of transactions for UnitA and UnitB, UnitA will get 4x the DRAM bandwidth as UnitB.

The different Mbus master units have the following burst capabilities as Mbus masters:

m  The IDMA can be configured to generate bursts of 8, 16, 32, 64, or 128B per single Mbus
transaction.

m The XOR DMA can be configured to generate bursts of 32, 64, or 128B per single Mbus
transaction.

m  The network port DMAs can be configured to generate bursts of 8, 16, 32, 64, or 128B per
single Mbus transaction.

m The USB DMA maximum burst on a single Mbus transaction is 64B. The DMA can be
configured to generate bursts of 16, 32, or 64B for a single Mbus transaction.

m The SATA DMA maximum burst on a single Mbus transaction is 128B. Writes can be limited (by
configuration) to 32B.
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4.4

m  PCle maximum burst on a single Mbus transaction is 128B. Writes can be limited (by
configuration) to 32B.

m  The Security engine DMAs can be configured to generate bursts of 32 or 128B per single Mbus
transaction.

m  The SDIO DMA maximum burst of a single Mbus transaction is 32B.

m  The Buffer Management maximum burst of a single Mbus transaction is 128B.

At each clock cycle, the Mbus arbiter samples all of the requests and gives the bus to the next agent,
according to the pizza arbitration scheme. It is parked on the last access.

An arbiter slice can also be marked as NULL. If marked as NULL, the arbiter works as if the NULL
slice does not exist.

Once a unit is removed from an interface’s pizza arbiter control register, the arbiter has no access to
this interface. If, for example, the USB unit is removed from the DRAM interface pizza arbiter, it can
no longer access the DRAM. If the USB unit attempts to access the DRAM, the unit hangs.

A CPU access to the DRAM controller registers uses the Mbus. It does not pass through the
CPU-to-DRAM fast path bus.

| ;] | Always define a slice in the DRAM controller arbiter for the Marvell® Core Processors

(unit ID = 0x2).
Note

Multiple masters can share the same Mbus port and unit ID:

The Ethernet Mbus port integrates 2 Ethernet Controllers

The USB Mbus port integrates 3 USB Controllers

The TDM unit integrates 32 voice channels

The 4 IDMA engines and 2 of the 4 XOR DMA engines are integrated into a joined unit
The XOR DMA Mbus port integrates two engines (out of the 4 XOR DMA channels)
PCle unit0 integrates 5 PCI Express MACs

m  PCle unit1 integrates 5 PCI Express MACs

In each of these cases, the unit incorporates an internal fixed round-robin arbiter to arbitrate
between these master sub-units.

Transaction Ordering

The device implements a set of rules and methods to enforce ordering on the system level. This
section outlines these ordering aspects and the way they are handled by the device:

m  Semaphore management between the processors in multi-CPU applications, through CPU
Lock and exclusive instructions

Read after write ordering and write after write ordering
PCI Express bridge ordering rules

m  Producer-consumer model ordering (where the producer can be an I/O device and consumer is
the Marvell® Core Processors, or the other way around) and sync barrier operation.
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CPU Lock and Exclusive Access

The Coherency Fabric supports the synchronization primitives that are a critical part of a multi-core
operation. The primitives are swap (SWP) instruction, load exclusive instruction (LDREX), and store
exclusive instruction (STREX).

The swap instruction triggers an automatic access, and is associated with a locking request on the
interconnect. When the core processor initiates a swap instruction, the Coherency Fabric ensures
that only when this processor has initiated an unlock transaction, other CPUs can access the
interconnect. Throughout the time between the lock and unlock transactions, CPUs other than the
lock initiator are stalled by the interconnect.

The exclusive access mechanism enables a non-blockage implementation of automatic operation,
using a Load-Exclusive/Store-Exclusive instruction pair. When a Marvell® Core Processors
generates a load exclusive command (LDREX) to address A, the address is recorded by the
Coherency Fabric. The corresponding store exclusive instruction (STREX) succeeds in writing back
to memory only if no peer CPU has performed a more recent store of address A. The store-exclusive
instruction returns a status bit to the CPU, indicating if the memory write has been completed
successfully.

Read after Write and Write after Write Ordering

The implementation of the transaction queues for each of the device’s master and slave units
guarantees read-after-write, and write-after-write ordering of transactions from the same originator
to the same target.

However, the basic implementation of the transaction queues cannot guarantee ordering of
transactions between different sources and destinations. For example, if the ARMv7-A Cortex™-A9
generates 2 consecutive write transactions (the first to the Device bus and the second to the PCle
interface), the hardware cannot guarantee that the write on the Device bus will be executed first on
the interface lines.

The Coherency Fabric resolves all read-after-write and write-after-write hazards between peer
CPUs and also between CPU and IO masters that are accessing the same shared resources.
Although CPU transactions to DRAM go through a different path than transactions to other
interfaces, transaction ordering is still maintained by the Coherency Fabric. For example, if a write to
DRAM is followed by a write to one of the Network port registers, the Coherency Fabric
implementation guarantees that the write to the Network port register is not performed before the
write to DRAM is committed. Similarly, when a memory region is defined as shared in both the CPU
MMU tables and the 10 master address window decoding attributes, any read access by the 10
master from a pending CPU write address is resolved with the most updated data from memory,
including the CPU write update.

For more details about the Coherency Fabric ordering maintenance implementation, see Section 9,
Coherency Fabric, on page 147.

PCIl Express Host Hardware Enforced Ordering

The device supports PCI Express bridge transaction ordering rules. Particularly in cases of a CPU
read from the PCI Express endpoint, the device drives the read response on the CPU bus only after
flushing all upstream write data previously posted from the PCI Express into memory.

To enable PCI Express host hardware enforced ordering, clear both the <RxNpPushDis> field and
the <RxCmplPushDis> field in the PCI Express TL Control Register (x=0-0, x=0-3, y=2-3, y=0-1)
(Table 889 p. 1183) to 0 (the default settings).
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44.4 PCI Express Endpoint Hardware Enforced Ordering

The device also supports the PCle transactions ordering rules when it acts as an endpoint.

Particularly, when an external PCI Express host performs a read from the device local memory. The

device only drives downstream read completion after all pending downstream posted write data is

flushed.

To enable PCI Express endpoint hardware enforced ordering, set the both the <TxNpPushDis> field

and the <TxCmplPushDis> field in the PCI Express TL Control Register (x=0-0, x=0-3, y=2-3,

y=0—1) (Table 889 p. 1182) to 0 (the default settings).
4.4.5 Producer-Consumer Ordering

The basic concept of a producer-consumer model works as follows:

1. The Producer places some data in memory for the consumer to process.

2. The Producer notifies the consumer (via interrupt or by any other means) that there is data
pending in memory for the consumer to process.

3. The Consumer reads the data from memory and processes.

The device implementation guarantees that this model works properly, meaning it is guaranteed that

when the consumer reads data from memory, it reads the valid data.

|:: | | The following description deals with producer-consumer operation between Marvell®
Core Processors and a Network port DMA. However, it also applies to the rest of the
Note device DMA engines (e.g IDMA, XOR, USB, SATA, Cryptographic Engine etc.).

The Network port transmit operation consists of:

1. The Marvell® Core Processors prepares Tx descriptors and buffers in memory.

2. If the memory area is defined as non-shared between the CPU and the DMA master, the
software flushes buffer descriptors from L1 and L2 caches to the DRAM, using cache
operations. The software also performs drain write buffer operation, to guarantee that data is
flushed all the way to memory.

If the memory area is defined as shared between the CPU and the DMA master, there is no
need for the software to flush the buffer descriptors from the L1 and L2 caches. Coherency with
the 10 is guaranteed by the Coherency Fabric. Refer to Section 9.6, I/O Coherency,

on page 153 for more details about IO cache coherency.

3. Triggering the Network port’'s DMA (a write to a Network port register).

4. The Network port DMA starts to fetch descriptors and buffers from the DRAM.

If the target memory address was defined as shared, the Coherency Fabric takes care of
snooping the L1 and L2 caches and returns the data, either directly from the caches in case of
cache hit, or from the DRAM in case of cache miss.

If the target memory address was defined as non-shared, no cache snooping is needed, as
caches were flushed by the software. The DRAM controller implementation guarantees that the
Network port DMA reads the latest data from DRAM, rather than old invalid data (see

Section 12, DRAM Controller, on page 173 for full details).

Network port receive operation consists of:

1. The Network port DMA writes received packets to buffers in memory.

2. The Network port DMA writes the Rx descriptor status to memory (either to DRAM, L2 cache, or
SRAM). It may then interrupt the Marvell® Core Processors.

3. The Marvell® Core Processors reads the interrupt cause register (identify interrupt cause).

4. If the memory area is shared, the software initiates a sync barrier operation to flush the
Coherency Fabric buffers to memory (for details about Sync Barrier operation refer to
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Section 9.6.4, 1/O Synchronization Barrier Mechanism, on page 155). If the memory area is not
shared, no sync barrier operation is needed.

5. The Marvell® Core Processors reads the Rx descriptor and data from memory.
The DRAM controller implementation guarantees that the Marvell® Core Processors reads the
latest data from DRAM, rather than old invalid data (see Section 12, DRAM Controller,
on page 173 for full details).
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5 System Considerations

This section describes the ARMADA® XP system considerations, including data integrity and Big
and Little Endian byte ordering.

5.1 Data Integrity

The ARMADA® XP support data integrity on most of its external interfaces, as listed below:
m  LCRC checking and generation on the PCI Express interface

m  CRC checking and generation on the Ethernet, SATA, and USB ports

m  ECC checking and generation on the DRAM interface

The device supports parity protection on CPU core L1 and L2 caches and ECC on its L2 cache. In
addition, the device supports parity protection on the internal data paths.

51.1 Cache Protection

The CPU L0 and L1 cache supports Data and Tag RAM parity protection for both Instruction and
Data caches. For further details, see the Marvell® Core Processor specifications (see Related
Documentation on page 27).

Level 2 cache supports Data RAM ECC protection and Tag RAM parity protection. For further
details, see Section 8, Level-2 Cache, on page 122.

5.1.2 SDRAM ECC

The device implements Error Checking and Correction (ECC) on accesses to the SDRAM. It
supports detection and correction of one data bit errors, and detection of 2 errors (SEC/DED).

51.21 ECC Calculation

ECC is calculated on a 64-bit vector. When using 32-bit DRAM, the calculation is performed
assuming that the higher 32 data bits [63:32] unused bits are all zeros. Each of the 64 data bits and
8 check bits have a unique 8-bit ECC check code, as shown in Table 10. For example, data bit 12
has the check value of 01100001, and check bit 5 has the check value of 00100000.

Table 10: ECC Code Matrix

Check Bit Data Bit ECC Code Bits Number of 1s in

syndrome
7 6 5 4 3 2 1

63 1 1 0o 0 1 0 0 O 3
62 1 1 0 0 O 1 0 0 3
61 1 1 0o 0 o0 o0 1 0 3
60 1 1 0O 0 o0 0 O 1 3
59 1 1 1 1 0 1 0 0 5
58 1 0o o0 0 1 1 1 1 5
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Table 10: ECC Code Matrix (Continued)

Check Bit
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Data Bit

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34
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1

3

0

2

0

System Considerations
Data Integrity
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0 3
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0 3
1 3
0 5
1 5
0 1
0 1
0 3
0 3
0 3
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0 3
0 3
0 3
1 3
0 3
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1 3
0 3
0 3
0 3
1 3
0 3
0 3
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Table 10: ECC Code Matrix (Continued)

Check Bit
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25
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21

20
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13
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1
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Table 10: ECC Code Matrix (Continued)

Check Bit Data Bit ECC Code Bits

7 6 5 4 3

7 0O 0 0 0 O

6 0o 0 o0 o0 1

5 1 1 1 1 0

4 0O 0 1 0o 1

6 0o 1 0 0 O
1 0O 0 o0 0 O
3 1 0 0 0 O

2 0o 1 0 0 O

1 0 0 1 0 0

0 0O 0 o0 1 0

System Considerations
Data Integrity

Number of 1s in

syndrome
1 3
1 3
1 5
1 5
0 1
0 1
1 3
1 3
1 3
1 3

The device calculates the ECC by taking the EVEN parity of ECC check codes of all logic data bits.
For example, if the 64 bit data is 0x45, the binary equivalent is 01000101. From Table 10, the
required check codes are 00001101 (bit [6]), 01000011 (bit [2]) and 00010011 (bit [0]). Bitwise XOR

of the check codes (even parity) results in an ECC value of 01011101.

If the device is configured to 32-bit mode, it reads 32 bits of data, pads bits [63:32] with zeros to
create a 64-bit bus, and adds 8-bits of ECC data. When the device is configured to 64-bit mode, the
device reads 64-bits of data, and adds 8 bits of ECC data. The device calculates the ECC based on
the 64-bit data and then compares that against the received ECC. The result of this comparison
(bitwise XOR between received ECC and calculated ECC) is called the syndrome.

If the syndrome is 00000000, both the received data and ECC are correct.

m  [f the syndrome is any other value, the device assumes that there is an error either in the

received data or the received ECC.

m If the syndrome contains a single 1, there is a single bit error in the ECC byte. For example, if
the received data is 0x45, the calculated ECC is 01011101. If the received ECC is 01010101,
the resulting syndrome is 00001000. Table 10, ECC Code Matrix, on page 82 shows that this
syndrome corresponds to check bit 3. Since there is no error in the data itself (just in the ECC

byte), data correction is not necessary.

m  [f the result syndrome contains 2 or more 1’s, this indicates that there is a double-bit error.

| ;] | These types of errors cannot be corrected. The device reports an error but will not

change the data.
Note
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5.1.2.2

5.1.2.3

DRAM Interface Operation

On DRAM reads, the device reads the ECC byte with the data, calculates the ECC on the 64-bit read
data (while using 32-bits DRAM, upper 32 bits are zero padding, lower 32 bits were read from
SDRAM), and compares it against the ECC byte being read from DRAM. In the case of a single data
bit error, it corrects the error and drives the correct data to the initiating interface. In the case of
2-error detection (or 3 or 4 errors that reside in the same nibble), it only reports an error (see
Section 5.1.2.3, ECC Error Report, on page 86).

On a write transaction, the device calculates the new ECC and writes it to the ECC bank, with the
data that is written to the data bank. Since the ECC calculation is based on 64-bit data width, if the
write transaction is smaller than 64 bits, the device performs a read modify write (RMW) sequence. It
reads the full 32/64-bit data, merges the incoming data with the read data (while zero padding the
upper 32 bits for a 32-bit DRAM, for the ECC calculation only), and writes the new data back to the
SDRAM bank with new ECC byte.

If the device identifies a non-correctable error during the read portion of the RMW
EI sequence, the device writes the data back to DRAM with a non-correctable ECC byte.

This behavior guarantees that the error is still visible if there is a future read from this
Note  pRAM location.

In the case of a burst write to DRAM, the device executes a RMW access of the entire burst, even if
only part of the data requires RMW. Performing a RMW access on only part of the burst is not
efficient, due to the overhead of bus turnaround cycles.

The device also supports forcing a bad ECC written to the ECC bank for debug purposes. If this
mode is enabled, it drives a fixed ECC byte configured in the SDRAM Error Control Register
(Table 444 p. 768), rather than calculating the ECC to be written to the ECC bank.

ECC Error Report
In the case of ECC error detection, the device asserts an interrupt (if not masked), and latches the
following:
m  Address in the SDRAM Error Address Register (Table 443 p. 767)
m  64-bit read data in the SDRAM Error Data (High) Register (Table 439 p. 766) and SDRAM Error
Data (Low) Register (Table 440 p. 766).
For 32-bit DRAM, 32-bit read data in the SDRAM Error Data (Low) Register (Table 440 p. 766).

| ;I | For further information about these registers, see Appendix A.3.1, SDRAM Data

Not Protection and Error Report Registers, on page 766.
ote

In the case of multiple errors detection, only the address and data for the first error are latched in the
corresponding registers. Latching of new data into these registers is enabled only after reading the
ECC Error Address register, and clearing the interrupt. The interrupt handler must read this register
last.

The device reports an ECC error whenever it detects but cannot correct an error (2, 3, or 4 bits
errors).

The device also reports on single bit errors (correctable errors), based on the setting of the ECC
threshold, bits [23:16], in the ECC Control register.

m  If the threshold is cleared to 0, there is no report on single bit errors.
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m Ifsetto 1, the device reports each single bit error.
m  If set to n, the device reports each n single bit error.

The SDRAM controller also contains two 32-bit ECC error counters. One counter is for single bit
ECC errors and the other one handles double bit errors. Counters can be used by the system
software to monitor the soft errors rate. Writing 0x0 to a counter resets its value (see Section 12.9,
Error Checking and Correction (ECC) and Read Modify Write, on page 188).

Memory Scrubbing

When using high-density memory arrays, the probability for soft errors must be noted. These error
types typically flip one bit at a time, causing single bit ECC errors. However, if the single bit error is
not corrected, there is a probability of an additional flip in the same data row. The result is 2 bits of
uncorrectable error.

To avoid single bit ECC errors, the device contains the required logic for the automatic cleaning of
single bit ECC errors, without interfering with normal operation of the system. This logic is activated
via one of the XOR DMA engines.

When the XOR DMA is configured for ECC errors cleanup, it is no longer used as a XOR engine.
However, the device contains two such DMAs, therefore one of them can be used for errors cleanup,
while the other can continue working as a XOR machine.

The memory space to be cleaned of ECC errors is defined by system software in the XOR DMA
descriptors list. When configured to ECC errors cleanup, the XOR DMA generates consecutive write
transactions to DRAM, with all bytes masked (dummy writes with all byte enables de-asserted). This
action causes the SDRAM controller to perform Read-Modify-Write (RMW) (as is the case for any
write of less than 64-bits). It reads 32/64-bits of data from the DRAM and, if it detects a single bit
data or ECC code error (or not detected error at all), it writes the corrected data back to memory,
with proper ECC. Since all byte enables are inactive, the data received from the XOR DMA is
ignored.

When the XOR DMA is configured to ECC errors cleanup, it can be set to Timer mode. Rather than
generating consecutive dummy writes to DRAM, it transfers a small chunk of data every time the
timer expires. This method avoids interfering with the normal operation of the SDRAM controller.

PCI Express Data Integrity

The device supports the different PCI Express layers data protection mechanisms as defined in PCI
Express specification.

When the MAC layer detects a receiver error (e.g. 8b/10b error), it drops the symbol and reports an
error. When the link layer detects an error (e.g. LCRC or sequence ID error), it drops the packet and
reports an error. It also responds with acknowledge.

MAC and link layer errors are considered correctable errors; the initiator should re-transmit the
packets. Still, If it is a repeated error, the link eventually enters a recovery state.

Until this point, when the transaction layer detects a poisoned TLP (EP bit set), it reports an error.
The transaction is forwarded to the target interface with an erroneous data indication, except for the
case of write to the device’s internal registers, in which data is discarded.

EI The device does not support ECRC.
Note

On the Tx side, the device always drives correct LCRC (and, in case of LCRC error in the receive
side, retransmits).
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5.1.4

5.1.41

5.1.4.2

Errors Forwarding

Although each interface includes the required logic to detect and report data errors, this is
sometimes inadequate due to the latency of interrupt routines. For example, poisoned TLP is
detected upon a PCI Express write to SDRAM. If the Marvell® core processor reads this data from
memory (without knowing that this is erroneous data), it can cause undesired results.

To guarantee that this scenario does not occur, the device supports an error forwarding mechanism.

When a transaction received on one interface is detected as erroneous:

m  An error interrupt is asserted, and transaction information is registered.

m  The transaction is forwarded to the target interface with an erroneous data indication.

The device supports an error-forwarding mechanism. When a transaction received on a unit or

interface is detected as erroneous’ (for example, poisoned TLP is detected upon a PCI Express
write to SDRAM):

m  An error interrupt is asserted, and transaction information is registered.
m  The transaction is forwarded to the target interface with an erroneous data indication.

The device internal DMAs (IDMA, XOR DMA, Ethernet SDMA, SATA DMA, SDIO DMA, USB DMA,
TDM DMA) never generate erroneous data indication. However, they are sensitive to erroneous data
indication received from other units:

m  |IDMA, if it detects an erroneous data indication on read data, also forwards this indication
during the write to the destination.

m  Ethernet SDMA, if it detects an erroneous data indication on data buffer read, transmit this
buffer with bad CRC.

m  Any of the DMAs stop if they encounter an erroneous data indication during descriptor read.

| ;] | A write is discarded (register is not updated) when the device detects an error during a

write to one of the chip internal registers.
Note

m  <PerrProp> =1 and <ECC> = 1: Forward error to DRAM; Meaning, perform the RMW as usual,
but flip ECC bits before the write, resulting in a non-correctable error in DRAM.

<PerrProp> = 1 and <ECC> = 0: Data is discarded (write with all byte enables in-active).

Device Bus

The MV78230/78x60 does not support parity on the local device bus. In case of a write access to the
Device bus with bad parity indication, the Device controller discards the data.

Marvell® Core Processor

If a CPU read from the SDRAM results in an uncorrectable error, the error is propagated to the
Marvell® Core Processor pipeline (transaction abort), and the Marvell® Core Processors enters an
exception.

Similarly, if the <MBUS Err Prop Enable> field in the Coherency Fabric Control Register (Table 155
p. 612)is setto 1, upon a CPU read from the /O device that results in erroneous read data, the error
is propagated to the CPU core pipeline (transaction abort), and the Marvell® Core Processor enters
an exception.

1. For interfaces and units that support error forwarding
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5.1.4.3

5.1.5

5.2

System Considerations
PCI Express Reference Clock Output

PCI Express

If the <RxDPPropEn> field in the PCI Express Mbus Adapter Control Register (x=0-0, x=0-3,
y=2-3, y=0-1) (Table 865 p. 1158) is set to 1, when receive poisoned TLPs (TLP with EP bit set), the
PCI Express port forward the transaction to the target interface with erroneous data indication.

If the <TxDPPropEn> field in the PCI Express Mbus Adapter Control Register (x=0-0, x=0-3, y=2—-3,
y=0—1) (Table 865 p. 1158) is set to 1, the PCI Express port will force poisoned TLP (set EP bit) in
case of:

m A PCI Express read from DRAM that results in none correctable ECC error
m  Any case of a CPU or DMA write to PCI Express with erroneous data indication

Internal Data Path Parity Support

Each of the device internal buffers implemented as an SRAM array is parity protected. Each entry of
SRAM is coupled with a parity bit (bit per buffer entry). Even parity is generated with every write to
the SRAM and checked with every read from SRAM. If a parity error is detected, an interrupt is
asserted (if not masked).

| ;I | A list of parity protected exceptions will be included in a future revision of this

document.
Note

|§ | | The internal data path error cannot be related to a specific transaction. This means that
it is very hard for the device to recover from this error. Typically, a data path error
Note requires a reset.

For software development and debug purposes, parity generation can be set to ODD parity. This
results in parity error detection (since checking is always for EVEN parity).

PCI Express Reference Clock Output

The device supports dynamic gating of the output reference clock for additional power saving via
CLKREQn signaling as defined in the PCI Express specification.

This functionality is available only when the port is configured as Root Complex.
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5.3

5.3.1

5.3.2

5.3.3

5.3.3.1

Big and Little Endian Byte Ordering

The ARMADA® XP device supports both Big and Little Endian byte ordering, as defined in the
ARMV7 architectures. It also supports hardware hooks to perform data conversion on part of its
interfaces.

CPU Core Byte Ordering

The processor treats words in memory as:

1. Big Endian format

2. Little Endian format

3. Mixed Endian and unaligned data accesses

Details of Unaligned Data and Mixed Endian Data Structure can be found in ARM® Architecture
Reference Manual (Document Number DDI 01001).

PCI Express Space

The PCI Express specification defines that a TLP data payload is presented as Big Endian, and the
packet header (address, command) is presented as Little Endian. The MV78230/78x60 PCI Express
interface meets these requirements.

The least significant byte is always the one to be transmitted first. For example, if a CPU is
configured to Big Endian and there is a CPU write of 4B to address 0x0 (appears on the CPU bus as
64’hAABBCCDD.XXXXXXXX), the MV78230/78x60 drives 0xAA as the first byte on the PCI
Express link.

| ;I | The PCI Express interface does not support different byte swapping per master and
Not slave operation, nor different byte swapping on per address window basis.
ote

DMA Data Swapping

All of the MV78230/78x60 DMAs (for example IDMA, XOR DMA, GbE SDMA, USB DMA, SATAHC
DMA, and Encryption DMA) support the required mechanisms for proper data transfer both in Big
and Little Endian environments.

IDMA Data Swapping

The IDMA transfers data from source to destination over the MV78230/78x60 Mbus. Since the Mbus
byte orientation is the same in both source and destination accesses, there is no need for the IDMA
to perform any byte swapping.

When configured to chain mode, the IDMA fetches the descriptors from memory and loads them into

its local internal registers. Since the MVV78230/78x60 internal registers are set to Little Endian mode,

it is important that the descriptors are saved in the memory in Little Endian byte orientation.

Moreover, when fetching a descriptor, the IDMA performs a read burst of 16B as follows:

m  The first set of 4B (lower address) stands for the Byte Count.

m  The second set of 4B stands for the Source Address.

m  The third set of 4B stands for the Destination Address

m  The last 4B stands for the Next Descriptor Pointer. The descriptor should be prepared in
memory accordingly.

If the <DescBS> field in the Channeln Control (High) Register (n=0-3) (Table 1404 p. 1495)
registers is set to 1, the IDMA performs byte swap on a 64-bit qword basis when fetching (and
closing) descriptors.
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5.3.3.2

5.3.3.3

5.3.3.4

5.3.3.5

Big and Little Endian Byte Ordering

XOR DMA Data Swapping

Similar to the IDMA, the XOR DMA does not need to perform any data byte swapping when
transferring data buffers over the Mbus. However, the XOR DMA does support byte swapping on a
64-bit qword basis upon a read from source buffers or a write to a destination buffer via the
<DrdResSwp> field in the XOR Engine Configuration (XEnCR)<n> Register (m=0-1, n=0-1)
(Table 1381 p. 1479) and the <DwrReqSwp> field. This can be useful for endianess conversion.

The XOR DMA descriptor is being fetched from memory as a burst of 32B or 64B, depending on the
XOR mode of operation. The descriptor is loaded into the XOR DMA reg file, which maintains Little
Endian convention. Thus, the descriptor is expected to be prepared in memory accordingly.

If the <DesSwp> field in the XOR Engine Configuration (XEnCR)<n> Register (m=0-1, n=0-1)
(Table 1381 p. 1479) is set to 1, the DMA performs a byte swap on a 64-bit qword basis when
fetching (and closing) descriptors.

GbE SDMA Data Swapping

When transferring data between memory and MAC, the GbE SDMA can swap the bytes on 64-bit
gword basis. Set the <BLMR> field in the SDMA Configuration (SDC) Register (i=0-3) (Table 585
p. 929) to O, for byte swap of Rx buffers when written to memory, and set <BLMT> to 0, for byte
swap of Tx buffers when being read from memory.

When reading Tx data from memory, the GbE SDMA always first transmits byte[7:0], followed by
byte[15:8], and so on. In Big Endian convention, byte[63:56] stands for the least significant byte.
This means that it is expected to be transmitted first. To achieve this behavior, set <BLMR> and

<BLMT> fields to 0.

The GbE SDMA descriptor is being fetched from memory as a burst of 16B. The descriptor is loaded
into the SDMA register file, which maintains Little Endian convention. Thus, the descriptor is
expected to be prepared in memory accordingly.

If the <SwapMode> field in the SDMA Configuration (SDC) Register (i=0-3) (Table 585 p. 929) is set
to 1, the SDMA performs byte swap on a 64-bit qword basis when fetching (and closing) descriptors.

USB Data Swapping
The MV78230/78x60 supports byte swap (within 8B qword) upon read/write access to memory. To

enable byte swap, clear the <BS> field in the USB 2.0 Bridge Control Register (n=0-2) (Table 927
p. 1210).

| ;] | The data swapping logic cannot distinguish between descriptors to raw data. It is a

static setting.
Note

SATAHC Data Swapping

The MV78230/78x60 SATA controller supports the following byte swap mechanisms through the

SATAHC Configuration Register (Table 939 p. 1219):

m  Byte swap (within a 8B qword) upon Basic DMA read/write access to memory. Clear the
<DmaBS> to enable byte swapping.

m  Byte swap (within a 8B qword) upon EDMA read/write access to memory. Clear the <EDmaBS>
to enable byte swapping.

m  Byte swap (within a 8B qword) upon PRDP read/write access to memory. Clear the <PrdpBS>
to enable byte swapping.
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| ;I | The data swapping logic cannot distinguish between descriptors to raw data. It is a

static setting.
Note

5.3.3.6 Cryptographic Engine Data Swapping

The MV78230/78x60 Cryptographic hardware accelerator supports the following byte swap

mechanisms:

m  Byte swap and word swap (within a 8B qword) upon read/write access to the Cryptographic
hardware accelerator integrated SRAM. Set the Target Attributes field in the CPU address
decoding registers to achieve the required data swapping (see Section 3.1, Marvell® Core
Processor Address Decoding, on page 55).

m  Byte swap (within a 8B qword) upon TDMA read/write access to memory. Clear the <BS> field
in the Control Register (p=0-1) (Table 1339 p. 1457) to enable byte swapping.

| ;I | The data swapping logic cannot distinguish between descriptors to packet data. It is a

static setting.
Note
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BootROM Firmware

6 BootROM Firmware

This section describes the boot sequence of the device. The boot method is determined according to
Sample At Reset (SAR) configuration.

For multi-CPU support, it is possible to load and execute codes of one or more CPUs.

Figure 8 illustrates the bootROM firmware flow.

Figure 8: BootROM Firmware Flow
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Figure 9: BootROM Firmware Block Diagram
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6.1 Features

The bootROM firmware provides the following features:
Basic and fundamental initialization of the device
Load and execute boot image from the boot device
Recovery from a backup flash image

Secured and Non-Secured Boot mode

Multiple boot devices

Error Handling

Power Management

The main features of the Secured Boot mode include:
Secured and authenticated boot sequence (optional)
Public key based cryptographic scheme

Supported software upgrades and trusted debug
Flexible chain of trust

256 bit embedded authentication key digest, programmed by software on the system,
supporting 2048 bit key size.
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6.2 Functional Description

The bootROM firmware—on the device’s integrated bootROM—is executed according to the
Sample At Reset (SAR) configuration bits in the Sample at Reset Register (Table 1286 p. 1434).

The bootROM firmware performs basic initialization of the device and loads and executes code from
one or more CPUs, that is from one of the following boot devices:

Serial (SPI) flash

NAND flash

NOR Flash

SATA interface

PCI Express interface

UART interface (using the Xmodem protocol)

The device supports Secured Boot mode. In Secured Boot mode the bootROM firmware performs a
secured and authenticated boot sequence, based on an industry standard public/private key
cryptographic scheme.

6.3 General Considerations
BootROM firmware code was written and compiled to take into account the following:

Endianness BootROM firmware always executes in Little Endian mode. However
there are no restrictions on the Endianness of the image booted from
the device’s interfaces. If the image was compiled to Big Endian
mode, it is the responsibility of the image to switch back to Big Endian
mode.

ARM/Thumb Mode Most of the bootROM firmware code is compiled to run in Thumb
mode, due to code size considerations. However, bootROM firmware
switches back to ARM mode before booting an image from one of the
device’s interfaces.

6.4 Address Decoding and Memory Management Unit
(MMU) Operations

For performance enhancement purposes, the bootROM performs the following:

m  Enables the L2 Cache as SRAM (L2-SRAM)

m  Enables the L1 Instruction Cache

m  Enables the MMU: Page table is located in the SRAM

m  Enables the L1 Data Cache

Once the MMU is enabled, the 4 GB memory space is accessed using virtual addresses. Table 11 is
a virtual-to-physical address translation table. The bootROM uses the first level descriptors (PTEs)

with 1 MB resolution. All regions unspecified in the table below are inaccessible. Any access to
these regions will cause an exception.

The first 16KB of L2-SRAM are occupied by the MMU translation table. As result, the
| ;] | address used for the headers block copy begins at the L2-SRAM base address +
0x4000. This offset must be taken into account when calculating the Binary Header

Note  .yde location.
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6.5

Table 11: MMU Virtual-to-Physical Address Translation Table

Device Physical Address Virtual Address Size Caching
SDRAM 0x0 0x0 1GB Non-Cacheable
L2-SRAM 0x40000000 0x40000000 1 MB Cacheable

PCI Express 0x80000000 0x80000000 640 MB Non-Cacheable
CESA SRAM 0xC8000000 0xC8000000 1 MB Non-Cacheable
Internal register 0xD0000000 0xD0000000 1 MB Non-Cacheable
NOR Flash 0xD8000000 0xD8000000 128 MB Non-Cacheable
SPI Flash 0xD4000000 0xD4000000 64 MB Cacheable
Device Bus 0xD3800000 0xD3800000 711 MB Non-Cacheable
BootROM O0xFFF00000 0xFFF00000 1 MB Cacheable

Boot Image Format

The boot image is the binary image residing on the specific boot device. It must contain a valid main
image header at offset 0x0 and may include a header extension, according to the header extension
flag in the Main header. In addition, it includes the binary image to be copied and executed in the
SDRAM (excluding boot from SPI/NOR Flash when the image is executed directly from the external
memory space).

The following Extension headers may be present between the Main header and the binary image:

Secured header: If present, immediately follows the Main header and contains the RSA public
key and the RSA signatures for all of the header blocks and the binary image.
The header cannot be omitted if the device is configured for Secured Boot
mode operation by eFuse.

Register set header: Includes address-value pairs for device registers configuration prior to
execution of the binary image. This header usually includes DRAM registers
configuration and can be omitted if the binary image is decompressed and
executed directly from the external flash device.

Binary header: Contains a list of parameters and ARM machine code to be executed before
the binary image. This header can be omitted.

NOTE: When booting from UART the device can use the binary header in the
image.

The headers block (Main header with all Extension headers) is padded to the size of the flash page
(for NAND flash boot source).

The source image can immediately follow the headers block, or may reside at non-zero offset from
the header block (see Figure 10). This option is necessary in boot from SATA or for NAND flash
page alignment.
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Figure 10: Binary Image Layout in the Boot Device

Boot Image Format

The order of headers in the header block is application-specific and flexible.
The image header block can contain several BIN and REG headers.

The headers are executed in the same order as they encountered in the boot
image.
These facts should be taken into account by the image preparation applications.
For example, if the DDR3 memory setup requires setting up specific SDRAM
Controller registers (REG) prior to running memory training procedure (BIN), the
REG header in such boot image should be placed ahead of the BIN headers.
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Main Header Format

The Main header is 32B long and is in Little Endian mode. Its content differs according to the desired
boot method and the device where the header is located. Table 12 outlines the Main Header format.

Table 12: Main Header Format

Byte

0x0

0x1-0x3
0x4—-0x7
0x8
0x9

0xA-0xB

0xC—-0xF

0x10-0x13

0x14-0x17

0x18

0x19

O0x1A

Field

Identifier

Reserved

Block size

Version

Header Size MSB

Header Size LSB

Source address

Destination address

Execution address

Reserved

NAND flash block size

Bad block location
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Description / Usage

0x5A = Boot from SPI/NOR flash
0x69 = Boot from UARTO

0x78 = Boot from SATA device
0x8B = Boot from NAND flash
0x9C = Boot from PCle interface

Must be 0xO0.

Image size in bytes to be downloaded to DRAM.
Boot image format version—must be 0x1.
Header block size MSB (in bytes)

Header block size LSB (in bytes)—the total header size including the Main
header and all Extension headers supplied with the image.

» Boot from SPI/NOR flash and NAND flash:
Image offset in bytes from the beginning of the flash device used for boot.
For NAND flash devices, this address must be aligned to the boundaries
of 512B. Necessary for the ECC calculation.

+ Boot from SATA:
Image LBA location offset (in sectors) in the hard drive used for boot.

* Boot from UARTO:
Image location offset in bytes from the file transferred by the Xmodem.

* Boot from PCI Express:
This parameter is not used, since the Root Complex device initiates the
transfer of the image to the DRAM. Set to OxFFFFFFFF.

Destination address in DRAM where the image will be copied.

* For boot from SPI/NOR flash, If this address equals OxFFFFFFFF, the
image is not downloaded to DRAM.

» For Boot from PCI Express, this field indicates the start address of the
image (Starting from this address, the 32-bit checksum is calculated and
verified).

Address (point of entry) from which to start executing the image.

This address is usually on the DRAM. However, if the destination address is
set to OXFFFFFFFF, then the execution address is located on the boot device.
The only valid boot devices are the SPI/NOR flashes.

Must be 0x0.

The size of NAND flash block in 64-KB units (that is, for 128-KB blocks, this
field should be 0x2). When this field is set to zero, the default block size is
used. This default size is defined by the NAND flash page size (16 KB for a
512B page or small page NAND and 64 KB for a large page NAND flash).

Bad block indicator location:
0x0 = Page 0 or page 1
0x1 = Last page in the block
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Table 12: Main Header Format (Continued)

Byte
0x1B-0x1D

Ox1E

Ox1F

6.5.2

Field Description / Usage
Reserved Must be 0x0.
Header extension 0x1 = Additional header follows the Main header.

0x0 = No extra header exists (relevant for SPI/NOR flash boot device only).

Checksum 8-bit checksum of the headers block (Main header + all additional headers
included with the boot image)
The checksum is calculated by adding together every 8 bits of data. Each time
the sum exceeds OxFF, it restarts at zero (for example, 0xFO + 0x12 = 0x02).

When byte 0x1E of the Main header does not equal 0x0, the Extension header begins immediately
after the Main header.

The following types of Extension headers are supported:

m  Secured Header Format

m  Binary Header Format

m  Register Set Header Format

Secured header is mandatory for Secured Boot mode and optional for Unsecured Boot mode.

The boot image in Secured Boot mode may be either encrypted or not encrypted. The
| §| | encryption flag is located in Secured header.

Note The same image that was prepared for Secured Boot mode can be used for
Non-Secured Boot mode if the image itself is not encrypted, since in the Non-Secured
Boot mode flow the Secured header is bypassed (not parsed).

Register Set Header and Binary Header are optional (although typically used).

Secured Header Format

The Secured header is only present in images destined to boot from a secure-enabled SoC. The
header includes all the information required for image and headers block verification, and cannot be
omitted if secured boot is required by the eFuse. Table 13, Secured Header Format, on page 99
outlines the Secured Header format.

Table 13: Secured Header Format

Byte Field Description / Usage

0x0 Header Type Must be 0x1.

0x1-0x3 Header Length Must be 0x424.

0x4 Encryption Indicates if the binary image is encrypted or not using AES-128-CBC
algorithm and AES key stored in hidden eFuse.
0x1 = Image is encrypted.
0x0 = Image is NOT encrypted.

0x5-0x7 Reserved Must be 0x0.

0x8—-0x213 RSA-2048 Public Key The RSA Public Key used for RSA signatures creation in BER encoding
(524B = 256 (N) + 256 (Exp) + 12 (BER overhead)).
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Table 13: Secured Header Format (Continued)

Byte
0x214

0x215-0x217
0x218-0x21B

0x21C-0x21D

0x21E-0x21F
0x220-0x31F

0x320-0x41F

0x420

0x421-0x423

6.5.3

Field Description / Usage

JTAG Enable A value different than 0x0 enables JTAG (for debugging). The value itself
indicates the delay time for JTAG synchronization in seconds.

Reserved Must be 0xO0.

Box ID Must be the same value programmed in the Box ID eFuse field. This value

is ignored if the eFuse Box ID is programmed to 0xO.

Flash ID Must be the same value programmed in the FlashlD eFuse field. This
value is ignored if eFuse Flash ID programmed to 0xO0.

Reserved Must be 0xO0.
Header Signature Header block RSA signature.

Boot Image Signature Boot image signature.

Next Header Indicates if more headers follow this header.
0x1 = Next header exists.
0x0 = This is the last header.

Reserved Must be 0x0.

Binary Header Format

The Binary (BIN) header can be used for running an arbitrary set of commands prior to passing
control to the binary image that follows the headers block. The code included in this header must be
implemented using ARM instructions and linked accordingly, to support running directly from an
image header loaded into RAM without additional relocation. Table 14, Binary (BIN) Header, on
page 101 outlines the BIN Header format.

The BIN header’s purpose is more than just DRAM controller initialization. It may be used, for
example, to change memory windows or Device Bus settings.

Using multiple BIN headers inside the single headers block is allowed. Typically, the binary header is
used for DDRS3 configuration, but one may use this header for other purposes as well.

The Binary Header code is executed “in place”, without being copied into a pre-defined DRAM
address. The DRAM cannot be initialized during the Binary Header execution.

Therefore, the header preparation software must take into account the actual location of the code in
the device’s L2 SRAM. This location depends on the Main Header size and start address, the
amount and size of all headers located between the Main Header and the Binary Header, as well as
the number of the Binary Header parameters.

Additionally, the ARM code inside the BIN header must always be aligned with the 128-bit boundary.
The alignment requirement can be met by inserting some dummy parameters into the Binary
Header, if such is needed.
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Table 14:

Byte
0x0

0x1-0x3

0x4
0x5-0x7

0x8—(0x7 + 0x4
» Number of
Arguments)

Follows
Arguments List

Follows Binary

Last 3 Bytes of
the Header

6.5.4

Table 15:
Byte
0x0
0x1-0x3
0x4-0x7

0x8-0xB
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Binary (BIN) Header

Field Description / Usage
Header Type Must be 0x2.
Header Length The header length in bytes. The value must be aligned to 4B.

Number of Arguments = The number of binary function arguments included in the header.

Reserved Must be 0x0.
Arguments list » If number of arguments is 0, then this field does not exist in the header.
» If the number of arguments is not 0, then each argument is 4B long and

the field occupies offsets from 0x8 to (0x7 + 0x4 « N) where N - is the
number of arguments. For instance:
- If N=1, then this field occupies bytes 0x8—-0xB
- If N=2, then this field occupies bytes 0x8—-0xF, and so on.

Binary Raw executable without any additional headers (like ELF). The binary must

be 4B aligned.

Indicates if more headers follow this header.
0x1 = Next header exists.
0x0 = This is the last header.

Must be 0x0.

Next Header

Reserved

Register Set Header Format

The main purpose of the Register Set (REG) header is to provide initialization values to the DRAM
memory controller. Table 15, Register Set (REG) Header Format, on page 101 outlines the Register
Set header format.

The DRAM must be accessed by the executable BIN header or boot loader image (the image is
always loaded into DRAM, except for direct boot from SPI/NOR Flash) after the DRAM have been
initialized by the appropriate REG header and optional BIN header for DDR3 initialization sequence
flow.

When the Image Destination Address field of the Main header is set to OXFFFFFFFF, the boot image
may or may not contain a REG header, and the system is instructed to boot directly from the
SPI/NOR Flash. The REG header’s purpose is more than just DRAM controller initialization. It may
be used, for example, to change memory windows or Device Bus settings.

Using multiple REG headers inside the single headers block is allowed.

Register Set (REG) Header Format

Field Description / Usage

Header Type Must be 0x3.

Header Length = The header length in bytes. The value must be 4B aligned.

Address 0 Register address.

Value 0 Value to be written to the addressed register.
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Table 15: Register Set (REG) Header Format (Continued)

Byte Field Description / Usage
0xC-0xF Address 1
0x10-0x13 Value 1

0x4 + 8*N - 0x7 + 8*N Address N
0x8 + 8*N - OxB + 8*N Value N

0xC + 8*N Next Header Indicates if more headers are following this header.
0x1 = The next header exists.
0x0 = This is the last header.

0xD + 8*N Delay The delay, in milliseconds, to be kept after this header execution completion,
prior to continuing the processing of the remainder of the headers. If the
delay field is cleared to 0x0, the bootROM firmware assumes that the
header was used for SDRAM controller setup, and at the end of header
execution, instead of a delay, it polls the SDRAM Initialization Control
Register (Table 467 p. 791) for clearance of Initialization Enable bit [0].
Since the DRAM controller needs to be initialized only once, make sure that
in the entire header block, only one REG header is set to delay=0. That
header should also set the above mentioned DRAM Initialization Enable bit
as a part of its Address-Value settings.

OxE + 8*N - OxF + 8*N Reserved Must be 0x0.
6.5.5 Source Image Considerations
BootROM firmware assumes the following for the images that can be booted from the device’s
interfaces:

m  Image base address at the specific device interface is aligned to 32 bits. (For NAND flash boot,
the image must be aligned to the boundaries of the NAND page size.)

Image size including the checksum is aligned to 32 bits.

m  [f the image will be downloaded to the DRAM, the destination offset on the DRAM is aligned to
32 bits.

The image includes a simple 32-bit checksum in the last 4B.

The first instruction of the image is in Little Endian mode. If the image will be executed in Big
Endian mode, the image must include the appropriate code to switch back to Big Endian mode.

m  The first instruction is in ARM mode.

6.6 BootROM Firmware Boot Sequence

The bootROM firmware boot sequence of the first CPU can be divided into the following phases, as
described in the sub-sections below:

1. Initialization

2. Checking serial ports for a boot sequence
3. Boot mode selection
4. Load, check, and update the boot image header block.
5. In Secured Boot mode, verify the public key and the headers block signature.
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If Extension headers exist, for each header:

a) Check the type of Extension header.

b) If a REG header is detected, initialize the registers using the values read from the header.
c) If a BIN header is detected, execute the header binary with its parameters.

Load and check the device image (unless it is to be executed from the SPI/NOR Flash).

In Secured Boot mode, verify the image signature and decrypt the image, as needed.
Execute the device image code.

In addition, bootROM firmware contains the following functionality:

m  Boot stages monitoring using the terminal on UARTO
m  Error reporting and handling
m  Exception handling

6.6.1 Initialization

Atfter reset, the CPU starts running at OxFFFF0000, where the bootROM firmware code is located.
It performs the following operations (in Assembly language):

1.

o0k wDN

Performs the initial CPU configurations.

Checks for Power Management Resume state.

Configures L2 in SRAM mode.

Initializes the MMU Translation table.

Enables MMU, L1 D-Cache, and L1 I-Cache.

Starts the boot sequence, by detecting the selected boot device.

This process is illustrated in Figure 11.
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Figure 11: Initialization and Boot Method Selection Flow
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6.6.2 Boot Device Selection
The Boot device is selected in the main routine, executed directly after initialization of the MMU and
caches and the initial scan of serial ports for a boot command.
The following sequence of operations is executed:
1. Calls the UART Initialization routine, initializing the UARTO to the 115,200-8N1 baud rate
(8N1 means 8-bits of Data, No parity, 1 stop bit) according to the detected value of the TCLK.
2. If the main routine was executed as the result of an exception, calls the Error Handler.
3. Calls the Execution Handler.
Execution Handler
This routine reads the Sample at Reset Register (Table 1286 p. 1434) and calls the appropriate
routine, according to the value of the SAR [Boot Device] field. Also refer to Boot Device in the Reset
Configuration table of the Hardware Specifications for more information about the SAR boot
settings.
If the Execution Handler returns an error code, the error is registered in the BootROM Routine and
Error Code Register (Table 1464 p. 1537).
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6.6.3 UART Booting

There are two modes of operating the UART interfaces that can be either:

m  Based on the Sample at Reset Register (Table 1286 p. 1434) and Sample at Reset High
Register (Table 1287 p. 1434))
or

m  Triggered by detection of a special command sequence received from one of the serial lines.

EI Neither of these two modes is available when Secured Boot mode is enabled in eFuse.
Note

When the UART mode is selected by SAR, the system always uses the default UART port (UARTO)
for loading the boot image.

The default serial port assignment, however, can be changed. This change occurs if a special
command sequence is received over one of UART ports when the bootROM monitors the serial
ports for activity. There are two cases when all available UART interfaces are monitored for
reception of the command sequence:

m  Short check: Before accessing the dedicated boot device that is configured by SAR
m  Fail recovery: Endless port scans followed by failure to boot from the configured boot device

Practically the first case can be used for fast system recovery if the default boot device failed for
some reason or even for testing a new boot image prior to modification of the boot device content.

To take control of the system, send a long sequence of the same commands over a serial line when
the system exits reset state. The first valid command that is detected by the bootROM will define its
future behavior.

Once a valid command sequence is detected, the port that received the sequence switches to
Xmodem Protocol mode and becomes ready for loading the boot image.

Since a serial port input can also be connected to a noisy source, the bootROM will stop specific
UART monitoring if more than 24 invalid (non-command) symbols are received from it.

When the bootROM enters fail recovery UART monitoring, the message “Trying UART” is sent to the
default serial port (UARTO).

m  All UART settings during port monitoring stage are the same and similar to the

EI default port (UARTO) settings—8N1, 115200 baud.
RX lanes of all ports that are activated during the scan are de-activated for ports
that were not selected for UART Boot mode.

m  TXlanes are not active during the port scan, and they are only activated for a
specific port if the input command instructed it to activate the port.

m  TXlanes of the default port remains active all the time for the boot messages. The
boot monitoring messages are always sent to the default serial port. This
assignment cannot be changed by the input command.

Note

6.6.3.1 Boot from UART

The Boot from UART is activated when the following 8B command sequence is detected on one of
available serial ports:

0xBB, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, Ox77.
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6.6.4

6.6.5

The monitored port that receives this command first is switched to the Boot mode, instead of the
default serial port and starts the Xmodem protocol for loading the boot image.

If SAR requests boot from UART, the bootROM configures UARTO and starts the Xmodem protocol
for loading the boot image from the default serial port (UARTO) to the system memory (DRAM).

| ;I | Boot from the UART interface is not available if Secured Boot mode is selected by
eFuse.
Note

eFuse Structure

The device contains a 310-bit one time programmable module (eFuse) that utilizes the boot firmware
to enable Secured Boot mode.

This eFuse consists of the following fields:

m  Public Key Digest: A 256-bit digest of the RSA public key that is used during the boot
firmware authentication phase. It is based on FIPS 180-2 (SHA-256).

= BoxID: A 32-bit unique Box ID that may be optionally used to associate an
image to a specific product. It is Typically used to prevent leakage of
debug image.

m  Flash ID: A 16-bit field that can be used to differentiate products by their type of

service using different images.

m  Secured Boot Enable: A 1-bit field, indicating whether the boot sequence is Secured Boot
mode or Non-Secured Boot mode.

1 = Secured Boot mode
0 = Non-Secured.Boot mode

m  JTAG Enable: A 1-bit field, indicating whether JTAG is enabled or disabled, during
the boot sequence (Debug mode).

1 = JTAG Enabled
0 = JTAG Disabled

m  Boot Source Device: This 4-bit field overrides the reset strap, if the secured boot is
enabled, and it determines the boot source device.

Non-Secured Boot Flow Description

Each of the boot methods is described in detail in Section 6.7, BootROM Firmware Boot Options.
However, all boot methods use the same logic to read or decode the header, and to execute the
loaded image.

Each time an error report appears in the bootROM execution flow for SPI, NOR, or NAND flash
devices, the recovery procedure is executed. The recovery procedure increments the byte offset
from the boot device start, and restarts the entire boot sequence, trying to read the boot headers and
image from the new position defined by this offset value. The process is stopped when the maximum
offset value is reached.

This mechanism allows, for example, recovery from interrupted boot image upgrades due to power
failure or other interruptions. Prior to overriding the working image, the application must copy the old
working boot loader image from the boot device start to any flash offset from 4 MB to 64 MB for

NAND (in 4-MB increments), and 2 MB to 16 MB for SPI/NOR flash (in 2-MB increments). If an error
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is unrecoverable, the message is logged on the UARTO interface and the CPU is halted. An example
of an unrecoverable error is a wrong bootstrap configuration.

The boot flow is as follows (see Figure 12, “Boot Sequence):

1. Main Header decoding:

a) Read the entire header block from the boot device into the stack residing in the L2-SRAM (for
NAND flash boot, at least 512B of data are loaded, since ECC is calculated over chunks of
512B).

b) Checksum is calculated and verified on the header block.
c) If the checksum is valid, verify the header ID. If either is invalid, report an error.

2. Header Extension decoding:

a) If byte Ox1E of the Main header is 0x0, no Extension header exists, and no register
configuration occurs. Proceed to step 4.
If byte Ox1E of the Main header is not 0x0, an Extension header exists.

b) Check the type of Extension header.

c) If the type is REG or BIN, execute the Extension header.

d) If the header type is unknown, report the error.

e) If the Extension header is not the last one (its Next Header field is not 0), start the next
header processing from step 2b.

3. Image Loading and verification:

For boot from SATA, NAND flash, NOR flash or SPI flash (with image copy to DRAM), the
image must be loaded to the DRAM and executed from there.

The following sequence is performed:

a) Copy the image from the Source Address indicated in bytes 0xC—0xF of the Main header to
the Destination Address indicated in bytes 0x10-0x13. The size of the image to be copied is
indicated in bytes 0x4—0x7. (This size includes the extra 4B of the checksum-32.)

NOTE: For NAND flash and SPI/NOR flash, the Source Address is the offset in bytes from
the start of the device (where the Main header resides).

For SATA, the Source Address is the LBA address (the number of the first sector of the
partition containing the image).

b) Calculate the checksum-32 on the entire image (in the DRAM), without the last 4B, and
compare the result to the last 4B of the image.

c) If the calculated checksum-32 and the recorded checksum-32 (following the image) match,
continue to the next step. Otherwise, report the error.

For boot from SPI flash or NOR flash, the image can optionally be executed from the same
location, without copying it to the DRAM. The following sequence is performed:

a) The destination must be OxFFFFFFFF, as an indication that no copy is necessary and the
image must be executed in place (i.e., executed directly from the flash, using the directly
mapped memory space).

b) The Source Address indicates the offset in bytes (from the beginning of the flash, where the
Main header resides) at which the image starts.

c) Calculate the checksum-32 on the entire image (on the flash) without the last 4B, and
compare the result to the last 4B of the image.

d) If the calculated checksum-32 and the recorded checksum-32 (following the image) are a
match, continue to the next step. Otherwise, report the error.
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For boot from PCI Express, the image is loaded by the Root Complex and no copying is
necessary. The following sequence is performed:

NOTE: Only PCle0 is initialized for loading the boot image, regardless of the actual number of
PCle interfaces available.
Boot from PCle is not available in Secured Boot mode.

a) The bootROM starts by initializing the with OxFFFFFFFF.
It then performs PCI Express interface initialization, setting it to Endpoint mode.
Next, it enters an infinite loop, waiting for the Root Complex to change the and update it with
the address holding the image header. This is a handshake, indicating that the Root Complex
has completed the necessary DRAM configuration and downloaded the image to the
execution location.

b) When the has been updated with the location of the Main header address, the bootROM
verifies the Main header.
NOTE: The Source Address in the header is not used if the boot device is PCI Express.

c) The Destination Address specifies the location of the image.

d) The bootROM calculates the checksum-32 on the image in the location specified in the
Destination Address.

e) If the calculated checksum-32 and the recorded checksum-32 (following the image) are a
match, continue to the next step. Otherwise, report the error.

4. Image execution:
a) Disable MMU, I-Cache, and D-Cache.
b) Disable L2 cache.
c) Jump to the execution address that was extracted from the Main header.
If any error occurs during the entire process, it is registered in the <Error Code> field in
EI the BootROM Routine and Error Code Register (Table 1464 p. 1538), and the entire
process is restarted from the early boot stages, where the sample at reset configuration
Note is read from the bootstrap register. The Error Code is updated on the first error
reported. Successive errors will not affect the reported error code.
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Figure 12: Boot Sequence
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6.6.6

Secured Boot Flow Description

Each of the boot device is described in detail in Section 6.7, BootROM Firmware Boot Options.
However, all boot devices use the same logic to read or decode the header, and to execute the
loaded image.

The first procedure performed, in the bootROM, is reading the value of the eFuse Boot mode field. If
Secured Boot mode is requested by eFuse, the boot flow is executed as described below.

Each time an error report appears in the bootROM execution flow for SPI/NOR or NAND flash
devices, the recovery procedure is executed. The recovery procedure increases the byte offset from
the boot device start, and restarts the entire boot sequence, trying to read the boot headers and
image from the new position defined by this offset value. The process is stopped when the maximum
offset value is reached.

This mechanism allows recovery from interrupted boot image upgrades due to power failure or other
interruptions. If an error is unrecoverable, the message is logged on the UARTO interface and the
CPU is stopped. An example of an unrecoverable error is a incorrect bootstrap configuration. Prior to
overriding the working image, the application must copy the old working boot loader image from the
boot device start to any flash offset from:
= 4 MB to 64 MB for NAND (in 4-MB increments)

and

= 2 MB to 16 MB for SPI/NOR flash (in 2-MB increments).

The Secured boot flow, after reading the boot mode configuration from eFuse, (see Figure 13,
Secured Boot Sequence, on page 112) is as follows.
1. Main Header decoding:

a) Read the header block from the boot device into the stack (for NAND flash boot, at least

512B of data are loaded, since ECC is calculated over chunks of 512B).

b) Checksum is calculated and verified on the header block.

c) If the checksum is valid, verify the header ID. If either is invalid, report an error.

NOTE: The Header Extension field in the Main header must not be zero.

2. Secured Header decoding:

a) Calculate the SHA-256 for the RSA public key included with the header and compare it to the
SHA-256 digest programmed to eFuse. If the digest comparison fails, report an error.

b) Calculate the RSA signature for the entire header block and compare it with the header
signature supplied in the security header. If the signature comparison fails, report an error.

c) If the header Flash ID and Box ID are not zero, compare them to the appropriate values
programmed in eFuse. If the ID comparison fails, report an error.

d) If the Box ID and JTAG fields in the Secured header are both not zero, delay execution by the
JTAG field value in seconds, and enable the JTAG interface.

3. Header Extension decoding:

a) If the next header field of the Secured header is 0x0, no Extension header exists, and no
register configuration occurs. Proceed to step 4.

If the next header field of the Secured header is not 0x0, an Extension header exists.

b) Check the type of Extension header.

c) If the Extension header type is REG or BIN, execute the Extension header.

d) If the Extension header type is unknown, increment the boot device offset, and if the
maximum number of retries is not reached, start from step 1. Otherwise, stop and report the
error.

e) If the Extension header is not the last one (its Next Header field is not 0), start the next
header processing from step 3b because the image may have several Extension headers.
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4. Image Loading and verification:

| ;] | Boot from SPI or NOR flash can be accomplished either by image coping to DRAM or

Not without copying the image coping to DRAM, as explained in the two lists of steps below.
ote

For boot from SATA, NAND flash, SPI, or NOR flash (with image copy to DRAM), the image
must be loaded to the DRAM and executed from there. The following sequence is performed:

a) Copy the image from the Source Address indicated in bytes 0xC—0xF of the Main header to
the Destination Address indicated in bytes 0x10-0x13. The size of the image to be copied is
indicated in bytes 0x4—0x7. (This size includes the extra 4B of the checksum-32.)

m  For NOR flash and SPI flash, the Source Address is the offset in bytes from the
| §| | start of the device (where the Main header resides).
For SATA, the Source Address is the LBA address (the number of the first sector

Note of the partition containing the image).

b) Calculate the checksum-32 on the entire image (in the DRAM) without the last 4B, and
compare the result to the last 4B of the image.

c) If the calculated checksum-32 and the recorded checksum-32 (following the image) are a
match, continue to the next step. Otherwise, report an error.

d) Create an RSA signature of the binary image located in the DRAM, and compare it to the
signature supplied in the Secured header. If both signatures are equal, continue to the next
step. Otherwise, report an error.

e) If the Encryption field of the Secured header is not zero, decrypt the binary image in the
DRAM using the AES key from the second eFuse.

For boot from SPI or NOR flash, the image can optionally be executed from the same
location, without copying it to the DRAM. The following sequence is performed:

a) The destination must be OXFFFFFFFF, as an indication that no copy is necessary, and the
image must be executed in place (executed directly from the flash, using the mapped
memory space).

The Source Address indicates the offset in bytes (from the beginning of the flash, where the
Main header resides) at which the image starts.

b) Calculate the checksum-32 on the entire image (on the flash) without the last 4B, and
compare the result to the last 4B of the image.

c) If the calculated checksum-32 and the recorded checksum-32 (following the image) are a
match, continue to the next step. Otherwise, report an error.

d) Create an RSA signature of the binary image located in the flash and compare it to the
signature supplied in the Secured header. If both signatures are equal, continue to the next
step. Otherwise, report an error.

e) If the Encryption field of the Secured header is not zero, report an error.

5. Image Execution:

a) Disable MMU, |-Cache, and D-Cache.

a) Disable L2 cache.

b) Flush L2-Cache, I-Cache, and D-Cache.

c) Jump to the execution address that was extracted from the Main header.

Copyright © 2014 Marvell Doc. No. MV-S107021-U0 Rev. A
May 29, 2014, Preliminary Document Classification: Proprietary Information Page 111



—
=
—

M ARVELL®

MV78230/78x60
Functional Specifications

Figure 13: Secured Boot Sequence
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6.6.7 Error Handling

6.6.7.1 BootROM Firmware Error Registers
All boot methods use the same Error Handling mechanism. This mechanism takes advantage of the
BootROM Routine and Error Code Register (Table 1464 p. 1537).

6.6.7.2 BootROM Firmware Error Handling Description

Error Handling is performed as follows:

1. On error, the specific boot method calls the Error Handler with the appropriate <Error Code>

and <Error Location> representing the current execution method.

2. The Error Handler automatically increments the <Retry_Count> field.

3. Ifthis is the first call to the Error Handler (checked by examining the <Retry_Count> field), it

updates the <Error Code> and <Error Location> fields.

4. The bootROM ftries to perform the boot method again by jumping to the main routine.

6.6.7.3 BootROM Monitoring

In Secured Boot mode, every step of the boot procedure is reported by Error/Success messages

that are sent to the UARTO interface. Boot from UART is disabled in Secured Boot mode. Therefore,

sending messages toward the serial console does not disturb the boot operation.
6.6.7.4 BootROM Messages

Information messages

The boot procedure provides the following information messages:

Booting from <boot source> Possible values for “boot source” field:

m  SPlflash

m  NOR flash
= NAND flash
m SATA

m  PCle

Trying UART The message is printed when bootROM returns to Boot
from UART mode and starts looking for a boot pattern on
the available serial ports.

Pattern detected on UARTX The message is printed when valid boot pattern is detected
on UARTXx (where x is the UART port number) before
switching to the Boot mode.
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Error messages
The bootROM error messages are listed in Table 16.

Table 16: BootROM Error Messages

Message Type
CPU cache RW test FAILED

Boot image decryption
FAILED

Image checksum verification
FAILED

Boot image signature
verification FAILED

In-flash image checksum
verification FAILED

In-flash image signature
verification FAILED

Invalid header checksum

Invalid header version
Invalid header ID

Invalid header alignment
Invalid HDR destination
address

Invalid HDR source address

Invalid security header
sizeltype

Invalid RSA key format

Invalid RSA key length

Doc. No. MV-S107021-U0 Rev. A
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Description

The CPU cache is used instead of DRAM until the DRAM
controller gets initialized.

This error is severe and further execution cannot
continue.

The encrypted image length is not 16-bit aligned.

Boot image checksum verification failed after image copy
from the boot device to DRAM.

The may occur due to improperly initialized or unstable
DRAM or boot device failure.

The boot image RSA signature computed for the image
copied to DRAM differs from the one supplied in the
Secured header (Secured Boot mode only). This may
occur due to improperly initialized or unstable DRAM, boot
device failure, or due to unauthorized image modification
(a hacker attack).

The boot image checksum computed for an image located
in the SPI/NOR flash differs from the checksum supplied
with image.

The boot image RSA signature computed for the image
located in the SPI/NOR flash differs from the one supplied
in the Secured header (Secured Boot mode only). This
may occur due to boot device failure or due to
unauthorized image modification (a hacker attack).

The headers block checksum differs from the one
supplied as part of the main header.

This may occur as a result of improperly initialized, an
unstable DRAM, or a boot device failure.

The header version is not equal to 1.

The header ID is not in sync with selected boot device.

The header block size field value is not 8-bit aligned.

The main header destination address field value is not
8-bit aligned.

The main header source address field value is not 8-bit
aligned and the boot device is not SATA.

The eFuse requires Secured boot, but the header
following the main header is not secured. Its size differs
from the defined security header size.

The RSA key is not properly DER-formatted (The first 2B
are used for length).

The RSA key length verification failed.
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Error Code
ERROR_MEMORY_INIT

ERROR_INVALID_IMG_LE
N

ERROR_INVALID_IMG_CH
KSUM

ERROR_INVALID_RSA_IM
G_SIGN

ERROR_INVALID_IMG_CH
KSUM

ERROR_INVALID_RSA_IM
G_SIGN

ERROR_INVALID_HDR_C
HKSUM

ERROR_INVALID_HDR_VE
RSION

ERROR_INVALID_HEADE
R_ID

ERROR_ALIGN_SIZE
ERROR_ALIGN_DEST

ERROR_ALIGN_SRC

ERROR_INVALID_SECUR
TY_HDR

ERROR_INVALID_RSA_PU
B_KEY_FMT

ERROR_INVALID_RSA_PU
B_KEY
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Table 16: BootROM Error Messages (Continued)

Message Type

RSA Public key verification
FAILED

Invalid RSA key modulo
length

OR

Invalid RSA key exponent
length

RSA error

Boot header signature
verification FAILED

Flash ID verification FAILED
Box ID verification FAILED

Bad header <offset value>]

Wrong configuration:
encrypted image and direct
SPI/NOR boot

6.7
6.7.1

Description

The RSA key digest differs from the one saved in eFuse.

The RSA key modulo/exponent size is not 256B

RSA library initialization error.

The header block signature differs from the one supplied
in the security header.

The Flash ID in the security header differs from the one
saved in eFuse.

The Box ID in the security header differs from the one
saved in eFuse.

The main header sanity check failed for data obtained
from the boot device. If the boot device is a flash memory,
the current offset is indicated, and the execution continues
trying to find a valid header on the next flash sector.

The SPI/NOR header indicates that the image is AES
encrypted, but direct boot from flash is required (no copy
to RAM). Such a configuration is not supported.

BootROM Firmware Boot Options
Boot from UARTO

Error Code

ERROR_INVALID_RSA _PU
B_KEY

ERROR_INVALID_RSA_PU
B_KEY

ERROR_RSA_LIB_ERROR

ERROR_INVALID_RSA HD
R_SIGN

ERROR_INVALID_FLASH_|
D

ERROR_INVALID_FLASH_|
D

The error code depends on

the reason for the failure:

+ ERROR_INVALID_HEADE
R_ID
or

+ ERROR_INVALID_HDR_S
IZE

ERROR_INVALID_BINARY

As previously indicated, boot from UARTO is defined as a sample at reset configuration option. Since
the UARTO interface is used for boot image transfer, the bootROM monitoring though the serial
console is not active in this mode.

Copyright © 2014 Marvell
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In this case, the boot image must be a continuous image including a Main header and an Extension
header. (REG Extension header is mandatory in this case since the DRAM must be initialized prior
to loading it with the boot image. When using DDR3, the existence of the BIN header in the boot
image becomes mandatory.

The Main header and source image must contain valid checksum values. The Main header
checksum includes the checksum for the entire header block.

According to the boot sequence described above, this boot method performs the following
sequence:

1. Executes the REG and/or BIN Extension header(s).

2. Downloads the source image to DRAM.

3. Executes it in the DRAM.
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6.7.2

6.7.3

Boot from Serial or Parallel Flash

In this boot method, a boot image must be located on the external flash. The Main header must exist
at offset 0 (or at any 2 MB offset up to a 16 MB boundary) of the external flash. Extension headers
may exist, if the Extension Header bit is set in the Main header.

The headers block and source image must contain valid checksum values. In Secured Boot mode,
the headers block and source image are signed by RSA signatures that, in turn, are included in the
attached Secured header.

Boot from flash can be performed in two ways, based on the value of the Destination Address
specified in the Main header.

m  [f the Destination Address field holds a value other than OxFFFFFFFF, the source image is
copied to the DRAM address specified in the destination field and executed from the address
indicated in the execution address field. In this case, a REG Extension header is mandatory to
perform the necessary DRAM initialization prior to loading it. When using DDR3, the BIN header
is mandatory.

m  If the Destination Address field equals OxFFFFFFFF, the source image is executed directly from
the flash using directly mapped memory space. This option is not available in Secured Boot
mode when the image is encrypted using the AES algorithm field in the Secured header is set
(see the <Symmetric Key N> field in the Fuse Secured Boot Symmetric Key N Register (N=0-3)
(Table 1419 p. 1503)).

The user’s flash burning application (firmware update) should:

1. Burn a backup image at offset 2MB/4MB/6MB/8MB/10MB/12MB/14MB/16MB and verify it
(phase 1).

2. Burn the main boot image at offset 0 (phase 2).

If a power down event occurs during one of these firmware update phases, the system remains
bootable, even through the image burn process interrupted in the middle.

Boot from NAND Flash

In this boot method, a boot image must be located on the first page of the NAND flash. The Main
header must exist at offset 0 (or at any 4 MB offset up to a 64 MB boundary) and REG and/or BIN
Extension headers is mandatory for this boot device to perform DRAM initialization. (The image
must be copied to the DRAM prior to execution and cannot be invoked directly from NAND flash.)

The source image must be located at the offset specified by the Main header.
The Main header and source image must contain valid checksum values.

m  The source image is downloaded to the DRAM byte-by-byte, using a NAND flash software
protocol.

Flash type (Large or Small page, number of read cycles) and ECC algorithm (Hamming or BCH) for
bootROM are defined by reset strap (see Sample at Reset Register (Table 1286 p. 1434).

6.7.3.1 Bad Block Management
The bootROM supports bad block skipping. Before reading from a block, it is verified to be a good
block by checking the appropriate Out of Band (OOB) byte or bytes in the Spare area are OxFF.
m  For 512B page devices, the number of pages per block is fixed at 32 (block size is 16 KB) and
the bad block indicator is located in the sixth byte of the OOB area.
m  For Large page devices (2 KB and above) the block size and the bad block indicator location
are specified at runtime from the header.
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The bad block indicator location in the OOB is checked by the bootROM based on the type of
NAND, block size and bad block indicator location specified in the header. The three possible
options are listed in Table 17.

Table 17: Bad Block Indicators per NAND Flash Cell Type

NAND Flash Type Read Command Sequence

1 Large page and bad block in the Byte[0] of the spare area in the last page of the block (for a good block, the byte

last page

should be equal to OxFF).

2 Large page and bad block in the Byte[0] and Byte[5] of the spare area in the first and second pages of the block

first page

(for a good block, both bytes should be equal to OxFF).

3 512B page SLC devices Byte[5] of the spare area in the first and second pages of the block (for a good

6.7.4

6.7.5

block, the bytes should be equal to OxFF).

Boot from a SATA Device

The presence of the REG and/or BIN Extension headers is mandatory for performing DRAM
initialization (since the image must be copied to the DRAM prior to execution and cannot be invoked
directly).

In this boot device, the Main header must be located in sector number 1 of the hard disk (since
sector 0 holds the partition table).

The source image must be located at the beginning of the sector specified by the Main header.
(Usually the first partition starts in sector 63.)

This boot method downloads the source image to the DRAM and executes it from there. The source
image is downloaded to DRAM using the DMA mechanism.

| ;I | The image destination address should not point to the first 2 KB of the system DRAM, if

the SATA device is used for boot.
Note

Boot from PCI Express Interface

This boot device differs from the other four boot devices. The device functions as a PCl Express
Endpoint, and the Root Complex is responsible for performing the basic steps of the boot process.

In this boot mode, the first task the bootROM performs is to set the PCl Express Boot Address
Register (Table 1441 p. 1516) with the value OXFFFFFFFF.

Then the bootROM initializes the PCI Express interface and configures the PCI Express controller to
function as an Endpoint. By default, the device configures its BARs to allow access to its internal
registers. This allows the Root Complex to use BAR 0 to configure the device, initialize the DRAM (if
it exists), and set up the DRAM BAR 1 and windows, if necessary.

After performing the interface initialization, the bootROM enters an infinite loop, waiting for the Root
Complex to change the PCI Express Boot Address Register and update it with the address (locally
on the DRAM) holding the image header. This is a handshake mechanism, indicating that the Root
Complex is ready, having performed the necessary configurations and downloaded the image to the
execution location on the DRAM.
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6.8

After detecting the change in the PCI Express Boot Address Register, the bootROM uses the value
passed as the location of the Main header and verifies the header checksum to make sure that it is
valid.

The bootROM uses the Destination Address as the absolute location of the image to check the
image checksum-32.

Finally, if the checksum is valid, the bootROM jumps to the Execution Address specified in the Main
header and starts running from there.

BootROM Behavior When Recovering from Deep
Idle Mode

During the normal boot process, the bootROM only activates CPUQ. Any additional CPUs must be
handled by the second stage boot loader. However, when recovering from Deep Idle mode, each
CPU is activated separately, since each CPU has its own stack and execution pointer.
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7 Marvell® Core Processor

The device uses the Marvell® Core Processor ARMv7 implementation in ARMv7, compliant with the
ARMV7 architecture.

For full details and specifications about the Marvell® Core Processor, refer to the ARMADA® XP MP
Core Highly Integrated Marvelf® ARMv7 SoC Processors Datasheet, Doc. No. MV-S108492-00.

The CPU registers are located in Appendix A.2, CPU Sub-System Registers, on page 600.
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Level-2 Cache

The Level 2 (L2) cache is a high-performance memory subsystem add-on, for the MVV78230/78x60.

The addition of a secondary cache, also referred to as a L2, is a recognized method of improving the
performance of processors-based systems, when significant memory traffic is generated by the
processors and I/O.

The device's L2 cache is an on-chip, unified instruction and data Level 2 cache, shared by all CPUs
on the device. This L2 cache is designed to serve as a large last level cache, while keeping the L1
caches small and tightly coupled to the core.

The L2 cache architecture maintains coherency between all the CPU cores, as well as maintaining
the ability of serving multiple CPU accesses in parallel.

The shared L2 cache is architecturally visible to each processor core. It appears as Level 2 to the
processor. Thus, in addition to the memory mapped register programming specified in this section,
the L2 cache is also discoverable, maintainable, and enabled through CP15 registers and
operations. This is described in the CP15 chapter of the CPU datasheet. Only legacy and firmware
control of the L2 cache need to be performed by the memory mapped register model. All cache
maintenance, discovery, and software-visible enabling of the L2 cache can be performed by the
same architectural features that are used to manage the internal caches inside the processor core.

Additional functionality of the unit is SRAM, where part of the memory used for L2 cache is allocated
for direct CPU and IO accesses and functions as memory space. These memories have no cache
characteristics, and instead, are pure SRAM memories.
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Features
Figure 14: Quad Core Level-2 Cache High-Level Block Diagram
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The L2 cache registers are located in Appendix A.2, CPU Sub-System Registers, on page 600.

8.1 Features
The MV78230/78x60 supports the following L2 cache configurations:

MV78460 m  Unified, shared, 2 MB cache
32-way set-associative cache

MV78230 m  Unified, shared, 1 MB cache

MV78260 m  16-way set-associative cache

The L2 key features are:

Physically indexed and physically tagged
Single Tag per Line cache structure, with a fixed line length of 32B; Data RAM is byte writable
Configurable SRAM or cache mode per way

Write-back and Write-through mode selection, according to the page table setting, as
determined by the processor memory page attributes
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8.2

8.2.1

m  Only Write-through mode, regardless of the page table setting—on cache addresses only
(configurable)

m  Only Write-back mode, regardless of the page table setting—on cache addresses only
(configurable)

m  Pipelined cache structure, supporting multiple, outstanding, Read and Write requests, improved
non-blocking conditions, delivering a data rate of 32B per cycle upon multiple masters
simultaneous access.

m  Multiple, outstanding misses, enabling miss-under-miss and multiple outstanding line fills from
memory

m  Hit-under-miss, the new request is served while the L2 cache performs the line-fill operation
from memory

Configurable Pseudo-Random or Pseudo-LRU replacement algorithm

Support for multiple masters simultaneously access and data delivering

Way Lockdown format, for data and instructions based on requesting processor
Way Lockdown format, for I/O data write accesses

Access to SRAM Way is performed by the regular L2 cache pipeline, supplying full pipelining
between different accesses types

SRAM maps all processors accesses types and masters (instruction, data, and the Memory
Management Unit (MMU)), including non-cacheable accesses

L1 Data and L2 coherency snooping for I/O according to request attribute

L2 allocate for I/O according to request attribute

ECC generation, checking, correction, detection, and reporting for data arrays
Parity generation, checking, and reporting for tag arrays

ECC and parity error injection modes for testing

Different static and dynamic Power Management modes

Supports interrupt generation on cache controller events

Memory mapped L2 cache register file accessible by all processors

Cache maintenance operations, performed by programming the operation in the L2 cache
registers

Clean, Invalidate, and Clean-and-Invalidate atomic range operation
L2 cache performance events monitoring

L2 Cache Requests Types

There are two types of requests to the L2 cache that may be initiated from the attached processors
and the 1/0 masters that share it.

m  General Memory Level-2 Cache Requests
m L2 Cache Maintenance Operations

General Memory Requests to L2 Cache

The L2 controller receives various types of requests from the Coherency Fabric. The request can be
marked as allocate or non-allocate while targeting the L2 cache. Whenever a read request misses
the L2 cache, the associated data is retrieved from the lower memory level and replicated to the L2
cache, if allocation is required by the request. If not, the data is routed directly to the requester and
the L2 cache is not updated. Whenever a write request misses the L2 cache, the associated data is
stored to the L2 cache on full cache-line access, if allocation is being required. If not, the data is
forwarded directly to the lower memory level.

The allocation modes are utilized for coherency maintenance between the processors cached data
in the L2 cache and any I/O master requiring the most updated version of it. By setting an I/O read
and write request as coherent and non-allocate, the L2 cache is snooped but is not updated on a
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miss. This mode of operation ensures data consistency between the I/O masters and the
processors. It also prevents trashing critical processor cache lines and minimizes cache pollution.

The L2 controller also supplies caching capabilities for non-cacheable agents, or for address spaces
that are defined as non-cacheable in the processors’ Level-1 caches as programmed in the
processors memory page attributes. For example, the MMU descriptors that are non-cacheable in
the processor can be programmed as outer cacheable. They are replicated in the L2 cache to speed
up the TLB Lookup process, and are shared among all the processors.

The global write-allocate modes is controlled by programing the <Force Write Allocate> field in the
L2 Aucxiliary Control Register (Table 295 p. 691).

Table 18 details the L2 controller supported transactions.

Table 18: General Memory Level-2 Cache Requests

Request Type Description

Instruction line fill L2 line-fill request from L1 Instruction Cache (I-cache) of the
requester processor.
On a miss, the L2 issues a line-fill request through the external

memory.

Data line fill L2 line-fill request from L1 Data Cache (D-cache) of the requester
processor.
On a miss, the L2 issues a line-fill request through the external
memory.

MMU line fill L2 read request from MMU of the requester processor.

On a miss, the L2 issues a line-fill request through the external
memory. On a hit, data is returned directly from the L2 cache.
For the MMU transaction type, only the required double-word is
returned to the requester while the L2 is filled with the entire
cache-line containing it.

L1 stores in Write-through On an L2 cache hit, the data is written to L2.

(WT) page attribute On a miss, data is not written to L2, unless a write-allocate on a full
cache line is required and the global write-allocate mechanism is
enabled.

On both a hit and a miss, data is also forwarded to the main memory
through the write buffer.

L1 stores in Write-back (WB) On an L2 cache hit, data is written to L2 and is not forwarded to the
page attribute main memory.
On a miss, data is forwarded to the main memory, unless
write-allocate on a full cache line is required, and the global
write-allocate mechanism is enabled.

L1 dirty cache-line Request to store victim data when the L1 Data Cache victimizes a
victimization dirty line in the WB page attribute.
Register file access Access to the L2 private register file on Read and Write for

configuration or control operations.

IO Master Read access On a hit, data is returned directly from the L2.
On a miss, data is returned from the main memory but is not
allocated to the L2.
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8.2.2

Table 18: General Memory Level-2 Cache Requests (Continued)

Request Type Description

10 Master Write access On a hit, data is written directly to L2.
On a miss, data is written to the main memory, unless a full
cache-line Write is required with a Write-allocate indication.

1. <L2 WBWT Mode> field in the L2 Auxiliary Control Register (Table 295 p. 694) is configured as a
PageAttibute mode.

L2 Cache Maintenance Operations

L2 cache maintenance is performed through a set of memory-mapped registers and is shared by all
the processors in the coherency fabric. The L2 controller supplies the following groups of
maintenance operations:

m  Invalidate, Clean and Flush by Way

m Invalidate, Clean and Flush by Physical Address (PA)

m  Invalidate, Clean and Flush by Index/Way

m  Invalidate, Clean and Flush by Physical Address range

All cache maintenance operations by the physical address are non-blocking, consecutive accesses
to the cache. These operations are served, and memory ordering with respect to these operations is
handled by the cache controller.

The cache maintenance operation is completed once the line is drained to the cache eviction buffer.
The cache memory barrier operation is required to synchronize these operations with the lower level
memory. This mode of operation delivers better performance than draining it directly to lower
memory level, when a range of addresses should be synchronized to the point of coherency with the
1/0 agents. To further improve it, the L2 controller supports range cache maintenance by single
command operations.

Triggering a range operation is performed in two steps. In the first step, the range base address is
programmed. The second step sets the range top address and triggers the command. To enable
atomic range operation in a multiprocessor environment, the L2 supplies a dedicated base address
register for each requester, virtually accessed by all processors through Table 272, L2 Range Base
Address Virtual Register, on page 679 and a shared command triggering register. Any access to the
command triggering register results in a cache range operation with the base address associated
with the initiating requester. Additional requests from other processors are queued for service in the
cache controller, thus releasing the bus for other memory operations.

Way operations run as background tasks. The L2 controller serves any consecutive memory access
while processing the maintenance operation. Further maintenance operations are blocked until the
completion of the current one.

The cache controller returns the status of the current maintenance operation by reading the <CPUO
Op Pending> field in the L2 Maintenance Status Register (Table 270 p. 678).

The cache controller synchronizes all pending and active operations to point-of-coherency by
triggering the L2 Sync Barrier operation.

Doc. No. MV-S107021-U0 Rev. A Copyright © 2014 Marvell

Page 126

Document Classification: Proprietary Information May 29, 2014, Preliminary



Level-2 Cache
L2 Cache Requests Types

Table 19 details the supported cache maintenance operations.

Table 19: Core Special Maintenance Instruction L2 Requests

Request Type

L2 Sync Barrier

Invalidate L2 Way

Invalidate L2 Index/Way

Invalidate L2 line by PA

Invalidate range by PA

Clean L2 Way

Clean L2 line by

Index/Way

Clean L2 line by PA

Clean range by PA

Copyright © 2014 Marvell
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Description

The L2 controller completes all active and pending operations, drains

intermediate and eviction buffers to memory.

NOTE: Completion is returned to the initiator only on completion.
Meanwhile the processor is stalled. This operation is used after
cache maintenance operations.

Trigger the operation by writing to the L2 Sync Barrier Register

(Table 269 p. 677).

Invalidate all lines in the specified Ways, including any dirty lines.
Trigger the operation by writing to the L2 Invalidate by Way Register
(Table 278 p. 681).

Invalidate an L2 cache line as specified by the Index and Way.
Trigger the operation by writing to the L2 Invalidate by Index Way Register
(Table 277 p. 680).

Invalidate a specific L2 cache line, if the supplied physical address
matches an address entry in the array.

Trigger the operation by writing to the L2 Invalidate by Physical Address
Register (Table 275 p. 680).

Invalidate a memory range in the L2 cache, presented by the base and top
PA boundaries.

Trigger the operation by writing to the L2 Invalidate Range Register
(Table 276 p. 680). This uses the range base address from the
pre-programmed corresponding processor in the L2 Range Base Address
Virtual Register (Table 272 p. 679)

Clean all dirty lines in the specified Ways.

Trigger the operation by writing to the L2 Clean by Way Register
(Table 283 p. 684). When a Way bit is set to 1, it is cleared to 0 when the
corresponding Way is totally cleaned.

Clean a L2 cache line as specified by the Index and Way.

If that line is dirty, it is written back to memory and marked as non-dirty.
The valid bit remains unchanged.

No operation is performed in L2 WT mode.

Trigger the operation by writing to the L2 Clean by Index Way Register
(Table 282 p. 683).

Clean a specific L2 cache line, if the supplied physical address matches an
address entry in the array.

No operation is performed in L2 WT mode.

Trigger the operation by writing to the L2 Flush by Physical Address
Register (Table 284 p. 684).

Clean a memory range in the L2 cache, presented by base and top PA
boundaries.

No operation is performed in L2 WT mode.

Trigger the operation by writing to the L2 Clean by Range Register
(Table 281 p. 683). It uses the range base address from the
pre-programmed corresponding processor.
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Table 19: Core Special Maintenance Instruction L2 Requests (Continued)

Request Type Description

Clean and Invalidate L2  Clean and invalidate a L2 cache line as specified by the Index and Way.

line by Index/Way In L2 WT mode, the operation only invalidates the line (since lines are
never dirty).

Trigger the operation by writing to the L2 Flush by Index Way Register
(Table 286 p. 685).

Clean and Invalidate L2 = Clean and invalidate a specific L2 cache line, if the supplied physical
line by PA address matches an address entry in the array.
In L2 WT mode, the operation only invalidates the line (since lines are
never dirty).
Trigger the operation by writing to the L2 Flush by Physical Address
Register (Table 284 p. 684).

Clean and Invalidate Clean and invalidate a memory range in the L2 cache, presented by base
range by PA and top PA boundaries.
In L2 WT mode, the operation only invalidates the line (since lines are
never dirty).

Trigger the operation by writing to the L2 Flush by Range Register

(Table 285 p. 685). It uses the range base address from the
pre-programmed corresponding processor L2 Range Base Address Virtual
Register (Table 272 p. 679).

8.2.2.1 Broadcast of Unified Cache Maintenance

ARMvV7 requires MVA-based data and unified cache maintenance operations affect through the
Point of Coherency. With the addition of the architecture-shared L2 cache, the point of coherence is
defined as beyond the shared cache. Therefore, all the MVA-based maintenance instructions are
applied on the shared cache as well.

The extensions also include data/unified cache maintenance operations that broadcast the
following:

m  DCIMVAC: Invalidate cache line to the point of coherency

DCCMVAC: Clean cache line to the point of coherency

DCCIMVAC: Clean and invalidate cache line to the point of coherency

DCCMVAU: Clean cache line to the point of unification

Hierarchal invalidate, clean, and clean-and-invalidate data cache by Set/Way is defined by the
CPU CP15 coprocessor.

The cache controller supports acceptance and pipelining of multiple maintenance instructions to the
point of coherency by the processors. It services a CPU Data Memory Barrier instruction that is
globally broadcast to the L2 cache.

8.3 L2 Cache Functional Description

This section provides a functional description of the following L2 Cache mechanisms:
L2 Cache Register File

L2 Cache Initialization

Way Disabling Mechanism

L2 Global Write-Through and Write-Back Modes

Way Lockdown

Replacement Policy

SRAM Allocation
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L2 Cache Register File

The L2 cache includes a single memory-mapped register file for system configuration and control
operations that is shared among all the processors. The registers are divided into the following
categories:

L2 Configuration registers

L2 Cache Maintenance registers

L2 Cache Performance Monitor registers
L2 Error and Interrupt Control registers
m  Miscellaneous L2 registers

The register file can be accessed in both L2 Enable and L2 Disable modes.

On a write to one of the L2 configuration registers, the L2 performs cache synchronization. The write
occurs only after the L2 buffers are empty. There are no outstanding requests whatsoever. All
expected line-fill commands are completed, as well. The L2 is in Idle state. New commands for both
the register file and L2 regular operation are not served until the configuration write takes place.

L2 Cache Initialization

The L2 cache is initially disabled following a power-on, hard reset or exit from low power
management mode. Following reset, the L2 controller performs self-invalidation, and all of the cache
lines in all of the ways are invalidated. After the global hardware or software invalidation has been
performed, and the other L2 configurations have been set, the L2 controller can be enabled for
normal operation by setting the <L2Enable> field in the L2 Control Register (Table 294 p. 690).

Way Disabling Mechanism

The L2 controller is a 16/32-way, set associative cache, and it supports a Way Disabling mechanism
for power reduction by changing the cache <Associativity> field in the L2 Auxiliary Control Register
(Table 295 p. 692).

Once a Way is disabled, it is never used for L2 cache operations and is considered as locked-down
for all the requesters and access types.

This mode enables flexible tuning between performance and power.

L2 Global Write-Through and Write-Back Modes

The L2 controller supports the following cache WT and WB policies:

m  Request Attribute: Policy whether the write is forwarded to the memory in addition to the cache
updating is determined by the request attribute. If the requester is the processor, these
attributes are programmed for each page in the processor MMU. An I/O request is always
considered as write-back.

m  Always Write-Back mode: In this mode, the write is never forwarded to the memory on cache hit
regardless of the request attribute.

m  Always Write-Through mode: In this mode, the write is always forwarded to the memory on
cache hit regardless of the command attribute. The line never becomes dirty, so there is no
need for the data entry to be cleaned back to memory, after it has been evicted on replacement.

All of the operation modes are controlled by the <L2 WBWT Mode> field in the L2 Auxiliary Control
Register (Table 295 p. 694).

Way Lockdown

When using the Way Lockdown mechanism, the unified L2 can be dynamically divided between
different processors and between Instruction, Data and the 10 requests. In addition, a critical code or
data can easily be directed to a specific cache Way, with the assurance that it will not be polluted or
evicted.
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8.3.6

In the Way Lockdown for /O Write access, with Write-Allocation configuration, the L2 evicts a line
only for a Way that is not locked down to the 1/0O master.

On cache read miss, a new line fill is required from a processor L1 cache for instruction or data.
Potentially the line can be located in any Way in the L2. The Way Lockdown mechanism restricts the
cache, so that it only locates new lines on Ways that are not locked.

The L2 controller supports a separate locking mechanism for the instruction and data per processor.
Way lockdown for the specified processor data caching is controlled by the L2 CPUn Data Lockdown
Register (n=0-3) (Table 256 p. 664) and Way Lockdown for the specified processor instruction
caching is controlled by the L2 CPUn Instruction Lockdown Register (n=0-3) (Table 257 p. 667).

The L2 controller supports the option for locking down a specified Way for I/0 data accesses by
programing the 10 Bridge Lockdown Register (Table 258 p. 669).

If all the Ways are data locked and there is a data miss that also misses the L2, the L2 controller
issues a data Read request to the external memory. The data bypasses the L2 cache, going directly
to the L1 D-cache, without updating the L2 data arrays. The same process occurs for instruction.

Replacement Policy

The MV78230/78x60 L2 controller uses a pseudo-random replacement algorithm, that fills empty,
unlocked Ways first. The victim is chosen as the next unlocked Way relative to the last accessed
Way.

Any combination of Ways can be locked. The locking mechanism affects the replacement algorithm
so that only the unlocked Ways are candidates for replacement. If only one Way is unlocked, this
Way is always replaced. If all Ways are locked, no replacement takes place.

Pseudo-Random (LFSR)

A free-running LFSR defines the victim candidate. If the victim candidate is not available for
allocation, the first capable Way over a pre-defined cycle order.

Semi-pLRU

Pseudo LRU replacement is a variant of LRU where the “ages” of the lines in the cache are not
linearly ordered, but are arranged in a tree as shown in Figure 15. The advantage over a pure LRU
system is that it needs fewer state bits and hence needs a less complex update logic.

pLRU maintains a tree of cache Ways for every index. Every inner tree node has a bit pointing to the
sub-tree that was used most recently. The nodes are updated upon a hit and upon every
replacement. A victim is chosen by walking down the tree through the arcs that are not pointed.
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Figure 15: pLRU 8-Way Tree Example

Victimcandidate Vidimcandidate

Figure 15 is an example of a change in the 8-way pLRU tree. The tree has 7 variable {b0, b1, b2, b3,
b4, b5, b6}. The emphasized arrows provide the meaning of the variables. In the left tree, Way3 is
the victim candidate. Following its replacement, the tree is updated so that the nodes point to the
replaced Way, therefore pointing to the last Way to be used. As a result of this transformation, Way1
becomes the victim candidate.

For implementations that contain more than 8 ways, a semi pLRU victim decision is used as shown
in Figure 16. In this scheme, the hardware tree decision is localized per groups of 8 ways (quads).
The victim group is pseudo randomly chosen using an LFSR. Each pLRU tree independently
maintains a tree for its ways.

Figure 16: Semi-pLRU for 32 Ways
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A replacement mode is determined by the <Replacement Strategy> field in the L2 Auxiliary Control
Register (Table 295 p. 691).
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8.3.7 Write Allocate Modes
New cache lines are allocated for full-cache-line writes (32B).
Partial write requests (less than 32B) update the cache only if the line is already valid in the cache.
In this case, the write data is merged into the valid data that is already placed in the cache. The
allocation request is controlled by an attribute from the initiator and it is enabled for the processors
and 1/O accesses.
Write allocate feature can be forced by <Force Write Allocate> field in the L2 Auxiliary Control
Register (Table 295 p. 691).
8.3.8 SRAM Allocation
Each Way of the MVV78230/78x60 L2 cache can be configured as a sequential memory-mapped
SRAM with ECC protection on the data RAMs, supporting both read and write, cacheable and
non-cacheable accesses for the processors and 1/0 masters.
The SRAM is implemented as part of the L2 logic via an allocation algorithm that converts the L2
cache Way to SRAM, utilizing the L2 controller pipeline capabilities, serving cache and SRAM
accesses simultaneously.
Configuring a specific Way (notated way i) to function as an SRAM that is based at a 64KB aligned
address (notated saddr[31:0]) is done by performing the following sequence:
1. Lockdown the specific way for all masters. This is done by setting bit[i] in:
e |2 CPUn Data Lockdown Register (n=0-3) (Table 256 p. 664)
¢ L2 CPUn Instruction Lockdown Register (n=0-3) (Table 257 p. 667),
¢ |O Bridge Lockdown Register (Table 258 p. 669).
2. Trigger an Allocation Block command by writing to L2 Block Allocation Register
(Table 279 p. 681) the following data:
¢ Set <Allocation Way ID> to be i
¢ Set <Allocation Data> to Disable (0x0)
¢ Set <Allocation Atomicity> to Foreground (0x0)
¢ Set <Allocation Base Addr> to be saddr[31:10]
3. Configure one the SRAM windows SRAM Window n Control Register (n=0-3)
(Table 161 p. 617) to direct the required range to be an SRAM:
* Set Base to be saddr[31:16]
* Set Size to 64KB (0x0)
¢ Set WinEn to True
In case an SRAM region is larger than 64 KB and thus requires 2 or 4 ways, step 2 can be repeated
for all ways and a single SRAM Window that covers more than 64 KB can be enabled. For example,
to configure a 128 KB SRAM, step 2 can be performed on two ways and then the <Size> field in the
SRAM Window n Control Register (n=0-3) (Table 161 p. 617) is set to 128 KB (0x1).
Software does not need to handle the status of the SRAM allocated way prior to this procedure. The
cache controller evicts and invalidates any previous content in the allocated Way.
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Figure 17 illustrates the Per-Way SRAM initialization flow.
Figure 17: SRAM Initialization per Way
WAY-i SRAM Base Address
Tag Array Valid Array Dirty Array
X [ 1] [0 |
X +0x20 1 0
X +0x40 1 0
X +0x1 FFEQ 1] |0 |

DRAM Aware Eviction

When activating a 64-bit DRAM interface with DDR3, the DRAM native burst length is 64 Bytes. To
avoid the utilization degradation that exists, when every evicted 32-Byte cache line performs a
64-Byte access over the DDR, the DRAM controller contains a write coalescing mechanism that
packs memory writes. The efficiency of the DRAM controller write coalescing depends on the gap
that exists between the eviction of consecutive cache lines. The L2 can be configured such that
when a 32 byte cache line is evicted due to its replacement, the 32 byte cache line that completes
the 64 Bytes native access is looked up and if it is modified, its data is written to the DRAM
controller. Following this action, the completing cache line remains allocated and clean in the L2
cache. This action is referred as a DRAM aware eviction. To enable DRAM aware eviction, set the
<L2DualEvictionEnable> field in the L2 Auxiliary Control Register (Table 295 p. 693).

Error Handling

This section describes the following L2 error handling functions:
m  Error Protection Support

m  Error Protection Flows

m  Error Reporting

m  Error Injection

Error Protection Support

The L2 controller supports error protection for both data and tag arrays.
m  Data arrays are ECC protected.
m  Tag and valid arrays are parity protected.

The Error Protection mechanism can be enabled and disabled.
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8.4.2
8.4.21

8.4.2.2

Error Protection Flows

Data ECC Protection

The L2 SRAM unit delivers data memory protection, using the ECC Extended Hamming algorithm
for both SRAM and L2 data memories. The L2 ECC protection is guaranteed to detect a double-bit
error, and to correct a single-bit error in the L2 data arrays, dubbed uncorrectable and correctable
errors respectively. The ECC is calculated on double-word (64-bits) data resolution, resulting in a
read-modified-write (RMW) operation on a sub-cache-line write to L2, when not all bytes within a
double word of the write operation are valid.

The unit behaves differently when an uncorrectable error is detected on the following transactions
types:

L2 Read hit with an The unit returns an abort indication with the L2 trashed data. An
uncorrectable ECC error error is reported.

L2 Read miss No change occurs.

L2 Eviction with an If the evicted line is not dirty, no error is reported.

uncorrectable ECC error If the evicted line is dirty, an error is reported and writing-back the

erroneous line through the lower memory level is determined by the
setting of the <L.2InvalEvicLineUCErr> field in the L2 Auxiliary
Control Register (Table 295 p. 691).

L2 Clean, Flush, and If the line is not dirty, no error is reported.

Invalidate If the line is dirty, an error is reported and writing-back the

erroneous line result of the clean operation to the lower memory
level is determined by the setting of the <L2InvalEvicLineUCErr>
field in the L2 Auxiliary Control Register (Table 295 p. 691).

L2 Write hit with double ECC is calculated. No error is checked or reported.
word resolution (Nx64-bit)
access

L2 sub cache-line Write hit, The unit writes the inversion of two bits, at the calculated ECC, to
when RMW is required, and the ECC arrays. This ensures an ECC error on the next read or
uncorrectable ECC error eviction from this entry.

An error is reported on the write operation.

Tag Parity Protection

The parity protection mechanism is implemented in the L2 and SRAM, for the tag and valid arrays.
Each tag input is stored in memory, with an additional bit that holds the result of the XORed value.
This bit is compared when the tag is read and XORed to check for correctness. The appropriate
interrupt bit that indicates the error is allocated in the L2 Interrupt Cause Register (Table 292 p. 689).

On each tag lookup, the entry is considered a hit only when there is a hit indication and no parity
error on the tag (a true hit). If a parity error is detected, the entry is considered a false hit, regardless
of the comparator output.

The unit behaves differently when tag parity error is detected on the following transactions types.
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Read

Write

L2 Clean, Flush and
Invalidate by PA/Range

L2 Clean, Flush, and
Invalidate by Index/Way

Error Reporting

Level-2 Cache
Error Handling

Read with “true hit”, no error is reported.

Read miss and no parity error is detected on any Way. It is a “true miss”
indication, no error is reported.

Read miss and at least one parity error is detected on any Way, the L2
controller treats it as a “false hit”. Erroneous data associated with the
error indication is returned to the requester read operation. An error is
reported.

Write with “true hit”, no error is reported.

Write miss and no parity error is detected on any Way. It is a “true miss”
indication. No error is reported.

Write miss and at least one parity error is detected on any Way, the L2
controller treats it as a “false miss”. The write is not allocated to L2, and
the write data is written to the lower memory level. An error is reported.

Operation with “true hit”, no error is reported.

Operation miss and no parity error is detected on any Way. It is a “true
miss” indication. No error is reported.

Operation miss and at least one parity error is detected on any Way, no
cache operation is performed. Error is reported.

Operation results with no parity error, no error is reported.

Operation results with parity error on the requested Index/Way. No error
is reported for invalidate only or clean or flush of not dirty line.
Otherwise, an error is reported and the line is not written back to
memory.

To deliver maximum assistance to the software, special error monitoring registers were added for
capturing the erroneous event information.

L2 ECC Error Count Register For counting the correctable and uncorrectable ECC errors

(Table 259 p. 672)

detected.

L2 ECC Error Threshold Register For setting the threshold value of the counters for interrupt

(Table 260 p. 673)

generation.

L2 Error Address Capture Register For holding the address that caused the error.

(Table 262 p. 674)

L2 Error Way Set Capture Register For holding the Index/Way containing the erroneous data

(Table 263 p. 675)

or tag.

L2 Error Attr Capture Register For holding the validity information on the pended error

(Table 261 p. 673)

and its related attribute. Includes the source of the
transaction, the transaction type, and the captured error

type.

The L2 controller counts the correctable and uncorrectable ECC errors, when the counter reaches
the configured threshold, the appropriate interrupt is set in the L2 Interrupt Cause Register

(Table 292 p. 689).
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8.4.4

8.5

8.5.1

8.5.2

Error Injection

The L2 controller includes support for injecting an error into the L2 ECC and Parity arrays. This may
be used for testing the error recovery software. The error is deterministically injected on a specified
address during the line fill operation. When the allocated physical address is equal to the
<ErrAddrinject> field in the L2 Error Injection Control Register (Table 264 p. 675), and the
<EccErrInjectEn> or/and <TagParErrinjectEn> are enabled, the corresponding error will be injected
to this address. In addition, the ECC Error location and type is configured through the <Error
Injection Mask>.

Events Monitor Counters

Event counters monitor both L2 performance and the Shared L2.

L2 Performance Monitor

The L2 cache performance monitor provides the ability to monitor and count the following
pre-defined events among others:

Cache activity and idle clocks

Total instruction

Data accesses to the cache

Misses for instruction

Internal stalling conditions

The L2 controller includes two sets of 64-bits performance counters for monitoring different L2 cache
events. Each event can be configured to be monitored only for the processors or 1/O,.

The events monitor includes the following registers:

L2 Counter <X>_ Configuration Register Per counter programming register for controlling

(X=0-1) (Table 289 p. 687) the monitor operation: enabling the counter,
selecting the monitored event, and the
monitored masters (CPUs or 1/0O).

L2 Counter X Value Low Register (X=0-1)
(Table 290 p. 689)

L2 Counter X Value High Register (X=0-1)
(Table 291 p. 689)

The counter low value (bits[31:0])
The counter high value (bits[63:32])

The performance monitor enables the generation of an interrupt triggered by a counter overflow
condition.

Shared L2 Events Monitoring

The event monitor can be configured to gather statistics on the operations of the MV78230/78x60
Shared L2. Event monitor control is performed directly through each CPU local event monitor
interface (that is, CP15 Performance Monitor Unit).
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Level-2 Cache
Power Management

Table 20 lists the events that are monitored per CPU in the MV78230/78x60 Shared L2.

Table 20: Shared L2 Events

Event Monitored Counter Description Mapping in

CP15 Event
Select Register

Per CPU L2 cache event,

L2 Cache Eviction Counts total number of write evictions from the L2 cache 0xDO
Data Read Hit Counts total number of data read hits 0xD1
Data Read Request Counts total number of data read requests 0xD2
Data Write Hit Counts total number of data write hits 0xD3
Data Write Request Counts total number of data write requests 0xD4
Instruction Read Hit Counts total number of instruction read hits 0xD5
Instruction Read Requests Counts total number of instruction read requests 0xD6

Request Causes and Eviction = Counts total number of requests that caused an eviction from this = 0xD7

Reserved

8.6

8.6.1

CPU

Reserved 0xD8-0xD15

Power Management
The L2 Cache supports the following Power Management features:

m L2 Idle state: dynamic clock gating
m L2 Retention state: dynamic memory state retention

m L2 Deep Ildle state: cache controller and its memories are powered down, state is stored in
lower memory level.

Cache Controller Power Management Features

The L2 contains a mechanism that reduces power consumption upon a configurable period of IDLE
cycles. By doing so, the L2 offloads from software the need to actively do the same actions upon an
IDLE period that it enters (e.g., when the CPU enters to WFI). In addition, it eliminates the power
management coordination between the cores in the multiprocessor subsystem on trying to place the
L2 in low power mode while not all the cores are IDLE simultaneously.

Enabling the <DCPDEnable> field in the L2 Dynamic Clock Gating Register (Table 267 p. 676)
results in L2 clocks shut-down after the <DCPDTreshold> IDLE period. Setting the <FCPD> field in
the L2 Force Power Down Register (Table 268 p. 677) forces immediate L2 clock gating.

Enabling the <DMPDEnable> field in the L2 Dynamic Memory Power Down Register (Table 266

p. 676) results in placing the L2 arrays to low power state retention state after the <DMPDTreshold>
IDLE period. Setting the <FMPD> field in the L2 Force Power Down Register (Table 268 p. 677)
forces an immediate L2 Memory powering down.
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8.6.2

Waking-up from these two modes is automatically performed by the cache controller upon the
detection of any cache access.

Multiprocessing Power Management Features

The MV78230, MV78260, and MV78460 support powering down of the entire multiprocessor
subsystem, including all the cores and the shared L2 cache.

For shutting down the core and its L2 cache, each core’s powering down might be independent of
the other cores. Therefore, it must not request flushing the shared L2 cache. However, on the time
point when all the cores have been placed in the power-down state, the shared L2 cache can be
powered down as well for further power saving. This is fully achieved by the MP_PMU service unit
and the L2 contoller.

The PM_PMU service unit includes hardware coordination logic to detect when all cores have
reached their power down conditions. It then instructs the shared L2 cache to flush its content to the
lower-level memory, places it in a reset state, and communicate with the DEV_PMU to power down
the entire multiprocessor subsystem. Immediately following the power-down exit, the L2 controller
performs a self invalidation.

Figure 18: L2 Power Down
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Multiprocessor Interrupt Controller (MPIC)

9 Multiprocessor Interrupt Controller
(MPIC)

This section describes the operation of the Multiprocessor Interrupt Controller (MPIC) add-on for the
MV78230/78x60 device.

The Interrupt Controller is a single functional unit placed in the device Coherency Fabric, alongside
the CPUs. It provides multiprocessor interrupt management, and is responsible for receiving
interrupts from different sources, prioritizing them, and distributing them to the target CPUs.

Figure 19 describes the Interrupt Controller unit.

Figure 19: Main Interrupt Controller High-Level Block Diagram
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The MPIC registers are located in Appendix A.2, CPU Sub-System Registers, on page 600.

9.1 Features

The following Multiprocessor Interrupt Controller features are supported:

m  Configurable model for multiprocessor interrupts distribution and prioritization
m  Centralized engine for all the processors
m  Programmable Critical (FIQ) and Non-Critical (IRQ) interrupt mapping per interrupt source and
per processor
Programmabile interrupt prioritization levels, with fairness and interrupt preemption mechanism
Programmable Task Priority per processor
Supports interrupt selection by hardware (return the highest priority ID) or by software (Select
Cause: legacy)
m  Generation and broadcasting of software interrupts between all the MP processors and
between I/O masters (for example, external hosts) and the processors
m  Global SoC Error Cause with per-processor masking
m  PCle Root Complex MSI capturing and delivering to the processors
m  Supplies mapped memory registers interface, accessed by all the CPUs
m  Running at Coherency Fabric clock frequency, enables low access latency for the processors
9.2 Functional Description
9.21 Interrupt Sources IDs

The MV78230/78x60 Interrupt Controller supports a setting for the maximum number of main
interrupt sources through the <NumINT> field in the MPIC Control Register (Table 296 p. 694). Each
interrupt source is identified by an interrupt ID.

The interrupt’s sources and their mapping are listed in Table 21, Internal Interrupts Mapping, on
page 151.

The <NumINT> interrupts are divided to the following 2 groups:

CPU Private Interrupts: Interrupt sources ID0-ID28 are private events per CPU. Thus, each

processor has a different set of events map interrupts ID0O-ID28.

The following events are allocated by hardware per each CPU:
32-bit maskable Inbound Doorbell for IPl and message passing
Two Local Timers

One Local Watchdog Timer

Summary of SoC Error events

Summary of Coherent Fabric events

GPIO Interrupt Control

m  Network ports events

Shared Global Interrupts:  Interrupt sources ID29-ID115 are events shared to all CPUs. Thus,

for all CPUs the event mapped to interrupts ID29-1D115 are mutual.
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Multiprocessor Interrupt Controller (MPIC)
Functional Description

9.2.2 Interrupt Sources Control
Each interrupt source has a programmable interface that defines its distribution to the processors.

Figure 20 illustrates the main interrupt controller sources and distribution blocks.

Figure 20: Interrupt Sources Block Diagram
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Each source (identified by an ID) has a 32-bit control register for programming its distribution
attributes.

m  The fields controlling CPU private interrupts are in the Interrupt Source i Control Register
(i=0-28) (Table 301 p. 697) (i = interrupt source ID).

m  The fields controlling the Shared Global Interrupts are in the Interrupt Source i Control Register
(i=29-115) (Table 302 p. 699).
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The following control options exist for each interrupt source:

CPU IRQ Mask field:

CPU FIQ Mask field:

EP Interrupt Mask field:

CPU EP Interrupt Mask field:

Priority field:

Interrupt Enable field:

For each CPU, a single bit field that defines whether the interrupt
assertion is sensed as an IRQ event.

For each CPU, a single bit field that defines rather the interrupt
assertion is sensed as an FIQ event.

This field only exists for the global shared interrupts (ID29-1D115). It
is used when the MVV78230/78x60 functions as a PCle Endpoint.
This is a single bit field that defines the interrupt assertion sent over
the PCle as an interrupt message.

This field exists only for the CPU Private Interrupts (ID0O-1D28). It is
used when the MV78230/78x60 functions as a PCle Endpoint (EP).
For each CPU, a single bit field defines the private interrupt assertion
sent over the PCle as an interrupt message, or is not sent to the
PCle Host.

Defines 16 priority levels of the interrupt source. For further details
on the priority usage see Section 9.2.4.2, Hardware Interrupts
Prioritization Selection Mode, on page 144.

This field exists only for the global shared interrupts (ID29-ID115).
When this field is not set, the interrupt is not delivered to any CPU
regardless of the IRQ and FIQ Mask bits.

NOTE: The associated interrupt cause register is set regardless of
the value in this field.

To minimize the locking procedures, as required for read-modified-write atomic access to the

interrupt source control registers, the MV78230/78x60 Interrupt Controller provides an indirect

mechanism that makes it possible to perform a single write for masking, or unmasking, the

requester’s mask field, and for enabling or disabling the general interrupt enable bit:

m  To mask an interrupt with a specific ID, processor writes the interrupt ID to the Interrupt Set
Mask (ISM) Register (N=0-3) (Table 315 p. 706).

m To unmask an interrupt with a specific ID, processor writes the interrupt ID to the Interrupt Clear
Mask (ICM) Register (N=0-3) (Table 316 p. 706).

m  To set the interrupt enable bit of a specific ID, processor writes the interrupt ID to the Interrupt
Set Enable (ISE) Register (Table 299 p. 696)

m  To clear the interrupt enable bit of a specific ID, processor writes the interrupt ID to the Interrupt
Clear Enable (ICE) Register (Table 300 p. 696)

The ISM and ICM are banked registers and the ISE and ICE affect a field that is not processor
specific. Therefore, the interrupt handler is able to perform these accesses without knowing which

processor it is executed on.

Further details on register banking can be seen in the following section.

9.2.3 Per CPU Register Banking

Register banking refers to providing multiple copies of a register at the same address. The identity of
the requesting processor determines which copy of the register is addressed. Registers at offsets
0x00021000—0x000210FF are banked per CPU.

The MV78230/78x60 banked registers can also be accessed with a direct access mechanism, using
an explicit physical offset of each processor. This mechanism enables processors to access other
processors’ private space and for peripherals accesses to the registers as well. The offsets of the
direct access of the banked registers are at 0x00021800-0x00021BFF, such that a direct access to

the banked registers of CPUi]
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Functional Description

To enable interrupt controllers’ execution in a multiprocessor environment, without the need to know
which core it is being executed on, interrupt controller’s status and control registers are banked.

Figure 21 illustrates the banked register file mapping and the mapped direct access.

Figure 21: MP Subsystem Register File Mapping

0x20000
Global Configurations and
Control
0x21000
CPU Virtual Registers
0x210FF
0x21100
Reserved
21
CPUO Registers 0x21800
CPU1 Registers 0x21900
0x21A00
CPU2 Registers
0x21B00
CPUS3 Registers
0x21C00
Reserved
0x21FFF
9.24 Interrupts Delivering Modes of Operation

The Main Interrupt Controller provides 2 modes of delivering the source interrupt:

Software Interrupt Selection: Priority field is ignored, the interrupt pin is asserted to the
processor for each valid interrupt (valid is a non-masked asserted

interrupt).

Software is responsible of selecting the next interrupt to process.

Hardware Interrupt Selection Each interrupt source has a configured priority of 16 levels.

with Prioritization: Each processor maintains a configurable task priority of 16 levels.
Hardware delivers to each processor the highest priority interrupt
among all the pending interrupts that exceed the task priority of the

target processor.

IRQ interrupt assertion delivering mode can use either of these 2 modes.

F1Q and PCle Endpoint interrupts are enabled only by the Software Interrupt Selection mode.
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9.2.41

9.2.4.2

Software Interrupt Selection Mode

The interrupted CPU accesses the Main Interrupt Cause register that consists of four 32-bit
registers. These read-only registers store all the pre-masking version of the interrupts.

The CPU Interrupt Main Cause registers are:

m  Main Interrupt Cause ( Vec 0 ) Register (Table 319 p. 707)
m  Main Interrupt Cause ( Vec 1) Register (Table 320 p. 707)
m  Main Interrupt Cause ( Vec 2 ) Register (Table 321 p. 708)
m  Main Interrupt Cause ( Vec 3) Register (Table 322 p. 708)

Once an interrupt is asserted, an interrupt controller can identify the exact interrupt to be served by
reading all the Main Interrupt Cause vectors and the masks of the asserted interrupt sources.

To minimize this procedure to a single read, the MVV78230/78x60 contains a Selected Cause register
for both IRQ and FIQ:

m  Aread from the IRQ Select Cause Register (N=0-3) (Table 311 p. 703) returns the following
information:

e <Stat> is a single bit field that indicates that there is a valid interrupt (meaning, there exists
an interrupt with a cause and mask bit set)

e <VecSel> is 2 bit field that defines the Main interrupt Case Vector which contains the valid
interrupt. At the event of several Vectors with a valid interrupt, the Vector with smallest index
is chosen.

e <Cause> is a 29 bit field that contains a masked version of the content of Main interrupt
cause Vector that is pointed by the <VecSel>.

m  Similarly, a read from the FIQ Select Cause Register (N=0-3) (Table 312 p. 704), returns a main
interrupt cause vector of an asserted interrupt that is not masked for FIQ.

|§ | | The Main interrupt cause vectors as well as the Select Cause registers are banked
registers per CPU, and as such, an interrupt controller that approaches them receives
Note the information associated with the processor on which it is running.

Hardware Interrupts Prioritization Selection Mode

Hardware Interrupts Prioritization Selection mode can be applied to IRQ interrupt selection by
setting the <IRQPrioEnable> field in the MPIC Control Register (Table 296 p. 694). It can not be
applied to FIQ and PCle EP interrupts.

As described in Section 9.2.2, Interrupt Sources Control, on page 141, each interrupt source has a
control register that contains a 4-bit field for its priority. In addition, each processor has a <Task
Priority> field in the Current Task Priority (CTP) Register (N=0-3) (Table 313 p. 705).

The MV78230/78x60 Multiprocessor Interrupt Controller asserts IRQn of a specific processor when
it has a pending unmasked interrupt event with a priority that is greater than its specific <Task
Priority>. For example, if the CPU <Task Priority> value is 7, and the IDMA completion interrupt bit is
set with a priority level of 5, IRQn is not asserted. However, under the same Task Priority
configuration, if the USB interrupt is set with a priority of 9, IRQn is asserted.

On assertion of IRQnN, any read of the IRQ Interrupt Acknowledge (IIACK) Register (N=0-3)

(Table 314 p. 705) returns an ID of an unmasked pending interrupt with a priority that exceeds the
<Task Priority>. If there are several pending interrupts with priorities that exceed the <Task Priority>,
the pending interrupt with the highest priority will be served.

When the MV78230/78x60 Multiprocessor Interrupt Controller detects several interrupt events with
the same highest priority that exceeded the <Task Priority>, a pseudo-random arbitration is
performed between consecutive reads of the IRQ Interrupt Acknowledge (IIACK) Register (N=0-3)
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(Table 314 p. 705), guaranteeing fairness among all pending interrupts.

The MV78230/78x60 Multiprocessor Interrupt Controller supplies a preemption mechanism,
configured so that if, during the period lying between the IRQn assertion and the event of reading of
the IRQ Interrupt Acknowledge (IIACK) Register (N=0-3), a new interrupt event with higher priority
occurs, the new interrupt (that has a higher priority) is the one to be received.

A spurious interrupt ID (ID = 1023) is returned to the CPU on reading the IRQ Interrupt Acknowledge

(IIACK) Register (N=0-3) while no pending winning interrupt is listed.

The software procedure to utilize this mode is as follows:

1. Upon initialization, set the <Task Priority> field to 0. The CPU processes all interrupts. Upon any
MV78230/78x60 unmasked interrupt events, IRQn is asserted.

2. When an interrupt occurs and the CPU determines the nature of the interrupt, the <Task
Priority> is updated with a new value. For example, if an IDMA completion interrupt (priority 5) is
received, the <Task Priority> field is set to 6. This automatically clears IRQn.

3. During processing of the interrupt, if IRQn is asserted again (which only occurs if a higher
priority interrupt is asserted), the CPU toggles to process the new interrupt and updates the
value of the <Task Priority> field accordingly.

4. When the CPU finishes processing an interrupt and toggles back to the lower priority interrupt, it
updates the <Task Priority> field.

5.  When there are no more interrupts to process, the CPU sets the <Task Priority> field to 0.
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Figure 22 illustrates the IRQ prioritization flow.

Figure 22: Interrupt IRQ Processing Flow
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9.2.5 Inter-Processor Interrupts and Self Interrupts

The Main Interrupt Controller supplies an integrated shared mechanism for Inter-Processor
Interrupts (IPIs) dispatched in the MVV78230/78x60. A single write to the global Software Triggered
Interrupt Register (Table 297 p. 694) delivers the required Interrupt ID <IntID> to groups of CPUs, as
specified by <CPUO in Target List>. The requesting CPU may also determine whether to perform a
self-interrupt, in addition to the target list or to inclusively target itself by <Target List Filter>.

Each CPU supports up to 32 independent inbound doorbell maskable interrupts that can be
simultaneously set through the global Software Triggered Interrupt Register by different requesters.
Once a non-masked bit is set in the CPU’s Inbound Doorbell Register (N=0-3) (Table 305 p. 701)
the target CPU is interrupted to serve the pending IPls as captured in the Inbound Doorbell Register
(N=0-3) (Table 305 p. 701).
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Figure 23: IPI Dispatching Scheme Using the Software Trigger Interrupt

9.2.6

Software Triggered Interrupt Register
[31:26] [25:24] [23:16] [15:8] [7:5] [4:0]

Reserved Filter Reserved CPU Target List Reserved INT ID#

CPUn Inbound Doorbell Register CPUO Inbound Doorbell Register

Inbound Doorbell0: INT 31:0 oeoo Inbound Doorbell0: INT 31:0
CPUn CPUn CPUO CPUO
InDoorbellOHighSum  InDoorbellOLowSum InDoorbellOHighSum  InDoorbellOLowSum

PCle MSI/MSI-X Capturing as Root Complex

The MV78230/78x60 Interrupt Controller supplies an advanced PCle Root Complex interrupts
mechanism for mapping and capturing different pre-programmed PCle’s MSI and MSI-X messages.
These messages are dispatched by a PCle device once internal interrupt events occur, and are
routed to the Root Complex’s Main Interrupt Controller, as MSI or MSI-X messages.

MSI-X provides multiple interrupt vectors for each device, which allows multiple interrupts to be
handled simultaneously, and load-balanced across multiple cores in multiprocessors environment.
Fine-grained MSI and MSI-X interrupts capturing and delivering across the Root Complex’s multiple

CPUs helps to improve the CPU utilization, reduces the CPUs’ interference and lowers the interrupt
handling latency.

By utilizing the Software Triggered Interrupt Register (Table 297 p. 694), the MV78230/78x60
supplies a mechanism that can capture up to 128 different interrupts in the Main Interrupt Controller
Inbound Doorbell registers.
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Figure 24 shows the software triggered interrupt delivery scheme for serving inbound MSI/MSI-X
messages.

Figure 24: MSI-X Capturing Scheme Using the Software Trigger Interrupt, Quad-CPU Configuration
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9.2.6.1 Private Inbound Doorbell Messages
The CPU Private Inbound Doorbell Register (N=0-3) (Table 305 p. 701) captures message
interrupts 0—31, and is banked per CPU. Every event has a mask bit in the Inbound Doorbell Mask
Register (N=0-3) (Table 306 p. 702) that is also banked per CPU. This means that a mask bit blocks
the event from being propagated to the specific CPU’s interrupt controller.
Doorbell messages 0-15 are held in a banked private interrupt (ID0), referred to as the Inbound
Doorbell Low Summary. Similarly, Doorbell messages 16-31 held in an additional banked private
interrupt (ID1), referred to as Inbound Doorbell High Summary.
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A peer PCle endpoint device sets a doorbell message in the target CPU’s Private Inbound Doorbell
Register (N=0-3), by sending an MSI-X message with the following attributes:

m  The address is set to the Software Triggered Interrupt Register (Table 297 p. 694) offset.
m  Bits[4:0] are set so that the <IntID> field points to the target doorbell message.

m  Bits[6:5] are set so that the <Inbound Doorbell Sel> field points to Doorbell0.
n

Bits[11:8] are set so that the <CPUO in Target List> field is high for all of the CPUs that must
receive the message.

m  Bits[25:24] are set to 0 (AllAndSelf) so that the <Target List Filter> field sends the interrupt to all
of the CPUs that are defined in the Target List.

9.2.6.2 Shared Inbound Doorbell Messages

The Shared Inbound Doorbells capture the message interrupts that are received when <Inbound
Doorbell Sel> is not set to 0. There are 96 Shared Inbound Doorbell interrupts that are partitioned
into the following three groups:

Doorbell1 Shared doorbell messages 0-31

Messages are captured at Shared Inbound Doorbell0 Register (Table 326 p. 710).
Summary of these messages set interrupt ID96.

Doorbell2 Shared doorbell messages 32-63

Messages are captured at Shared Inbound Doorbell1 Register (Table 327 p. 710).
Summary of these messages set interrupt ID97

Doorbell3 Shared doorbell messages 64-95

Messages are captured at Shared Inbound Doorbell2 Register (Table 328 p. 710).
Summary of these messages set interrupt ID98

|§ | | As with any shared interrupt, the group of CPUs that are interrupted, as a result of a
shared doorbell summary, are defined by setting <IRQ Mask> and the <FIQ Mask> in
Note the Interrupt Source i Control Register (i=29-115) (Table 302 p. 699).

A peer PCle endpoint device sets a shared doorbell message by sending an MSI/MSI-X message

with the following attributes:

m  The address is set to the Software Triggered Interrupt Register (Table 297 p. 694) offset.

m  Bits[6:5] are set so that the <Inbound Doorbell Sel> field points to the doorbell group that
contains the message.

m  Bits[4:0] are set so that the <IntID> field is the target doorbell message within the group defined
by <Inbound Doorbell Sel>

m  Bits[25:24] are set to 0 (AllAndSelf) so that the <Target List Filter> field sends the interrupt to all
of the CPUs that are defined in the Target List.

| ;I | When triggering a shared doorbell interrupt, bits[11:8] that correspond to

Not <CPU%N in Target List> are ignored by the hardware.
ote
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9.2.7 SoC and CPU Sub-system Error Reporting
The MV78230/78x60 includes SoC and a CPU sub-system error reporting capabilities.
9.2.71 SoC Error Reporting
The MV78230/78x60 Interrupt Controller uses the SOC Main Interrupt Error Cause Register
(Table 298 p. 696) to latch all SoC error events. The SoC errors are also observable through this
register.
These events are compiled into a single interrupt that is banked for each of the CPUs, and for the
PCle Host, if the device is configured as a PCle endpoint.
For each of these processing elements (CPUO, CPU1, CPU2, CPU3, and PCle Root Complex) there
is a set of masks. These masks enable a static configuration to define the processing elements that
are interrupted as a result of each error event. To configure the settings for these masks:
m  For the CPUs, use the SOC Main Interrupt Error Mask Register (N=0-3) (Table 317 p. 707).
m  For the PCle Host, use the EP SOC Main Interrupt Error Mask Register (Table 325 p. 709).
For each of these processing elements, the interrupt source 1D4 is asserted when a non-masked
error event occurs.
The device errors’ sources and mapping are detailed in Table 22, SoC Errors Mapping, on page 155.
9.2.7.2 CPU Sub-system Error Reporting
To report CPU sub-system errors, the MV78230/78x60 Interrupt Controller implements the following
registers:
Coherency Fabric Local This register latches all asynchronous events reported by any of the
Cause Register CPUs, the coherent fabric, the I0-coherent Bridge, or the shared L2.
(Table 164 p. 620) These events are compiled into a single private interrupt (ID3) that is
banked for each of the CPUs, and for the PCle Host, if the device is
configured as a PCle endpoint.
For each of these processing elements (CPUO, CPU1, CPU2, CPU3,
and PCle Root Complex) there is a set of masks to enable a static
configuration that defines each event. These are the processing
elements that are interrupted as a result of the event occurring. For
the CPUs, the Coherency Fabric Local Interrupt Mask Register
(N=0-3) (Table 318 p. 707) is the banked register that defines these
settings. For the PCle Host, EP Coherency Fabric Local Interrupt
Mask Register (Table 324 p. 709) defines these settings.
Coherency Fabric Error This register latches all error events reported by the CPU and Fabric
Status Register hardware components. For each of these error events, a configurable
(Table 162 p. 617) mask bit exists in the Coherency Fabric Error Mask Register
(Table 163 p. 620).
The sum of all non-masked events is a single event that is referred to
as the FabricErrorSum, which is then treated as an interrupt event by
the <CoherencyFabricErrorSum> field in the Coherency Fabric Local
Cause Register (Table 164 p. 621).
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Multiprocessor Interrupt Controller (MPIC)
Functional Description

L2 Interrupt Cause Register This register latches all soft errors reported by L2 memories. For

(Table 292 p. 689)

CIB Parity Error Status
Register (Table 171 p. 625)

each of these error events, a configurable mask bit exists in the L2
Interrupt Mask Register (Table 293 p. 690).

The sum of all non-masked events is an event that is referred to as
L2Cachelnterrupt. This is then treated as an interrupt event by the
<L2 Cache Interrupt> field in the Coherency Fabric Local Cause
Register (Table 164 p. 621). For further information regarding this
error event, see Section 8.4, Error Handling, on page 133.

This read-only register provides information about the memory in the
CIB that was found to be a source of soft error. The sum of these
events is an event that is referred to as a CIB Parity Error, which is
then treated as an interrupt event by the <CPUO DC Parity Error>
field in the Coherency Fabric Error Status Register (Table 162

p. 619).

MV78230/78x60 Interrupts Sources

Table 21 lists the MVV78230/78x60 interrupt sources and their associated ID mapping.

Table 21: Internal Interrupts Mapping

Interrupt Number

Per-CPU

1
12

CPUx InDBLowSum
CPUx InDBHighSum

Interrupt Source Interrupt Description

Inbound Doorbell Low Summary (0-15)
Inbound Doorbell High Summary (16-31)

Outbound Doorbell Summary CPU Local Outbound Doorbell are based on 0x21070
(CPU virtual offset)

Coherent Fabric Local Summary Sum of Coherency Fabric Local Cause (offset
0x20260)

SoC Error Summary Sum of Coherency Fabric Error Cause (offset
0x20258)

Local Timer0 CPU Local timer0Q interrupt comes from 0x21068[0]
(CPU virtual offset)

Local Timer1 CPU Local timerQ interrupt comes from 0x21068[8]
(CPU virtual offset)

Local Watchdog (WD) Timer Each CPU has a local WD timer interrupt that exists in

GbE TH_RXTX_Int

GbE 0_RXTX_lInt
GbE 1_TH_RXTX_Int

GbE 1_RXTX_Int
GbE 2_TH_RXTX_Int

Copyright © 2014 Marvell
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0x21068[24] (CPU virtual offset).

This interrupt is a sum of all local WD with the masks
that are configured through the ARM WD Mask (offset
0x20708)

Gigabit Ethernet Controller 0 Rx and Tx Queue
Threshold cross interrupt

Gigabit Ethernet Controller 0 Rx and Tx Interrupt

Gigabit Ethernet Controller 1Rx and Tx Queue
Threshold cross interrupt

Gigabit Ethernet Controller 1 Rx and Tx Interrupt

Gigabit Ethernet Controller 2 Rx and Tx Queue
Threshold cross interrupt
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Interrupt Number

13
14

15
16

17

18

19

20

21

22

23

24

25

26

27
28

—
=
—

MV78230/78x60
Functional Specifications

Interrupt Source
GbE 2_RXTX_Int
GbE 3_TH_RXTX_Int

GbE 3_RXTX_Int
GPIO per CPU [7:0] Interrupt [i]

GPIO per CPU [15:8] Interrupt [i]

GPIO per CPU [23:16] Interrupt [i]
GPIO per CPU [31:24] Interrupt [i]
GPIO per CPU [39:32] Interrupt [i]
GPIO per CPU [47:40] Interrupt [i]
GPIO per CPU [55:48] Interrupt [i]
GPIO per CPU [63:56] Interrupt [i]
GPIO per CPU [66:64] Interrupt [i]

CPUI[i] SCNT_Int

CPUIi] PCNT _Int

Reserved
CPUIi] VCNT _Int

Global shared interrupts

30
31
32
33
34
35
36

SPIO_Int
12C0_Int

12C1_Int

IDMAO_Int
IDMA1_Int
IDMA2_Int
IDMA3_Int

Doc. No. MV-S107021-U0 Rev. A
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Interrupt Description
Gigabit Ethernet Controller 2 Rx and Tx Interrupt

Gigabit Ethernet Controller 3 Rx and Tx Queue
Threshold cross interrupt

Gigabit Ethernet Controller 3 Rx and Tx Interrupt

Each CPU has a dedicated set of mask. level and
interrupt cause registers that sum GPIO[7:0]

Each CPU has a dedicated set of mask. level and
interrupt cause registers that sum GPIO[15:8]

Each CPU has a dedicated set of mask. level and
interrupt cause registers that sum GPI10[23:16]

Each CPU has a dedicated set of mask. level and
interrupt cause registers that sum GPIO[31:24]

Each CPU has a dedicated set of mask. level and
interrupt cause registers that sum GPI0[39:32]

Each CPU has a dedicated set of mask. level and
interrupt cause registers that sum GPI10[47:40]

Each CPU has a dedicated set of mask. level and
interrupt cause registers that sum GPI10[55:48]

Each CPU has a dedicated set of mask. level and
interrupt cause registers that sum GPIO[63:56]

Each CPU has a dedicated set of mask. level and
interrupt cause registers that sum GPI10[66:64]

Secured Timer Interrupt

For details, see Generic Timer section in the
ARMADA® XP MultiProcessor Core Highly Integrated
Marvel® ARMv7 SoC Processors Datasheet.

Physical Timer Interrupt

For details, see Generic Timer section in the
ARMADA® XP MultiProcessor Core Highly Integrated
Marvel® ARMv7 SoC Processors Datasheet.

Virtual Timer Interrupt

For details, see Generic Timer section in the
ARMADA® XP MultiProcessor Core Highly Integrated
Marvel® ARMv7 SoC Processors Datasheet.

SPIO0 interrupt
12C0 interrupt
12C1 interrupt
IDMA Channel 0 interrupt
IDMA Channel 1 interrupt
IDMA Channel 2 interrupt
IDMA Channel 3 interrupt
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Multiprocessor Interrupt Controller (MPIC)
Functional Description

Table 21: Internal Interrupts Mapping (Continued)

Interrupt Number Interrupt Source Interrupt Description

37 Global_Timer0_int Timer O interrupt

38 Global_Timer1_int Timer 1 interrupt

39 Global_Timer2_int Timer 2 interrupt

40 Global_Timer3_int Timer 3 interrupt

41 UARTO_Int UART O interrupt

42 UART1_Int UART 1 interrupt

43 UART2_Int UART 2 interrupt

44 UART3_Int UART 3 interrupt

45 USBO _int USB 0 core interrupt

46 USB1_int USB 1 core interrupt

47 USB2_int USB 2 core interrupt

48 CESAO0_Int Cryptographic Engine and Security Accelerator 0
completion interrupt

49 CESA1_Int Cryptographic Engine and Security Accelerator 1
completion interrupt

50 RTC_Int RTC interrupt

51 XORO0_ChO_Int XOR 0 Channel 0 interrupt

52 XORO0_Ch1_Int XOR 0 Channel 1 interrupt

53 BM_Int Buffer Management interrupt

54 SDIO_int SDIO interrupt

55 SATAO_int SATA port 0 interrupt

56 TDM_int TDM unit interrupt

57 SATA1_int SATA port 1 interrupt

58 PCle00_Int PCI Express Port0.0 INTA/B/C/D assert message
interrupt.

59 PCle01_Int PCI Express Port0.1 INTA/B/C/D assert message
interrupt.

60 PCle02_Int PCI Express Port0.2 INTA/B/C/D assert message
interrupt.

61 PCle03_Int PCI Express Port0.3 INTA/B/C/D assert message
interrupt.

62 PCle10_Int PCI Express Port1.0 INTA/B/C/D assert message
interrupt.

63 PCle11_Int PCI Express Port1.1 INTA/B/C/D assert message
interrupt.

64 PCle12_Int PCI Express Port1.2 INTA/B/C/D assert message
interrupt.

65 PCle13_Int PCI Express Port1.3 INTA/B/C/D assert message
interrupt.
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Interrupt Number
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66

67

68

69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

—
=
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MV78230/78x60
Functional Specifications

Interrupt Source

GbE 0_Legacy_Sum_Int

GbE 0_Legacy_RX_Int

GbE 0_Legacy_TX_Int

GbE 0_Misc_lInt

GbE 1_Legacy_Sum_|Int
GbE 1_Legacy_ RX_Int
GbE 1_Legacy_TX_Int
GbE 1_Misc_Int

GbE 2_Legacy_Sum_Int
GbE 2_Legacy_RX_Int
GbE 2_Legacy_TX_Int
GbE 2_Misc_lInt

GbE 3_Legacy_Sum_Int
GbE 3_Legacy_RX_Int
GbE 3_Legacy_TX_Int
GbE 3_Misc_Int
GPIO_0_7_int
GPIO_8_15_int
GPIO_16_23_int
GPIO_24_31_int
Reserved
GPIO_32_39_int
GPIO_40 47 _int
GPIO_48_55_int

Document Classification: Proprietary Information

Interrupt Description

Legacy interrupt pin
Represents the <EtherIntSum> field in the Port
Interrupt Cause register.

Legacy interrupt pin.

It represents the following interrupt cause register
fields:

In the Port Interrupt Cause register, the fields:
<CRCErr>, <RxErrorQueue[x]>, <RxError>, and
<RxBufferQueue[x]> (coaliasced).

In the Port Interrupt Cause Extended register, the field:
<RxOVR>.

Legacy interrupt pin.

It represents the following interrupt cause register
fields:

In the Port Interrupt Cause register, the fields: TxEndx
In the Port Interrupt Cause Extended register, the
fields: <TxErrorx>, <TxUdr>, and <TxBuffer[x]>
(coalesced).

Works both for Legacy and Enhanced mode.

It represents the following Port Interrupt Cause
Extended register fields: <PhySTC>, <PTP>,
<LinkChange>, <InternalAddrError>, <PRBSError>.

Same as port 0

Same as port 0

Same as port 0

Same as port 0

Same as port 0

Same as port 0

Same as port 0

Same as port 0

Same as port 0

Same as port 0

Same as port 0

Same as port 0

GPIO pins [7:0] interrupt
GPIO pins [15:8] interrupt
GPIO pins [23:16] interrupt
GPIO pins [31:24] interrupt
Reserved

GPIO pins [39:32] interrupt
GPIO pins [47:40] interrupt
GPIO pins [55:48] interrupt
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Table 21: Internal Interrupts Mapping (Continued)

Interrupt Number
90
91
92
93
94
95
96

97

98

99

100
101
102
103

104
105
106
107
108
109
110
1M

112
113
114
115

Interrupt Source
GPIO_56_63_int
GPIO_64_66_int
SPI1 Intr
WD Intr
XOR1_Ch2_Int
XOR1_Ch3_Int
Shared DB1sum

Shared DB2sum

Shared DB3sum

PCle20_Int

Reserved
Reserved
Reserved
PCle30_Int

Reserved
Reserved
Reserved

PMU_Int
DRAM_Int
GbEO_WakeUp_Int
GbE1_WakeUp_Int
GbE2_WakeUp_Int
GbE3_WakeUp_Int
NAND_Int
Reserved

Reserved

Multiprocessor Interrupt Controller (MPIC)
Functional Description

Interrupt Description
GPIO pins [63:56] interrupt
GPIO pins [66:64] interrupt
SPI port 1 interrupt
Global Watchdog interrupt
XOR 1 Channel 2 interrupt
XOR 1 Channel 3 interrupt

Shared Inbound Doorbell1 Summary. MSI/MSIx
shared interrupt O

Shared Inbound Doorbell2 Summary. MSI/MSIx
shared interrupt 1

Shared Inbound Doorbell3 Summary. MSI/MSIx
shared interrupt 2

PCI Express Port2.0 INTA/B/C/D assert message
interrupt

Reserved
Reserved
Reserved

PCI Express Port3.0 INTA/B/C/D assert message
interrupt.

Reserved

Reserved

Reserved

Power Management Unit interrupt
DRAM power modes interrupt
GigE port 0 WOL interrupt

GigE port 1 WOL interrupt

GigE port 2 WOL interrupt

GigE port 3 WOL interrupt
NAND Flash Controller interrupt
Reserved

Reserved

Table 22 details the MV78230/78x60 SoC Errors and their mapping to the SOC Main Interrupt Error
Cause Register (Table 298 p. 696).

Table 22: SoC Errors Mapping

Interrupt Number
0
1

Copyright © 2014 Marvell
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Error Interrupt Source
CESAO_Err_Int

DevBus_Err_Int

Document Classification:

Error Interrupt Description

Crypto engine 0 error interrupt
Device bus error interrupt (DEVICE_READYn Timer)
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Table 22: SoC Errors Mapping (Continued)

Interrupt Number Error Interrupt Source

2 IDMA_Err_Int

3 XOR1_Err_Int

4 PCle0_Err_Int

5 PCle1_Err_Int

6 GbE_Err_Int

7 CESA1_Err_Int

8 USB_Err_Int

9 DRAM_Err_Int

10 XOROErr_Int

11 Reserved

12 BM_Err_Int

13 CIB_Err_Int

15 PCle2_Err_Int

16 PCle3_Err_Int

17 SATAO_Err_Int

18 SATA1_Err_Int

19 Reserved

20 TDM_Err_Int

21 NAND_Err_Int

22 Reserved
23-31 Reserved
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Error Interrupt Description
DMA error (address decoding and protection)
XOR engine 1 error

PCI Express port 0 Error (summary of PCI Express Cause
register)

PCI Express port 1 Error (summary of PCI Express Cause
register)

Gigabit Ethernet error (address decoding and protection)
Summary of Ethernet Unit Interrupt Cause (EUIC)
registers of all GbE ports

Crypto engine 1 error interrupt

USB error (address decoding and RAM parity)
Summary of errors from all USB ports

DRAM ECC error interrupt

XOR engine 0 error interrupt
Reserved

Buffer Management error interrupt
Coherent |0 Bridge error interrupt

PCI Express port 2 Error (summary of PCl Express Cause
register)

PCI Express port 3 Error (summary of PCl Express Cause
register)

SATA unit O error interrupt
SATA unit 1 error interrupt
Reserved

TDM error interrupt

NAND controller error interrupt

Reserved

Reserved
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Timers, Counters, and Watchdog

1 O Timers, Counters, and Watchdog

The device incorporates two levels of timers/counters sets, a global set and a multiprocessor
topology private set.

Global The global timers/counters include four 32-bit wide general purpose timers/counters
and one watchdog timer/counter. Each can be selected to operate as a timer or as a
counter. Each timer/counter can be configured to work with a 25 MHz frequency or at
a specific ratio of the coherency fabric clock (NBCLK/2).

m  To select the 25 MHz frequency, set the relevant 25 MHz frequency enable field
(bits[14:10]) in Timers Control Register (Table 329 p. 710).

m  To set a specific ratio of the coherency fabric clock for the watchdog or specific
CPU timer, set the relevant field (bits[30:16]) in the Timers Control Register.

CPU Private The private timers/counter include two 32-bit wide general purpose timers/counters
and one watchdog timer/counter, that are assigned per CPU core. These are private
timers/counters that are not visible to other CPU cores. Each timer/counter can be
configured to work with a 25 MHz frequency or at a specific ratio of the coherency
fabric clock (NBCLK/2).

m  To select the 25 MHz frequency, set the relevant 25 MHz frequency enable field
(bits[12:10]) in the Timers Control Register (N=0-3) (Table 248 p. 660).

m  To set a specific ratio of the coherency fabric clock for the watchdog or specific
CPU timer, set the relevant field (bits[24:16]) in the Timers Control Register
(N=0-3).

|§ | | The watchdog timer functionality is the same as the other two CPU private timers, with
the exception that it can also generate a reset event (see the Reset section in the
Note device’s Hardware Specifications).
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Figure 25 details the multiprocessor timers topology, including the private and global partitioning and
events connectivity to the main interrupt controller.

Figure 25: Multiprocessor Timers Topology
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10.1 Features

The timers, counters and watchdog have the following features:
m A 32-bit counter that generates an interrupt when it reaches zero

m  An 8-bit prescaler to enable better control of the period

m  Configurable single-shot or auto-reload modes

m  Configurable starting values for the counter

m  Configurable reset generation on Watchdog Timer expiration
10.2 Functional Description

This section describes the timer and counter modes and the functions of the global, private and
watchdog timer and counter.
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Functional Description

10.2.1 Timer/Counter Modes

Each Timer/Counter delivers the following functionality.

Counter Mode In the Counter mode, the counter counts down, stops when it reaches 0, and
issues an interrupt

Setting the <CPUTimer*Auto> bit in each CPU Timer Control Register to 0
programs it to Counter mode

Timer Mode In the Timer mode, the timer counts down, issues an interrupt when it reaches 0,
reloads itself to the Reload register’s value, and continues counting.

Setting the <CPUTimer*Auto> bit in each CPU Timer Control Register to 1
programs it to Timer mode

Each counter/timer has a Reload register and a Timer register. The Reload register represents the
initial value to be loaded to the timer/counter. The Timer register represents the timer/counter itself.
The software polls this register to determine the actual timer value.

Each CPU has the option to mask the interrupt asserted by a timer/counter expiration. This applies
for both the global timers/counters and the private CPU timers/counters.

For example, it is possible to assign global timer 0 to CPUO by masking the interrupt of this counter
for CPU1. Similarly, it is possible to assign timer1 to CPU1 by masking its interrupt to CPUO.

10.2.2 Global Timers/Counters

The four timers/counters and one watchdog timer:

m  All of the timers are accessible and shared among all the CPUs.

m  Each global timer can be programmed to interrupt a specified CPU, or a group of CPUs,
through the main interrupt controller with appropriate priority. The main interrupt controller
delivers the interrupt to the attached CPUs, with respect to running priority.

The global set is controlled through the following registers:

Timers Control Includes all the timers/counters enable and control functions. This includes a per
Register counter enable, mode of operation, and an actual counter updating period relative
to its source clock.

Timers Events Summarizes the expiration status for all of the timers. This is an RWOC type

Status register register. A corresponding interrupt is asserted to the CPUs, if enabled in the main

Register interrupt controller. The interrupt handler de-asserts the active global timer
interrupt line by clearing the corresponding timer expiration event in this register.

Timer0 Reload The timer O register couple. The same set exists for the other global timers and
Register and watchdog timer.
Timer 0 Register

10.2.3 Private Timers/Counters

The private set includes two timers/counters and one watchdog timer per CPU.

m  Each CPU timer set is placed in different register banks. It is virtually accessed with the same
address from the CPU it is tied to.

m  All the CPUs private timers sets are independent, with respect to each other, and expiration
event interrupts only the CPU it belongs to through the main interrupt controller private interrupt
lines. Timer expiration events are virtually mapped to same interrupt line, for example. CPUO
timerQ expiration asserts CPUO private interrupt line ID and only its interrupt, while CPU1 timer1
expiration asserts same interrupt line ID but to CPU1 only.
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Each CPU private set is controlled through the following registers:

Timers Control Includes all the timers/counters enable and control functions. This includes a per

Register (N=0-3) counter enable, mode of operation, and an actual counter updating period
relative to its source clock.

Timers Events Summarizes each CPU timers expiration status. This is an RWOC type register.

Status register A corresponding interrupt is asserted to the specified CPU, if enabled in the

Register (N=0-3) main interrupt controller. The interrupt handler de-asserts the active private timer
interrupt line by clearing the corresponding timer expiration event in this register.

Timer0 Reload  The CPU Timer 0 register couple. The same set also exists for Timer 1 and the
Register (N=0-3) Watchdog timer.

and Timer0

Reload Register

10.2.4 Watchdog Reset

For each CPU, the MV78230/78x60 includes a private watchdog timer and a global watchdog timer
that can be independently activated, reloaded, and expired. The device delivers flexibly
programmable options for mapping the different watchdog timers expiration events to single system
watchdog reset event.

The following registers controls the generation of watchdog expiration reset.

The <CPU WD Group> field in the WD RSTOUTn Mask Register (Table 347 p. 719) defines the
CPUs that participate in the watchdog group. A watchdog reset is generated on the timers expiration
of all the group members.

In addition to this mechanism, every CPU and the global watchdog has an independent mask bit.
Once set, a reset is generated upon expiration, independent to the group value. This is controlled
through programming of <CPUO WD mask> and <Global WD mask> field in the WD RSTOUTn
Mask Register (Table 347 p. 719).

For example, when a watchdog reset is required on expiration of the global watchdog timer or both
CPUO and CPU1 private watchdog timers, enable the <Global WD mask> and program the <CPU
WD Group> to include both CPUO and CPU1.

10.2.5 Watchdog Interrupt

Watchdog timers expiration can be configured to generate an interrupt.

The <CPUn Local WD Interrupt Mask> field in the WD Interrupt Mask Register (Table 348 p. 719)
defines for each CPU which of the Private Watchdog timers expiration generates an interrupt to the
corresponding CPU.

For example, when the expiration of the Private Watchdog of CPUO requires an interrupt to CPU1
and the expiration of the Private Watchdog of CPU1 requires an interrupt to CPUO, set bit[1] in the
<CPUO Local WD Interrupt Mask> and set bit[0] in the <CPU1 Local WD Interrupt Mask>.
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Debug Capabilities

1 1 Debug Capabilities

This section describes the debug modes of MV78230/78x60 device.
See Table 2, Terms and Abbreviations, on page 29 for the definitions of terms used in this section.

The MV78230/78x60 implements the CoreSightTM debug subsystem. CoreSight1 is an extensible,
system-wide debug and trace architecture of ARM. The architecture consists of a user-visible
portion specifying a programmer's model, and an architecture portion specifying standard interfaces
for transmission of configuration commands, trace information, and cross-trigger signaling between
different components.

A CoreSight system may contain differing numbers and types of components, connected in different
topologies. CoreSight defines the AMBA® Trace Bus (ATB), a standard interface on which to
generate and receive trace information. CoreSight components, which can be configured, each have
an Advanced Peripheral Bus (APB) programming interface for register state.

In the MVV78230/78x60 CPU Subsystem, one ATB / ETB (Embedded Trace Buffer) per core
configuration and a single Trace Port Interface Unit (TPIU) with attached Serial Embedded Trace
Macrocell (SETM) has been used as shown in Figure 26.

1. CoreSight and AMBA are trademark/registered trademark of the ARM Corporation.
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Figure 26: MV78230/78x60 CoreSight Configuration
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A directory of CoreSight blocks in the system is also provided in the form of a ROM within one of the
CoreSight components called the CoreSight Debug Access Port (DAP). This ROM is accessible
over the APB programming interface and contains pointers to the standard register space for each
component. Figure 27 shows the CoreSight DAP and APB interface. Debug tools can read the ROM
and the standard component ID registers to determine what the MV78230/78x60 debug system
contains.
MV78230/78x60 is CoreSight compliant1, representing itself to the debug system as 4 CoreSight
components. In v7 mode, it implements four 4-KB CoreSight register programming regions per core
on its debug APB interface. One region for each of the following functions:
m  Core registers with invasive debug functionality
m  On-board PTM (Program Trace Macrocell)
m  On-board Cross Trigger Interface (CTI) that facilitates cross-triggering between core logic, the
PTM, and other CoreSight components in the system
m  On-board trace sinks, including an ETB per CPU and a central TPIU and sETM for extracting
traces serially to an external debugger
The Core Subsystem with these components is shown in more detail in Figure 27.
1. For details about CoreSight functionality, see the CoreSight Architecture Specification.
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Figure 27: CoreSight Subsystem v7 Mode Details
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MV78230/78x60 trace subsystem incorporates four PTMs as the trace source—one for each of the
cores—and two CTls that facilitate cross-triggering between the debug units and the PTM trace

sources and trace sinks. The PTMs ATB interface is connected directly to the four ETBs and is also
replicated to a single TPIU through the Funnel®. This interface transmits data using the sETM in two
transmission lanes at 6 Gbps each. The DAP's APB programming interface output port is connected
to the APB programming interfaces in the four cores, the four ETBs, the Funnel, the TPIU, the sETM

and the two external CTls.

Figure 28 illustrates details of CTI/ CTM (Cross Trigger Module) connections, using the CTI
Channel interfaces. The two CTls external to the four cores are connected to the channel interface
extending from the four core's CTl via three CTMs. This allows the input and output trigger signals of
the ETB and TPIU to be mapped to trigger inputs and outputs of the CTI.
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Figure 28: CTI/ CTM Connection Details
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Table 23: Trigger In Trigger Out of CTI0
Index Trigger In Trigger Out
0 ETBO_FULL ETBO_FLUSHIN
Indicates that the ETB RAM has overflowed = Drains any historical FIFO information on
or wrapped around to address zero. the bus.
1 ETBO_ACQCOMP ETBO_TRIGIN
Indicates that trace acquisition is complete. Enables the ETB to initiate the collection of
ATB trace data.
2 ETB1_FULL ETB1_FLUSHIN
Same as ETBO Same as ETBO
3 ETB1_ACQCOMP ETB1_TRIGIN
Same as ETBO Same as ETBO
4
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TPIU_FLUSHIN
Invokes an ATB signal and drain any old
historical information on the bus.
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Table 23: Trigger In Trigger Out of CTIO (Continued)

Index Trigger In Trigger Out
S Reserved TPIU_TRIGIN
Enable the trigger to affect the output trace
stream.
6 Reserved Reserved
7 Reserved Reserved
Table 24: Trigger In Trigger Out of CTI1

Index Trigger In Trigger Out

0 ETB2_FULL ETB2_FLUSHIN
Same as ETBO Same as ETBO

1 ETB2_ACQCOMP ETB2_TRIGIN
Same as ETBO Same as ETBO

2 ETB3_FULL ETB3_FLUSHIN
Same as ETBO Same as ETBO

3 ETB3_ACQCOMP ETB3_TRIGIN
Same as ETBO Same as ETBO

4 Reserved Reserved

5 Reserved Reserved

6 Reserved Reserved

7 Reserved Reserved

N

Note

For additional information about CTI and about trigger inputs and outputs, refer to the
Cross Trigger Interface section of the ARMADA® XP MultiProcessor Core Highly
Integrated Marvell® ARMv7 SoC Processors Datasheet.

11.1 Debug and Power Saving Modes

MV78230/78x60 CoreSightTM debug subsystem is capable of powering up SYSTEM and DEBUG

domains through the DAP component that is always on.

m  The SYSTEM domain is defined in respect to DAP to all CPU and Fabric power domains that
are membered within the wake group (see the L2C NFabric PM Status and Mask Register
(Table 430 p. 759)).

m The DEBUG domain is defined in respect to DAP to Fabric power domain that is membered
within the wake group (see the L2C NFabric PM Status and Mask Register).

The MV78230/78x60 allows continuing debug over powered up CPUs as usual in case one or more

other CPUs are powered down.

Power down and Power up sequence emulation is possible per CPU by setting it to Debug No
Power Down mode (configured by APB-to-CPU debug unit Device Power-down and Reset Control

Copyright © 2014 Marvell
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register1 at offset 0x310). In this mode, when the CPU is instructed to power down the Fabric’s
power controller does not disconnect the power, but allows the debug system to emulate the
sequence that powers it down and power it up afterwards.

APB accesses to powered down components are replied to by the APB slave error response.

| ;I | When a dedicated CPU is powered down, its internal CoreSight components are also

Not powered down, so the APB sequence from DAP are replied to with the APB slave error.
ote

11.2 Serial Tracing

In addition to the tracing through embedded the Trace Buffers, the MVV78230/78x60 enables
high-speed serial tracing.

The Serial Tracing is applied by the sETM unit that is attached to the CoreSightTM TPIU that takes
the incoming ATB packets and extracts them as a Trace Bus formation. The incoming Trace Bus
information is then serialized by the sETM device that transmits the data over two SERDES
transmissi%n lanes at a rate of 6 Gbps. The sETM and attached PHYs per lane are managed by the
CoreSight = DAP APB interface. For their specific registers, refer to the Serial ETM3 Common
Physical (PHY) Layer Preliminary Specifications.

1.3 System Debug Management

Within the DAP CoreSight™ component, there is an internal APB Multiplexor that enables external
tools and system access to the CoreSight Debug APB. In the MVV78230/78x60 CoreSightTM Debug
subsystem any CPU is capable of accessing to any pre-detected CoreSight component as an
external debugger does through APB. Before accessing a specific CoreSight component register,
the CPU first need to set the CoreSight Components Base Address. Then, for read or write to
specific component register, it should access the MultiProcessor CoreSight Components and with
the exact address offset gain access to the specific component register.

For example, to read-modify-write the PTM register ETMCR (offset 0x000) that exists within CPU3
and enable its Timestamp feature, using APB accesses initiated by CPUO and then reading the
CPU3 ETMIDR register:

ldr r0, =Coresight Components Base Address Register (Table 359 p. 726).

ldr rl, =0x42313000 ; CPU3 PTM trace source base address as detected previously
by ROM table accesses.

str rl, [r0] ; All future APB accesses are directed to CPU3 PTM.

1dr r0, =0xd0023000 ; <0xd0023>-APB master base address, <xxx> register offset
of Coresight component.

ldr rl, [r0] ; reading CPU3 PTM ETMCR.
orr rl, rl, #0x10000000
str rl, [r0] ; Turning on CPU3 PTM <Timestamp Enable> bit at ETMCR register.

;7 In case wish to read CPU3 PTM ETMIDR register at offset 0x1lE4 all need to to
do is:

ldr r0, =0xd00231e4
1dr rl, [x0] ; CPU3 PTM ETMIDR content is existing within CPUO <rl> register.

1. Refer to the Debug section of the ARMADA® XP MultiProcessor Core Highly Integrated Marvel® ARMv7 SoC
Processors Datasheet.
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1.4 Timestamp Mechanism

Debug Capabilities
Timestamp Mechanism

Timestamping is a mechanism that periodically inserts a time value into the trace stream. The
MV78230/78x60 implements timestamp 48-bit counter to provide the source of the timestamp values
It must broadcast the same value to all compatible trace sources in the system.

Each trace source samples the timestamp value and inserts it as an absolute value in the trace

stream.

Each timestamp value inserted in the trace is a gray-coded number. Each Program (Flow) Trace
Macrocell (PTM) outputs the 48-bit gray code and the debugger generates the 48-bit binary number

from the traced 48-bit gray code.

This timestamping mechanism provides the following features:
m  Correlation of multiple independent trace sources in a system, for example, multiple PTM’s in a

multiprocessor environment

Simple analysis of code performance, with a coarse granularity
Faster searching of large trace buffers when looking for points in multiple-trace streams that

were executed in close proximity

The timestamp indicates the time the packet is generated, not the time the request was made. A
timestamp is only a time indicator inserted into the trace stream near the event that requested the

timestamp.

Timestamp Register Summary

A list of the timestamp registers appears Table 25. For a full description of the timestamp registers,
see Appendix A.2, CPU Sub-System Registers, on page 600.

Table 25: Timestamp Register Summary

Address Offset Register Name

Configuration

0x000 Timestamp Counter Enable Register
0x004 Timestamp Counter Preload 1 Register
0x008 Timestamp Counter Preload 2 Register
0xFAO Timestamp Claim Tag Set Register
OxFA4 Timestamp Claim Tag Clear Register
0xFBO Timestamp Lock Access Register
OxFB4 Timestamp Lock Status Register
OxFB8 Timestamp Authentication Status Register
0xFCO-OxFC4 Reserved

Device

0xFC8 Timestamp Device ID Register

Copyright © 2014 Marvell

Type

RW

RW

RW

RwW
RwW
WO
RO

RO

RO

Reset

0x0

0x0

0x0

0x0

0x0

0x3

0x0

0x0
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Description

Enables the 48-bit timestamp
counter

Preloads the [31:0] bits of
timestamp counter

Preloads the [47:32] bits of the
timestamp counter

See CoreSight Design Kit TRM
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Table 25: Timestamp Register Summary (Continued)

Address Offset

0xFCC

Register Name

Type Reset Description

Timestamp Device Type Identifier Register | RO 0x4

Peripheral Identification

0xFDO

0xFD4

0xFD8

0xFDC

OxFEO

OxFE4

OxFE8

OxFEC

Timestamp Peripheral ID4 Register
Timestamp Peripheral ID5 Register
Timestamp Peripheral ID6 Register
Timestamp Peripheral ID7 Register
Timestamp Peripheral IDO Register
Timestamp Peripheral ID1 Register
Timestamp Peripheral ID2 Register

Timestamp Peripheral ID3 Register

Component Identification

OxFFO
OxFF4
OxFF8

OxFFC

11.5

Doc. No. MV-S107021-
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Timestamp Component IDO Register
Timestamp Component ID1 Register
Timestamp Component ID2 Register

Timestamp Component ID3 Register

RO 0x05
RO 0x9A
RO 0x0E
RO 0x00
RO 0x03
RO 0x00
RO 0x00
RO 0x00
RO 0x0D
RO 0x90
RO 0x05
RO 0xB1

Memory Map for CoreSight Components

Internally, the CoreSight components (four ETBs, two CTls and a single TPIU) and the
MultiProcessor Core's CoreSight components (debug registers, Cross Trigger Interface registers,
and PTM registers) can be configured through an APB programming interface. The programming
model assigns 4 KB of contiguous memory-mapped space for each of these components. Some
standard registers are defined for the blocks, including ID registers for the purpose of allowing tools
to determine the attributes of each component without requiring prior knowledge of the component’s
address. The CoreSight DAP has a ROM table containing a pointer to the base address of each of
these components relative to the location of the ROM table. Debugger software should use the
memory map of Table 26 to access each of the above registers1.

Table 26: Summary of CoreSight Memory Mapped Registers—v7 Mode

Physical Address Register Name

0x4230_0000
0x4230_1000
0x4230_2000
0x4230_3000

CoreSight DAP ROM table location
Core-0 DBG Registers

Core-0 PTM Registers

Core-0 CTI Registers

1. For more details on the registers for CoreSight components refer to the CoreSight Architecture Specification

UO Rev. A
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Table 26: Summary of CoreSight Memory Mapped Registers—v7 Mode (Continued)

Physical Address

0x4230_4000
0x4230_5000
0x4230_6000
0x4230_7000
0x4230_8000
0x4230_9000
0x4230_A000
0x4230_B000
0x4230_C000
0x4230_D000
0x4230_E000
0x4230_F000
0x4231_0000
0x4321_1000
0x4231_2000
0x4231_3000
0x4231_4000
0x4231_5000
0x4231_6000
0x4231_7000
0x4231_8000
0x4231_9000
0x4231_A000
0x4231_B000

0x4231_C000

Register Name

Core-0 Performance Monitor Unit Registers
CoreSight ETB-0 Registers

CoreSight CTI-0 Registers

Core-1 DBG Registers

Core-1 PTM Registers

Core-1 CTI Registers

Core-1 Performance Monitor Unit Registers
CoreSight ETB-1 Registers

Core-2 DBG Registers

Core-2 PTM Registers

Core-2 CTI Registers

Core-2 Performance Monitor Unit Registers
CoreSight ETB-2 Registers

CoreSight CTI-1 Registers

Core-3 DBG Registers

Core-3 PTM Registers

Core-3 CTI Registers

Core-3 Performance Monitor Unit Registers
CoreSight ETB-3 Registers

Timestamp

TPIU Funnel

TPIU

sETM

sETM Lane0 PHY
(see Appendix A.9.9, PCI Express Communication PHY, on page 1183)
NOTE: The APB slave not part of CoreSight component list.

sETM Lane1 PHY
(see Appendix A.9.9, PCI Express Communication PHY, on page 1183)
NOTE: The APB slave not part of CoreSight component list.

| ;I | For additional information, refer to the Debug section of the ARMADA® XP
MultiProcessor Core Highly Integrated Marvel® ARMv7 SoC Processors Datasheet.

Note
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Part 3: External Memory Interfaces

m  Section 12, DRAM Controller
m  Section 13, NAND Flash Controller (NFC)
m  Section 14, Device Bus Controller

Marvell. Moving Forward Faster
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DRAM Controller
Feature List

1 2 DRAM Controller

This section describes the device’s DRAM Controller. This JEDEC compatible controller:
m  Supports DDR3, DDR3L modes of operation.

m  Provides control over multiple physical ranks (Chip Selects), and interfaces various types of x8
and x16 DRAM components.

m  Full support for all major DIMM types by the DRAM controller including unbuffered and
registered DIMMs.

The Marvell proprietary DDR link training algorithm enables the device to reach the highest possible
DRAM speeds.

Special attention and features were integrated to enable heavy-load topologies (that is, multiple
DRAM device topologies) while running at high speeds to allow maximum memory space for
memory intensive applications.

The diverse power management options offered by the DRAM controller, significantly minimize both
chip level and system level power consumption.

The registers relating to the SDRAM controller are located in Appendix A.3, DRAM Controller
Registers, on page 763.

121 Feature List

The DRAM controller supports the following features:

DDR3/DDR3L Controller

64/32-bit interface with ECC option

SSTL 1.5V/1.35V 1/O for DDR3

4 SDRAM ranks (CSs)

Support all DDR3 components densities up to 8 Gb

Support all DDR3/DDR3L components densities

Supports DRAM bank interleaving

Up to 32 simultaneous open pages in DDR3

Auto calibration of 1/0s output impedance

Support DIMM configurations (Registered and Unbuffered, x8 or x16 devices)

DDR3 address mirroring support

DDR3 BL=8

2T and 3T modes to enable high-frequency operation even under heavy-load configurations

DDR Write and Read Leveling support

Multiple addressing options for translating master originated address into DRAM Row, Column,

and BA enable efficient memory access

m  Power save options for chip level and system level efficiency: Self Refresh, Pre-Charged Power
Down, Active Power Down. All options with automatic entry/exit option.

m  Smart memory access scheduler for maximum DRAM utilization with configurable priority
scheme

The device does not support the following optional DDR3 features:
m  Fixed BL4 and BC4 (Only BL8 is supported)
m  Additive latency
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12.2

DLL Off mode
TDQS
DLL Off mode

additional 8-bit ECC option—total width 40/72-bits.

Note For additional information about ECC, see Section 12.9, Error Checking and Correction
(ECC) and Read Modify Write, on page 188.

EI The device can be configured to either a 32-bit or 64-bit DRAM interface, with an

The DDR3 SDRAM (Double Data Rate-Synchronous DRAM) controller supports up to 4 DRAM
banks (4 DRAM chip selects). It has a 19-bit address bus (M_A[15:0] and M_BA[2:0]) and a
40/72-bit data bus (M_DQ[31:0)/M_DQJ[63:0], M_CBJ[7:0]).

The DRAM controller supports 32/40-bit or 64/72-bit interfaces. It supports the following DRAM
DDR3 devices:

DDR3: 512Mb, 1Gb, 2Gb, 4 Gb, and8Gb

The total memory space supported by the DRAM interface is up to 16 GB on 4 physical ranks. The
DRAM controller supports DRAM DIMMs (both registered and unbuffered), as well as DRAM
devices on board. It also supports the 2T and 3T clocking mechanism, enabling heavy load without
using registered DIMM.

4 DRAM banks (4 DRAM chip selects)The DRAM can be accessed from any of the device’s
interfaces. The DRAM controller supports up to a 128B burst per a single transaction from any of the
Mbus masters. It supports DRAM bank interleaving, as well as open pages (up to eight pages per
chip select). This is typically useful for long DMA bursts to/from the DRAM.

The DRAM controller also supports ECC that allows it to detect and correct single-bit errors and
detect double-bit ECC errors (SEC/DED—Single Error Correction/Double Error Detection).

Functional Description

The DRAM controller receives read and write requests from any of the device units through the
device’s Mbus fabric or from the Marvell® CPU via the dedicated, tightly coupled, low-latency Fast
AXI path, and translates these requests into DRAM transactions.

For transactions coming from the Mbus fabric, the DRAM controller contains a transaction queue,
with read and write buffers. These buffers can absorb up to 8 transactions of 128B each. Any Mbus
originated new incoming transaction is going through a synchronization stage from the Mbus clock
domain to the DRAM Controller clock domain before being served.

For CPU originated transactions, the DRAM controller has a dedicated queue to collect the incoming
requests from the AXI path. This queue may absorb 6 additional Read/Write transactions. As the
DRAM controller clock is synchronized to the CPU and the Coherency Fabric clock, no
synchronization is needed and the transaction can be immediately served, reducing overall access
latency.

The system can be configured to support non-synchronous clocks between the DRAM controller and
the CPU and the coherency fabric. This mode should be used to reach maximum DRAM bandwidth
on the expense of CPU to DRAM latency.

Once accepted, the transaction’s original address is being decoded according to the addressing
table mode, the used DRAM component type and the interface width into Row address, Column
address and Bank address. More details about the address translation can be found in

Section 12.4.1, DRAM Addressing, on page 180.

The logic will now pick the next transaction to be served to best utilize the DRAM bus on the one
hand and maintain system ordering and system level transaction priority on the other hand. For
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DRAM Controller
Transaction Data Path

example, latency sensitive transactions may get higher priority and are served first if no ordering
hazards apply. In the same way, the logic may also reorder the transaction execution to maximize
the DRAM bus utilization through improved bank interleaving, minimization of read-write shifts and
so on, resulting in much higher DRAM utilization percentage and overall lower average latency to
memory. More details about the arbitration and smart scheduling scheme can be found in

Section 12.4, Arbitration and Ordering, on page 179.

When ECC is used, the DRAM controller calculates ECC for a write data before forward it to the
DRAM. It does the same for returned data from DRAM before returning it to the requesting master.
In case the calculated ECC does not match the DRAM registered ECC, the controller reports an
error to the CPU. More details about the ECC support may be found in Section 12.9, Error Checking
and Correction (ECC) and Read Modify Write, on page 188.

The DRAM controller interacts with the Marvell DRAM PHY to drive the transaction over the DRAM
interface. It drives a portion of the selected transaction’s address bits on M_A[15:0] and M_BA[2:0],
during the activate cycle (M_RASN).The remaining bits are driven during the command cycle
(M_CASN). The data path flow of both reads and writes are described in Section 12.3, Transaction
Data Path, on page 175.

12.3 Transaction Data Path
12.3.1 Write Data Path

For a write transaction originating from the Mbus, write data coming from the requesting unit is
placed in the write buffer. The write buffer is necessary to compensate for the data rate differences
between the received write data rate (running at core clock domain) and the rate that data is driven
to the DRAM interface (DRAM clock domain, double data rate).

When using a 64-bit DRAM interface, the DRAM interface write data path is 128 bits wide. Write data
received from the 64-bit wide Mbus is packed to 128 bits, if the 1:1 ratio is used, or packed to 256
bits, if the 2:1 ratio is used, before being driven to DRAM. Write data received from the CPU over the
AXIl interface does not need to be packed. The AXI width and speed is aligned with the DRAM
bandwidth. As a function of the selected clock ratio of 1:1 or 2:1 between the DRAM interface and
the controller, the device’s AXI bus data rate may be programmed to match the DRAM’s data rate (of
128/256 bits of data per each DRAM cycle).

Using a 32-bit DRAM interface, the DRAM interface write data path is 64 bits wide. Write data
received from the 64-bit wide Mbus is forwarded to DRAM (no need for packing). Write data from the
CPU is received over the AXI bus that should be configured to 128 bits wide.As a function of the
selected clock ratio of 1:1 or 2:1 between the DRAM interface and the controller, the device’s AXI
bus data rate is automatically programmed to match the DRAM'’s data rate (of 64 bits of data per
each DRAM cycle). The DRAM controller completes the necessary unpacking of data from the AXI
bus, and drives the data properly on the DRAM bus.
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DRAM controller clock (either 1:1 or 2:1, respectively), set the AXl interface to be 128b
or 256b as follows.

For a 64-bit DRAM interface and a clock ratio of 1:1:

m  Reset the <AxiDataBusWidth> field in the AXI Control Register (Table 473 p. 801).

m  Set <DDRBusInUse> field in the SDRAM Configuration Register (Table 451
p. 774).

m  Software can override the default value of <Phy2UnitClkRatio> field in the DDR 10
Register (Table 482 p. 810) to force a different interface width.

For 64bits DRAM interface and a clock ratio of 2:1:

m  Set the <AxiDataBusWidth> field in the AXI Control Register (Table 473 p. 801).

m  Reset <DDRBusInUse>.

m  Software can override the default value of <Phy2UnitClkRatio> field in the DDR 10
Register (Table 482 p. 810) to force a different interface width.

EI According to the DRAM width and the clock ratio between the DRAM clock and the

Note

An example of write transactions is shown in Figure 29. The DRAM controller access to DRAM
consists of an activate cycle (row address), a command (column address), and a precharge at the
end of transaction. Write data is driven with each of the clock’s rising and falling edges, along with
DQS. The DRAM controller also inserts the required preamble and post-amble phases.

Figure 29: DDR3 Burst Write Example (BL=8)

Mmcekoutr | [ L L L L L
M_A[15:0] Row .
m_sAo] I |

Mcsn T\ /| i/
M_RASn —\Activate’ §§ \precharge

M_CASn f§ \writd )
vwen N Wl A
M_DQS ! T
WL=CWL+AL
M_DQ[63:0] (s fS

Signals timing and delays presented in the figures not necessarily represent the actual timing of the device.

12.3.2 Read Data Path

For a read transaction, after the command cycle (M_CASn), the DRAM controller samples read data
driven by the DRAM (the sample window depends on the CL parameter, the board topology and the
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link training results). An example of a read transaction is shown in Figure 30. The DRAM controller
latches the incoming data with each rising and falling of DQS input.

Figure 30: DDR3 Burst Read Example
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Signals timing and delays presented in the figures not necessarily represent the actual timing of the device.
Once received, the DRAM controller pushes the data into the read buffer, and drives it back to the

requesting unit.

./
\ Qrechar@e
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C—

.
C——

.
e,

The buffer is required to compensate for the data rate differences between the received read data
from the DRAM (running at DRAM clock domain, double data rate) and the data rate of the
requesting unit (running at core clock domain for Mbus masters). It is also used for temporary
storage of read data, when the originator unit cannot absorb this data.

To minimize the read latency for CPU reads from the DRAM, the read data is not pushed to the read
buffer. The read data is sent directly to the CPU by the Coherency Fabric, via the dedicated, low
latency AXI path.

When using a 64-bit DRAM interface, the DRAM interface read data path is 128-bits wide. Read
data received from the DRAM interface is unpacked before being driven over the 64-bit wide Mbus.
Read data targeted to the CPU is driven over the AXI interface and does not need to be unpacked.
The AXI width and speed are aligned with the DRAM bandwidth. As a function of the selected clock
ratio between the DRAM interface and the controller, either a 1:1 ratio or a 2:1 ratio, respectively, the
device’s AXI bus data rate can be programmed to match the DRAM’s data rate (of 128 bits of data
per each DRAM cycle) (see Section 12.3.1, Write Data Path, for details on how to align the AXI and
DRAM interfaces).

Using a 32-bit DRAM interface, the DRAM interface read data path is 64 bits wide. Read data
received from the DRAM interface is forwarded to the 64-bit Mbus (no need for unpacking). Read
data targeted to the CPU is driven over the AXI bus. As a function of the selected clock ratio
between the DRAM interface and the controller, either a 1:1 ratio or a 2:1 ratio, respectively, the
DRAM controller completes the necessary packing of data before properly driving it back to the
CPU. The DRAM controller completes the necessary packing of data before driving it back over the
AXI bus.

The DRAM controller has two Mbus read buffers, one per each Mbus physical port. Data can return
in parallel from these two buffers over different Mbus ports and be sent to the requesting unit. Other
than buffering data for rate synchronization and compensation of serving latencies, the 2 DRAM
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controller Mbus read buffers are also used for decoupling reads to different resources. Set the Read
Buffer Select Register (Table 472 p. 799) to assign a read buffer per each of the Mbus master units.
This is especially useful for resources that are latency sensitive. As all transactions in a given buffer
return in the order of arrival, latency sensitive transactions can be stuck after former, but lower
priority, transactions before being served on the Mbus. Setting one read buffer for a higher priority
“Unit A” and the other buffer for all other units guarantees that “Unit A” read completions are not
delayed after a read completion to some other, lower priority, unit. An illustration of such
configuration is in Figure 31.

Figure 31: DRAM Controller Mbus Read Buffers—Latency Sensitive Setting
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If there are no units that require special latency prioritization, it is recommended to split the units
between the 2 buffers in a balanced way that will balance the amount of data returned on each Mbus
port according to the master bandwidth capabilities in the given application. An illustration of such
configuration is in Figure 32.
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Figure 32: DRAM Controller Mbus Read Buffers—Even Bandwidth Allocation
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12.4 Arbitration and Ordering

Transactions coming from the device’s Mbus fabric are pushed into a transaction queue. The DRAM
controller arbitrates between the transaction at the top of the queue and transactions coming from
the CPU AXI path.

The DRAM controller can re-order transactions over the DRAM interface to optimize the DRAM
utilization, while still maintaining system level ordering (Read after Write, Write after Write hazards,
and so on).

When receiving a CPU-to-DRAM transaction over the AXI path, the DRAM controller performs an
address lookup, against pending Mbus write transactions to DRAM. If an address match occurs, the
CPU transaction is postponed until the matched Mbus transaction is forwarded to the DRAM. This
lookup mechanism guarantees proper producer-consumer operation.

|:: | | The DRAM controller guarantees not to issue the CPU transaction before the preceding
Mbus transaction, if a lookup hit occurs. However, there is no guarantee that the CPU
Note transaction will be the next one served after the Mbus transaction.
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12.4.1

DRAM Addressing

Table 27: DDR3 DRAM Addressing

DRAM Type Bank Row Column Auto BC Switch
Address Address Address Precharge On the Fly
512Mb 64Mx8 M_BA[2:0] M_A[12:0] M_A[9:0] M_A[10] M_A[12]
32Mx16 M_BA[2:0] M_A[11:0] M_A[9:0] M_A[10] M_A[12]
1Gb 128Mx8 M_BA[2:0] M_A[13:0] M_A[9:0] M_A[10] M_A[12]
64Mx16 M_BA[2:0] M_A[12:0] M_A[9:0] M_A[10] M_A[12]
2 Gb 256Mx8 M_BA[2:0] M_A[14:0] M_A[9:0] M_A[10] M_A[12]
128Mx16 = M_BA[2:0] M_A[13:0] M_A[9:0] M_A[10] M_A[12]
4 Gb 512Mx8 M_BA[2:0] M_A[15:0] M_A[9:0] M_A[10] M_A[12]
256Mx16 = M_BA[2:0] M_A[14:0] M_A[9:0] M_A[10] M_A[12]
8 Gb 512Mx16 = M_BA[2:0] M_A[15:0] M_A[9:0] M_A[10] M_A[12]
The DRAM controller supports up to 4 DRAM physical banks, DRAM chip selects. The total DRAM
bank address space is determined by the nature of the DRAM devices. For example, while using
512 Mb x 8 devices (64Mx8), the physical bank, built up of 8 such devices (for 64-bit DRAM
interface), has 512 MB of address space.
The maximum overall supported DRAM space is up to 16 GB, while populating four DRAM physical
banks.
12.4.2 DRAM Address Multiplexing
The <CSxAddrSel> fields in the SDRAM Address Control Register (Table 455 p. 779) define how
the address bits driven by the requesting master to the DRAM controller are translated to row and
column address bits on M_A[15:0] and M_BA[2:0]. Setting the <CSxAddrSel> field to 0, provides
page interleaving between different banks for sequential accesses. A new page is accessed only
after the same page was accessed in all available banks. Setting a <CSxAddrSel> field to 1 provides
bank interleaving for sequential accesses. A new bank is accessed only after all pages from the
current bank were accessed.
The row and column address translation is different for different DRAM interface widths, DRAM
densities, DRAM organization x8/x16, and DDR3 DRAM types.
Table 28 through Table 31 list the multiplexing combinations for DDR3 based on the <CSxAddrSel>
setting.
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Table 28:

DRAM Configuration

512 Mb

1Gb

2Gb

4 Gb

8 Gb

Table 29:

DRAM Configuration

512 Mb

1Gb

2Gb

4 Gb

8 Gb

DRAM Controller

Arbitration and Ordering

DDR3 Address Multiplex for 64-bit Interface, <CSxAddrSel> =0

64Mx8

32Mx16

128Mx8

64Mx16

256Mx8

128Mx16

512Mx8

256Mx16

512Mx16

M_BA[2:0]
15:13
15:13
15:13
15:13
15:13
15:13
15:13
15:13

15:13

Row M_A[15:0]
28:16
27:16
29:16
28:16
30:16
29:16
31:16
30:16

31:16

Column M_A[15:0]

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3

DDR3 Address Multiplex for 64-bit Interface, <CSxAddrSel> = 1

64Mx8

32Mx16

128Mx8

64Mx16

256Mx8

128Mx16

512Mx8

256Mx16

512Mx16

M_BA[2:0]
18:16
18:16
18:16
18:16
18:16
18:16
18:16
18:16

18:16

Row M_A[15:0]
28:19, 15:13
27:19, 15:13
29:19, 15:13
28:19, 15:13
30:19, 15:13
29:19, 15:13
31:19, 15:13
30:19, 15:13

31:19, 15:13

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3

Column M_A[15:0]

Table 30: DDR3 Address Multiplex for 32-bit Interface, <CSxAddrSel> =0

DRAM Configuration

512 Mb

1Gb

Copyright © 2014 Marvell
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64Mx8

32Mx16

128Mx8

64Mx16

M_BA[2:0]
14:12
14:12
14:12

14:12

Row M_A[14:0]
27:15
26:15
28:15

27:15
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Column M_A[14:0]

11:2

11:2

11:2
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Table 30: DDR3 Address Multiplex for 32-bit Interface, <CSxAddrSel> =0 (Continued)

DRAM Configuration

2Gb

4 Gb

8 Gb

Table 31:

DRAM Configuration

512 Mb

1Gb

2Gb

4 Gb

8 Gb

Table 32:

DRAM Configuration

512 Mb

1Gb

2Gb

4 Gb

Doc. No. MV-S107021-U0 Rev. A
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256Mx8

128Mx16

512Mx8

256Mx16

512Mx16

M_BA[2:0]
14:12
14:12
14:12
14:12

14:12

Row M_A[14:0]
29:15
28:15
30:15
29:15

30:15

Column M_A[14:0]

11:2

11:2

11:2

DDR3 Address Multiplex for 32-bit Interface, <CSxAddrSel> = 1

64Mx8

32Mx16

128Mx8

64Mx16

256Mx8

128Mx16

512Mx8

256Mx16

512Mx16

M_BA[2:0]
18:16
18:16
18:16
18:16
18:16
18:16
18:16
18:16

18:16

Row M_A[14:0]
27:19, 15:12
26:19, 15:12
28:19, 15:12
27:19, 15:12
29:19, 15:12
28:19, 15:12
30:19, 15:12
29:19, 15:12

30:19, 15:12

Column M_A[14:0]

11:2

11:2

11:2

DDR3 Address Multiplex for 64-bit Interface, <CSxAddrSel> =0

64Mx8

32Mx16

128Mx8

64Mx16

256Mx8

128Mx16

512Mx8

256Mx16

M_BA[2:0]
15:13
15:13
15:13
15:13
15:13
15:13
15:13

15:13

Row M_A[15:0]
28:16
27:16
29:16
28:16
30:16
29:16
31:16

30:16
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Column M_A[15:0]

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3
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Table 32:

DRAM Configuration

8 Gb

Table 33:

DRAM Configuration

512 Mb

1Gb

2Gb

4 Gb

8 Gb

Table 34:

DRAM Configuration

512 Mb

1Gb

2Gb

4 Gb

8 Gb

Copyright © 2014 Marvell
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DRAM Controller
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DDR3 Address Multiplex for 64-bit Interface, <CSxAddrSel> = 0 (Continued)

512Mx16

M_BA[2:0]

15:13

Row M_A[15:0]

31:16

Column M_A[15:0]

12:3

DDR3 Address Multiplex for 64-bit Interface, <CSxAddrSel> = 1

64Mx8

32Mx16

128Mx8

64Mx16

256Mx8

128Mx16

512Mx8

256Mx16

512Mx16

M_BA[2:0]
18:16
18:16
18:16
18:16
18:16
18:16
18:16
18:16

18:16

Row M_A[15:0]
28:19, 15:13
27:19, 15:13
29:19, 15:13
28:19, 15:13
30:19, 15:13
29:19, 15:13
31:19, 15:13
30:19, 15:13

31:19, 15:13

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3

Column M_A[15:0]

DDR3 Address Multiplex for 64-bit Interface, <CSxAddrSel> =0

64Mx8

32Mx16

128Mx8

64Mx16

256Mx8

128Mx16

512Mx8

256Mx16

512Mx16

M_BA[2:0]
15:13
15:13
15:13
15:13
15:13
15:13
15:13
15:13

15:13

Row M_A[15:0]
28:16
27:16
29:16
28:16
30:16
29:16
31:16
30:16

31:16
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Column M_A[15:0]

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3
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Table 35: DDR3 Address Multiplex for 64-bit Interface, <CSxAddrSel> =1

DRAM Configuration

512 Mb 64Mx8
32Mx16
1Gb 128Mx8
64Mx16
2Gb 256Mx8
128Mx16
4 Gb 512Mx8
256Mx16
8 Gb 512Mx16

M_BA[2:0]
18:16
18:16
18:16
18:16
18:16
18:16
18:16
18:16

18:16

Row M_A[15:0]

28:19, 15:13
27:19, 15:13
29:19, 15:13
28:19, 15:13
30:19, 15:13
29:19, 15:13
31:19, 15:13
30:19, 15:13

31:19, 15:13

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3

12:3

Column M_A[15:0]

By default, all four physical banks (M_CS[3:0]) are populated with the same DRAM device density
and configuration. However, the device can also support a different DRAM configuration for each
physical bank, thereby enabling population of each physical DRAM bank with a different DRAM
configuration. For example, M_CSJ[0] bank can be populated with a 2566-MB DRAM consisting of four
64-MB devices (64Mx8), while M_CSJ[1] is populated with a 512-MB DRAM consisting of four
128-MB devices (128Mx8). This option is especially useful for systems supporting memory

expansion.

12.5 DRAM Timing Parameters

The DRAM controller supports a wide range of DRAM timing parameters. These parameters can be

configured through the:

SDRAM Timing (Low) Register (Table 453 p. 776)
SDRAM Timing (High) Register (Table 454 p. 777)
SDRAM Address Control Register (Table 455 p. 779)
DDR3 Timing Register (Table 460 p. 786)

Read Data Sample Delays Register (Table 484 p. 812)
Read Data Ready Delays Register (Table 485 p. 813)
DDR3 MRO Register (Table 492 p. 819)

DDR3 MR2 Register (Table 494 p. 822)

DDR3 Registered DRAM Timing (Table 505 p. 834)

| ;] | The DRAM controller does not support different timing parameters per each physical

bank.
Note
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Table 36 lists the supported DRAM timing parameters.

Table 36: DRAM Timing Parameters

DRAM Timing

Parameters

CAS Latency (CL)

RAS Precharge (Trp)

M_RASnN to M_CASnh (Trcd)

Row Active Time (Tras)

Write to Precharge (Twr)

Write to Read (Twtr)

Active to Active (Trrd)

Refresh Command (Trfc)

Average Refresh Rate (Trefi)

Read Sample Delay

(RdSmplDel)

Read Ready Delay
(RdReadyDel)

Read to Read (Tr2r)

Read to Write and Write to
Read (Tr2w_w2r)

Write and Write to Two
Different Ranks (Tw2w)

CAS Write Latency (Tcwl)

Copyright © 2014 Marvell
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Description

The number of cycles from a READ command until the DRAM drives the first read data.
The DRAM controller supports a CL of 6 to 14 cycles.

The minimum number of cycles from precharge to a new activate cycle, to the same
DRAM bank.

The minimum number of cycles between activate cycle to command cycle, to the same
DRAM bank.

The minimum number of cycles between activate cycle to precharge cycle, to the same
DRAM bank.

The minimum number of cycles between write command and precharge, to the same
DRAM bank.

The minimum number of cycles between write command and read command to the
same DRAM device.

The minimum number of cycles between activate bank A to activate bank B to the same
DRAM device.

The minimum number of cycles between refresh command and new activate or refresh
command.

The number of cycles of the periodic refresh interval.

The number of cycles from M_CASn assertion for a READ command until the sampling
of the first read data. May be equal to or larger than CL, as determined by the Read
Leveling training procedure.

The number of cycles from M_CASn assertion for a READ command until all data is
ready to be popped from the PHY read FIFO. This allows the DRAM controller to align
data from different data octets.

The minimum number of cycles between consecutive read commands to different
devices. It is not part of the JEDEC specification. It is used for preventing contention
between consecutive reads to different DRAM devices (different chip selects).

The DRAM controller supports a Tr2r of 1-32 cycles.

The minimum number of cycles between read command to write command. It is not part
of the JEDEC specification. It is used for preventing contention between consecutive
Read-after-Write or Write-after-Read commands.

The DRAM controller supports a Tr2w_w2r of 0-31 cycles.

The minimum number of cycles between two consecutive write commands to different
DRAM ranks. It is not part of the JEDEC specification.
The DRAM controller supports a Tw2w of 0-31 cycles.

The number of cycles from a WRITE command until the DRAM controller drives the first
write data.
The DRAM controller supports a CWL of 5 to 10 cycles.
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Table 36: DRAM Timing Parameters (Continued)

DRAM Timing
Parameters

Read to Precharge Delay
(Trtp)

Initialization Calibration Time
on Power Up and Reset
(Tzqinit)

Normal Operation Full
Calibration Sequence Time
(Tzqoper)

Normal Operation Short
Calibration Sequence Time
(Tzqcs)

Exit Active Power Down Time
(Txp)

Exit Precharge Power Down
Time (Txpdll, Txard, Txards)

Exit Self Refresh Time (Txsdll)
Power Down Entry to Exit
Time (Tpd)

Mode Register to Non Mode
Register Time (Tmod)

Write Leveling DQS to DQ
Time (Twlo+Twloe)

12.6

Description

The number of cycles between a Read command and a following Precharge command.

The number of cycles needed to complete the full calibration process upon power up or
reset.
Hard wired to 512 cycles.

The number of cycles needed to complete the full calibration process during normal
DRAM operation time.
Hard wired to 256 cycles.

The number of cycles needed to complete the partial fast-calibration process during
normal DRAM operation time.
Hard wired to 64 cycles

The number of cycles to wait after exiting the Active Power Down mode before issuing a
new command. The DRAM controller always uses the value of Txpdll as Txp.

The number of cycles to wait after exiting the Precharge Power Down mode before
issuing a new command.

The number of cycles after exiting self refresh.
NOTE: The DRAM controller uses for DDR3: Txsdll = Tdllk = 512 cycles.

The maximum number of cycles from Power-down entry to Power-down exit.
The resolution of the DRAM controller implemented counter is of Trefi.

Minimum number of cycles from an Mode Register Set (MRS) command to a non-MRS
command.

Minimum number of cycles before the controller can sample the DQ after DQS assertion,
during the write leveling sequence.

DRAM Burst

A DRAM can be configured to different Burst Lengths (BL) and burst ordering. The device’s DRAM
controller supports the following burst length:

m  BL setting of 8

A single DRAM access request by one of the device’s masters can vary from a 1B up to a 128B
burst. The DRAM controller drives the DRAM address and control signals accordingly,
concatenating multiple BL accesses as one long burst.

Even when the required DRAM access is not a full multiple of the DRAM BL, the DRAM controller
always completes the burst to the next BL boundary. For a write transaction, the controller masks the
redundant beats using a data mask (M_DM).

Since the DRAM controller effectively accesses 128 bits on each cycle (in 64-bit mode), it always
accesses the DRAM to a 128-bit aligned address, and uses an M_DM to mask non-desired writes.

Using a 32-bit DRAM interface, the DRAM accesses are always done to a 64-bit aligned address.
The DRAM controller uses the M_DM bus to mask non-desired writes.

All accesses to the DRAM require straight linear ordering. If the required access crosses the BL
boundary, the DRAM controller drives a new column address (asserting a new CAS) when crossing
the BL, and prevents the DRAM from wrapping around the address.
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A CPU cache line read (32B) is always aligned to a 32B boundary When running with a burst length
of 4 , the DRAM controller always issues a read from DRAM offset 0x0, and drives data back to the
CPU interface in the order of arrival.

When running in DDR3 BL8 mode with a 64-bits DRAM interface width, the DRAM controller issues
a 64B read either from DRAM offset 0x0 or from DRAM offset 0x4, according to the cache line
address. The requested 32B is driven back immediately to the CPU interface.

Burst Interject Support

The Marvell® maximum read transaction size is 32B (cache line) while an Mbus request can be as
long as 128B. This design offers a fair arbitration scheme between the CPU and the Mbus. Since
CPU read access is latency-sensitive, waiting for an entire 128B transaction to complete before
serving a CPU read request can result in a CPU performance penalty.

This performance penalty is especially relevant for a 32-bit DRAM interface, in which a 128B access
takes 16 DRAM clock cycles to complete.

To resolve this conflict, the device’s DRAM controller supports a burst interject feature.

With this feature, the DRAM controller splits every Mbus transaction on 32B or 64B boundaries. (A
128B transaction is split into four 32B transactions or into two 64B transactions) If the DRAM
controller receives a CPU request while in the middle of serving an Mbus transaction, it forwards the
CPU transaction in between the 32/64B segments of the Mbus transaction.

This feature is selectable via the <CPU_Interjection> field in the DDR Controller Control (High)
Register (Table 458 p. 785). When burst interject is enabled:

If interfacing DDR3 32-bit DRAM, the DRAM controller splits every Mbus transaction on 32B
boundaries. (A 128B transaction is split into four 32B transactions).

In DDR3-64-bit mode, the DRAM controller splits every Mbus transaction on 64B boundaries. (A
128B transaction is split into two 64B transactions.)

| ;I | If there is no CPU transaction interference, the burst interject feature does not introduce
Not any performance penalty on Mbus transactions.
ote

12.7 DRAM Bank Interleaving

The device supports both physical bank (M_CSJ[3:0]) interleaving and virtual bank (M_BA[2:0] for
DDR3 or BG[1:0], BA[1:0] for DDR4) interleaving.

Interleaving provides higher system performance by hiding a new transaction’s activation cycles
within a previous transaction’s data cycles. This technique gains maximum utilization of the DRAM
bus bandwidth.

The DRAM controller has a pipeline to perform bank interleaving between the current active
transaction and the next two transactions, if they are targeted to different banks (either virtual or
physical).

Proper selection of DRAM address multiplexing, via the DRAM Address Control register, can
sometimes increase the probability of virtual bank interleaving. See the DRAM Address Multiplexing
(Table 12.4.2 p. 180) for further details about the address multiplexing options.
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12.8

12.9

DRAM Open Pages

It is possible to configure the device’s DRAM controller to keep DRAM pages open, via the SDRAM
Open Pages Control Register (Table 456 p. 781). It supports up to 32 open pages (one page per
each virtual bank) for DDR3 and 64 open pages (one page per each virtual bank) for DDR4.

When a page is kept open at the end of a burst (no precharge cycle), and if the next cycle to the
same virtual bank hits the same page (same row address), there is no need for a new activate cycle.
This is typically useful for large DMA transfers to/from the DRAM.

Once a page is open, it is kept open until any one of the following events occur:

m  There is an access to the same bank but to a different row address. The DRAM controller
performs a precharge (closes the page) and opens a new one (the new row address).

m  The refresh counter expires. The DRAM controller closes all open pages and performs a refresh
to all banks.

Before entering Self Refresh mode
Before entering Precharge Power Down mode

Error Checking and Correction (ECC) and Read
Modify Write
The device supports Error Checking and Correction (ECC) for both 16b and 32b DRAM.

ECC is enabled via the <ECC> field in the SDRAM Configuration Register (Table 451 p. 773). ECC
checking and generation requires additional 8-bit data (M_CB pins) for ECC code, resulting in a
72-bit wide DRAM interface (or 40-bit in case of 32-bit mode).

During reads, the DRAM controller can identify and correct single-bit errors or detect (but not
correct) double-bit ECC errors (SEC/DED).

Where the DRAM controller detected a double ECC error, a maskable interrupt is reported to the
local CPU, and the error indication is logged in the SDRAM Error Data (High) Register
(Table 439 p. 766) or SDRAM Error Data (Low) Register (Table 440 p. 766).

In addition to the report to the local CPU, the device provides the capability of driving the double
ECC error indication to an external entity via the M_DECC_ERR pin (multiplexed over MPP pin). In
case a double ECC error was detected, and the external indication was enabled via the <ECC> field
in the SDRAM Configuration Register (Table 451 p. 773), the DRAM controller will assert the ECC
error bit as long as the error indication was not cleared from the SDRAM Error Data (High)
Register/SDRAM Error Data (Low) Register.

During writes, the DRAM controller calculates the ECC based on the write data, and drives it on

M_CBJ7:0] lines with the write data driven on the M_DQ pins. Partial access to DRAM is defined by

the device as an access smaller than 64-bits. To generate the ECC on partial writes (writes that are

less than 64-bits), the DRAM controller must perform a Read-Modify-Write (RMW) access as
follows:

1. Reads the existing 64-bit data from the DRAM, or 32-bits for 32-bit DRAM. In the latter case,
creates a 64-bit data vector by padding the higher 32 bits with zeros, as if 64 bits were read from
the DRAM (Bus_for_ECC_calculation [63:0] = {0x00000000,M_DQ[31:01}).

2. Reads the existing 32-bit data from the DRAM and creates a 64-bit data vector by padding the
higher 32 bits with zeros, as if 64 bits were read from the DRAM (Bus_for_ECC_calculation
[63:0] = {0x00000000,M_DQ[31:01}).

3. Calculates ECC on the data, and compares it to the ECC being read.
4. If no ECC error is found, merges the new incoming data with the data read from the DRAM.
5. Calculates new ECC byte based on the data that is to be written.
6. If a single-bit error was detected during the read, fixes the corrupted bit, before merging the
data with the new incoming data.
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If double-bit ECC errors are detected (non correctable) during the read, corrupts the new ECC
byte after the merge (maintains the 2-bit error in the DRAM).

7. Writes the new data and new ECC byte back to the DRAM bank. During this write, all M_DM
lines are de-asserted (write of a full 72-bits, or 40-bits for 32-bit DRAM).

8. Writes the new data and new ECC byte back to the DRAM bank. During this write, all M_DM
lines are de-asserted (write of a full 40-bits).

When the DRAM controller is accessed with a write request, while all byte enables are not active, it
still performs RMW. It reads the data out of the DRAM, calculates ECC, corrects any single-bit ECC
errors, and writes the data back to DRAM (no data to merge with, since all byte enables are not
active). This behavior is useful for “cleaning” single-bit ECC errors in DRAM. For more information,
see Section 31.3.5, Memory ECC Errors Cleanup (Scrubbing), on page 496.

In case of a burst write to the DRAM with a start or end address that is not 8B aligned, the device
executes a RMW access of the whole burst, even though only the first and/or last data requires
RMW.

When using DRAM ECC protection, it is necessary to first initialize the DRAM. However, if using
partial writes (writes smaller than 64-bit) for this initialization procedure, while the DRAM controller
performs RMW, the controller is likely to detect non-correctable errors, and preserve the errors.
Setting the <IErr> field in the SDRAM Configuration Register (Table 451 p. 773) to 1 disables ECC
checking. If ECC is enabled while <IErr> is set to 1, the DRAM controller performs RMW on partial
writes, ignores ECC errors that are found on the read data, and generates proper ECC per the
merged data. When the <IErr> bit is set to 1, no ECC errors are reported.

| ;I | <|Err> is useful for DRAM initialization or for debug. It must be cleared to 0 for proper

DRAM ECC operation.
Note

12.10 DRAM Refresh

The device implements a counter to maintain the DRAM refresh rate requirements.

The refresh rate for all banks is determined according to the <Refresh> field in the SDRAM
Configuration Register (Table 451 p. 774). For example, the default value of Refresh is 0x400. If the
M_CLK_OUT frequency is 400 MHz (2.5 ns cycle), a refresh sequence occurs every 2.56 us.

Every time the refresh counter reaches its terminal count, a refresh request is sent to the DRAM
Controller. The refresh request has the highest priority over any other DRAM access request. As
soon as the current outstanding DRAM transactions complete, the DRAM controller precharges all
banks (both the ones that are opened, and the ones that are not), and performs an auto-refresh
command to all DRAM banks.

12.11 DRAM Initialization

The DRAM controller starts the DRAM initialization sequence as soon as the <InitEn> field in the
SDRAM Initialization Control Register (Table 467 p. 792) is set to 1. The software must initialize the
DRAM Control registers prior to setting the <InitEn> bit.

After the first initialization, it is possible to change the DRAM mode registers or to repeat the full
initialization sequence. To change the DRAM mode and DRAM extended mode values after
initialization has been completed, see Section 12.12, DRAM Operation Mode Register, on page 191.

The DRAM controller postpones any attempt to access the DRAM before the initialization sequence
completes. It is recommended that the Marvell® software poll the <InitEn> bit.
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After setting to 1 to start the initialization process, reading a value of 0 means that the DRAM
interface is ready for normal operation.

|§ | | After being set, the <InitEn> field in the SDRAM Initialization Control Register
(Table 467 p. 792) is only cleared once both the reset and initialization sequence and
Note the interface training sequence have completed.

The initialization sequence DDR3 modes are described below:

12111 DDRa3 Initialization Sequence
The DDR3 DRAM specification requires at least 200 us of M_RESET maintained low after DRAM
power up, before starting the initialization, as well as M_CKE driven low at for least 10 ns, before
de-asserting M_RESET. The DRAM controller starts driving M_RESET and M_CKE to low once the
device is powered up. To maintain the DRAM requirement make sure the that the initialization
sequence does not start earlier than 200 us after the device’s power rails are stable.
The DDR3 DRAM initialization sequence consists of the following steps:
1. M_RESET de-assertion.
2. After 500 us, de-assert M_CKE.
3. Wait tXPR.
4. Issue the MRS(2) command based on the DRAM MR2 register value.
5. Issue the MRS(3) command based on the Extended DRAM MR3 register value.
6. Issue the MRS(1) command based on the DDR3 MR 1 register value, to enable the DRAM DLL
and configure the ODT values.
7. Issue the MRS(0) command based on the DDR3 MR O register value, and with the reset DLL
(bit[8]) activated.
8. Issue the ZQCL command to start the ZQ calibration phase, for calibrating Rtt and Ron values
for PVT.
9. For high frequencies, further tuning steps may be required. Refer to the DRAM Operation Mode
Register (Table 12.12 p. 191) for more details.
| ;|| For the registered DIMM initialization process, see Section 12.14, DIMM Support,
on page 194.
Note
The user must not attempt to change any of the following register settings after the <InitEn> field in
the SDRAM Initialization Control Register (Table 467 p. 792) has been set, and before this field is
auto-cleared by the DRAM controller.
| ;] | Upon writing to these registers, the actual written value will be duplicated to DDR3 MRO
Not CSn Register (n=0-3) through DDR3 MR3 CSn Register (n=0-3).
ote
m DDR3 MRO Register (Table 492 p. 819)
m DDR3 MR1 Register (Table 493 p. 820)
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m  DDRS3 MR2 Register (Table 494 p. 822)
m DDRB3 MR3 Register (Table 495 p. 823)
To guarantee this restriction, it is recommended that the Marvell® software poll the <InitEn> field in

the SDRAM Initialization Control Register (Table 467 p. 792) until this bit is cleared, indicating that
the initialization process has completed.

12.12 DRAM Operation Mode Register

In addition to the normal DRAM operation mode, the DRAM controller also supports special DRAM
commands through the <Cmd> field in the SDRAM Operation Register (Table 457 p. 784). These
operations include:

Normal DRAM mode (default mode)

Precharge all banks

Force a Refresh Cycle on all banks

DRAM Mode Register Setting (DDR3 MRO)

DDR3 Mode Register 1 (MR1) access

DDR3 MR2 access

DDR3 MR3 access

NOP commands

Enter Self Refresh mode

Enter Active Power Down mode

Enter Precharged Power Down mode

Force long calibration command (ZQCL)

Force short calibration command (ZQCS)

Control Word Access (CWA) command—DDRS3 registered DRAM only

The register contains 4 bits of command type. Once the Marvell® CPU changes the register default
to one of the command types, and after executing the required command, the DRAM controller

resets the register back to the default value, and returns to normal operation. The Marvell® CPU
must poll on this register to identify when the DRAM controller is back in normal operation mode.

When using DIMMs, the DRAM parameters are recorded in the DIMM Serial Presence Detect (SPD)
serial ROM. The Marvell® can read the SPD via the device's 12C interface and program the DRAM
parameters accordingly, using the Load Mode register command.
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12.13

12.13.1

Power Save Options

The device includes several options to reduce power consumption of the DRAM interface:
s DRAM Power Down mode:
¢ Active Power Down
* Precharged Power Down
m  DRAM Self Refresh mode
The following sections describe ways of taking advantage of these modes and saving system power.

DRAM Power Down

The device’s DRAM controller supports two methods for placing the DRAM into Power Down mode:

m  Precharged Enter power down while all pages are closed.
power down:  Going into Precharged Power Down mode allows lower power consumption
at the expense of a longer exit time.

m  Active Enter power down while one or more pages are left open (active).
power down: Going into Active Power Down mode provides faster exit time from the Power
Down state at the expense of higher power consumption than Precharged
Power Down mode.

The Marvell® places the DRAM into either one of these power down states, by setting the
appropriate value in the SDRAM Operation Register (Table 457 p. 782).

m  Setting this register to a value of 0x11 triggers a precharged power down entry sequence on the
DRAM interface. The DRAM controller first closes all open pages by executing a precharge all
command on the DRAM bus, and then issues a power down command on the DRAM bus.
Software can poll this register to determine when the DRAM was placed into Power Down
mode.

m  Setting this register to a value of 0x10 triggers an active power down entry sequence on the
DRAM interface. When using this method of power down, there is no need to close all open
pages before entering Power Down mode. The DRAM controller issues a power down
command on the DRAM bus, even if some pages remain open. The software can poll this
register to determine when the DRAM was placed into Power Down mode.

During Power Down mode, all of the DRAM signals (excluding M_CLK_OUT, M_CLK_OUTn,
M_CKE, M_RESET, and M_ODT) are floated configurable via the <SRFloatEn> field in the DDR3
Registered DRAM Control (Table 504 p. 833). This significantly reduces the power consumption of
both the DRAM and the device.

There are 2 CKE signals (M_CKE[1:0]) that behave the same. The device does not
| ;] | support the separate placement of each physical bank into Power Down state. If the
board topology does not require the use of all of these signals, it is possible to only use

Note 4 5f the signals.

The maximum number of cycles to stay in Power Down state is configurable through <tPD> field in
the DDRS3 Timing Register (Table 460 p. 787) that sets the power down counter. This counter
granularity is in refresh periods. The counter counts down every time a refresh period has expired. A
value of 0x8 sets 8 refresh periods, the maximum allowed number of periods to maintain the DRAM
contents.
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The DRAM controller exits Power Down mode only as a result of one of these events:
m  The power down counter expires

m  An incoming transaction from one of the device’s masters to DRAM

m  An NOP command setting in the SDRAM Operation Register.

|:: | | Any attempt to access the DRAM with one of the operation commands other than the
NOP command (for example an MRS command), while in Power Down mode, may
Note result in a system hang.

Upon exiting the Power Down mode, the DRAM controller issues the appropriate number of refresh
commands, required to compensate for the lack of refresh commands during the Power Down state,
before proceeding with any other activity.

12.13.2 DRAM Self Refresh Mode

buffers, the DRAM controller exits the Power Down state, issues the appropriate
number of refresh commands to compensate for the lack of refresh cycles during the
Power Down state, and then re-enters the Power Down state automatically.

EI If the counter expires and there is no pending transaction in the DRAM controller
Note

The DRAM controller also supports a DRAM Self Refresh mode. This feature is mainly useful for:
m  Power saving (and for the frequency change procedure)
m  Battery backup (in case of power failure)

The DRAM controller puts the DRAM in Self Refresh mode by generating a refresh cycle with
M_CKE driven low. When exiting the Self Refresh mode, the controller drives M_CKE high, and
tDLLK cycles (in DDR3 mode), before generating any new transaction to DRAM.

The DRAM controller supports the power saving or battery backup applications differently. For
battery backup, the <SRMode> field in the SDRAM Configuration Register (Table 451 p. 773) is
cleared to 0. Once the DRAM has entered the Self Refresh mode, it can no longer be accessed, and
only returns to normal operation after power on reset. For power saving, set the <SRMode> field

to 1, and normal operation resumes after any new DRAM access request.

There are 4 CKE signals (M_CKE[3:0]) that behave the same. The device does not
| ;I | support the separate placement of each physical bank into Power Down state. If the
board topology does not require the use of all of these signals, it is possible to only use

Note  some of the signals.

During self refresh, all of the DRAM signals (excluding M_CLK_OUT, M_RESET, and M_CKE) are
floated. This significantly reduces power consumption. If the <SRCIk> field in the DDR Controller
Control (Low) Register (Table 452 p. 776) is set to 1, the device also stops driving M_CLK_OUT and
M_CLK_OUTn when the DRAM is in Self Refresh mode.

The device’s DRAM controller places the DRAM into Self Refresh mode when the <Cmd> field in the
SDRAM Operation Register (Table 457 p. 784) is set to 0x7. Once the field is set, the DRAM
controller waits for 256 cycles, generates a Self Refresh command to DRAM, and clears the DRAM
Operation register.
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12.14

The device’s DRAM controller puts the DRAM into Self Refresh mode in one of the following

situations:

m The <Cmd> field in the SDRAM Operation Register (Table 457 p. 784) was set to 0x7. Once the
field is set, the DRAM controller waits for 256 cycles and generates a Self Refresh command to
DRAM, and clears the DRAM Operation register.

m  During DRAM frequency change (see Section 34.5, Dynamic Frequency Scaling (DFS),
on page 530).

m  [f there are new pending transactions to DRAM, or a NOP command was registered in the
SDRAM Operation Register, the DRAM controller sets M_CKE[3:0] to 1 to take the DRAM out
of the Self Refresh mode. The controller then waits tDLLK cycles in DDR3 before generating the
transaction to DRAM.

For DDRS3, the DRAM controller provides the option to automatically attach a ZQCS calibration

command to the self refresh exit flow. Calibration commands are periodically needed to compensate

for voltage and temperature variations. The DRAM controller may interleave a ZQCS calibration
command during the time the DLL is being locked, while exiting Self Refresh mode. To enable this
automatic calibration command upon exiting Self Refresh, set bit <SR Exit ZQCS> field in the ZQC

Configuration Register (Table 497 p. 825) to 1. For full details about the calibration process and

considerations refer to Section 12.20, DRAM Calibration, on page 201.

access or the setting of a NOP command in the SDRAM Operation Register. Any
attempt to access the DRAM with one of the operation commands other than the NOP

Note command (for example an MRS command), while in Self Refresh mode, may resultin a
system hang.

DIMM Support

The JEDEC standard defines many types DDR3 DRAM DIMMs:
Registered or unbuffered DIMMs

32-bit, 64-bit or 40/72-bit wide (for ECC)

1, 2, or 4 physical banks (chip selects)

Different bank organization— x8 devices, x16 devices
Mirrored DIMMs for DDR3

Different densities

EI The DRAM controller exits Self Refresh mode, only as a result of a DRAM read/write

The device’s DRAM controller supports all of these DIMMs.

When working with DRAM DIMM, note the following configuration parameters:
| ;I | m Do not use unbuffered DIMM and registered DIMM in the same system.

m Do not use ECC with non-ECC DIMM in the same system.

Note

m  The DIMMs can be produced by different vendors, as long as the combined timing
configuration of the different vendors is available.

m  Each DIMM can be configured with a different capacity and organization. For
example, one DIMM can be 2 GB, x8 devices, and the other DIMM can be 1 GB,
x16 devices.
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12.15 DRAM Topologies

The device provides several tools to enable high-speed, heavy-load DRAM topologies (multiple
DRAM device topologies), as described in the following sub-sections.

m  Registered Address / Command Bus
m 2T and 3T Modes
m  DDRS3 Address Mirroring

12.15.1 Registered Address / Command Bus

When using multiple physical banks, the address and control signals are heavily loaded, and may be
unable to meet the DRAM AC timing requirements.

Using registered DIMMs solves this issue by buffering the address/control signals.

When interfacing registered DRAM DIMMs or on-board registration logic, all address and control
signals (M_A[15:0], M_BA[2:0], M_RASnh, M_CASn, M_WEn, M_CSn, and M_CKE) are registered
on the DIMM/Board. This means that the signals arrive at the DRAM device one cycle after they are
driven by the DRAM controller. It also means that Read data arrives back at the DRAM controller
one cycle later (in comparison to non-registered topologies).

When the DRAM controller is configured to registered DRAM via the <RegDIMM> field in the
SDRAM Configuration Register (Table 451 p. 774), it drives Write data one cycle later and samples
the Read data one cycle later (in comparison to non-registered topologies).

| ;] | The device can work either with registered DIMMs or with unbuffered DIMMs.The

Not device cannot operate with both DIMM types at the same time.
ote

The device supports SSTE32882 devices as defined by the JEDEC standard.

SSTE32882 3T Mode

The optional 3T mode (RC2 bit DA4) is supported for all commands, under these limitations:

m DRAM controller operates in 2-to-1 mode towards the PHY. (The <Phy2UnitClkRatio> field in
the DDR |0 Register (Table 482 p. 810) is configured to 0x1.)

m DRAM Controller is configured to 3T mode. (The <2T> field in the DDR Controller Control (Low)
Register (Table 452 p. 776)<2T> 0x1404[4:3]) is configured to 0x2.)

This mode is enabled by setting the <Register 3T mode> field in the DDR3 Registered DRAM
Control (Table 504 p. 834), and issuing a control word access (CWA) to enable bit DA4 in RC2 (see
Control Word Access (CWA).

| ;] | The DRAM Controller's 3T mode may be enabled regardless of the register's 3T mode
Not (but not vice versa).
ote

Copyright © 2014 Marvell Doc. No. MV-S107021-U0 Rev. A
May 29, 2014, Preliminary Document Classification: Proprietary Information Page 195



®

—

=  MV78230/78x60

M A RV EL L® Functional Specifications — Unrestricted

DDR3 Initialization

Prior to starting the regular DDR3 initialization (see Section 12.11.1, DDR3 Initialization Sequence,
on page 190), it may be necessary to configure the control words of the SSTE32882. In this case,
prior to setting the <InitEn> field in the SDRAM Initialization Control Register (Table 467 p. 792) as
part of the initialization flow, software must perform the following steps:
1. Set either the <Init RESET Deassert> field or the <Init CKE Assert> field in the SDRAM
Initialization Control Register (Table 467 p. 791).
The DRAM controller will perform the memory initialization steps until the step that is defined by
these registers and will stop there, rather than completing the full initialization flow.
2. Poll the above fields for 0x0. This indicates the DRAM controller has completed this stage.
3. Issue a control word access (CWA) command via the SDRAM Operation Register
(Table 457 p. 782) (see Control Word Access (CWA)) to configure the SSTE32882.
4. Poll the <Cmd> field in the SDRAM Operation Register (Table 457 p. 784) for 0x0.
This indicates the DRAM controller has completed the CWA (including any required delays after
the CWA).
5. Repeat steps 3 and 4 as required.
6. Set the <InitEn> field in the SDRAM Initialization Control Register (Table 467 p. 792) to
complete the initialization sequence.

Control Word Access (CWA)

Control Word Access (CWA) is provided through the DRAM controller's SDRAM Operation Register

(Table 457 p. 782).

1. Set the <Cmd> field to OxE.

2. Enable the appropriate group of chip selects using fields <Cmd_CS0>, <Cmd_CS1>,
<Cmd_CS2>, and <Cmd_CS3>.

NOTE: At least two of these fields must be enabled to perform CWA, per the SSTE32882
specification.

3. Select the requested Register Control via the <CWA RC> field.

Place the control word data in the <CWA Data>field.

5. Setthe <CWA Delay Sel> field to specify whether the CWA affects the SSTE32882 clock timing
and therefore should impose tSTAB delay after the access (setting to 0x1). Otherwise, tMRD
delay would be used (clear to 0x0).

NOTE: The tSTAB and tMRD delay values may be reconfigured via the DDR3 Registered
DRAM Timing (Table 505 p. 834). tSTAB may have to be reconfigured if frequency band 2 is
used.

>

N_ Issuing CWA while the DRAM is in Power Down mode would bring the DRAM out of
Power Down (CKE will be asserted). Issuing CWA while the DRAM is in Self Refresh
Note mode will not bring the DRAM out of Self Refresh (CKE is kept de-asserted).

Parity
The device does not drive the PAR_IN input of the SSTE32882, and does not support its ERROUT#
output.

The PAR_IN pin must be pulled either high or low on the board.
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During control word access (CWA) commands, the DRAM controller avoids corruption of the

command by toggling any of the unused M_RASn, M_CASn, or M_WERn pins, so that the parity of

the driven command matches the PAR_IN constant value.

1. To select the value of the corresponding pins during CWA commands, configure the <CWA
RAS> field, the <CWA CAS> field, and the <CWA WE> field in the DDR3 Registered DRAM
Control (Table 504 p. 834)

2. Also configure the <CWA Parity>, according to the PAR_IN constant value.

CKE Grouping

The device allows flexible connectivity of its M_CKE[3:0] outputs to the SSTE32882 DCKE[1:0]
inputs, to simplify board design and layout. To ensure correct protocol behavior, particularly during
Self Refresh Entry and Power Down Entry commands, software should configure the <CKEQO CS
Grp> field, the <CKE1 CS Grp> field, the <CKE2 CS Grp>, and the <CKE3 CS Grp> field in the
DDR3 Registered DRAM Control (Table 504 p. 833), which associate each M_CKE[3:0] pin with the
CSs connected to it.

Similarly, the M_ODT[3:0] outputs may be flexibly connected to the SSTE32882 DODT[1:0] inputs.
This feature is available regardless of the Registered DRAM configuration, via the registers:

m SDRAM ODT Control (Low) Register (Table 469 p. 793)
s SDRAM ODT Control (High) Register (Table 470 p. 797)

12.15.2 2T and 3T Modes

An alternative solution to registered DIMM/board logic for the heavy-load configuration on the
command and address lines, is using the 2T or 3T mode. The device supports both these modes.
While configured to one of these modes, all address/control signals, except for M_CS[3:0] and
M_ODT[3:0], are asserted for 2/3 cycles respectively, instead of one cycle. The DRAM protocol is
still maintained, since all of the signals are qualified with M_CSJ[3:0]. These signals are still asserted
for only one cycle. This operation results in an easier timing requirement on the address/control
signals.

To enable this mode, configure the <2T> field in the DDR Controller Control (Low) Register
(Table 452 p. 776) to the desired delay value.

12.15.3 DDR3 Address Mirroring

The device also supports DDR3 DIMMs that implement address mirroring. DDR3 devices have the
option to flip over (“mirror”) their address bus. Putting 2 such mirrored devices back to back on a
dual ranked DIMM or on board results in minimum tracing on the DIMM/board. Still, some of the
address pins are cross-lined between the 2 ranks.

Table 37 lists the address signals relationship between the DIMM connector, un-mirrored DRAM
rank, and a mirrored DRAM rank.

Table 37: DDR3 Address Mirroring Mapping Table

DIMM Connector Un-mirrored Rank Mirrored Rank
BA[0] BA[0] BA[1]
BA[1] BA[1] BA[0]
BA[2] BA[2] BA[2]
Al0] A[0] Al0]
Al1] Al1] Al1]
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Table 37: DDR3 Address Mirroring Mapping Table (Continued)

DIMM Connector Un-mirrored Rank Mirrored Rank
Al2] Al2] Al2]
Al3] A3] Al4]
Al4] Al4] A3
A5] A[5] Al6]
A[6] Al6] Al8]
Al7] Al7] Al8]
A[8] A[8] Al7]
A[9] A[9] Al9]
A[10] A[10] A[10]
A1) A1) A1)
Al12] A[12] Al12]
A[13] A[13] A[13]
Al14] A[14] Al14]
A[15] A[15] Al15]

Regular DRAM accesses to each of the DIMM's ranks is transparent and the DRAM controller drives
the address in the same way to both of the ranks. The one exception is while issuing MRS
commands. In these commands, the address and bank address buses are used as data signals
carrying values to write to the MRS register. While accessing MRS registers of a mirrored rank, the
DRAM controller flips the data between relevant pins to make the mirror transparent to software.
Software writes to the DRAM controller's MRS registers as if the rank is not mirrored, and if the rank
is mirrored, the DRAM controller flips the relevant pins during DRAM access.

For example, for software to configure the DRAM MRO register of a mirrored rank that resides on
M_CSJ1] to a CAS Latency value of 7 (A[4]=1) and to Nibble sequential Read burst type (A[3]=0), it
must write 0x6 to the <CL> field DDR3 MRO Register (Table 492 p. 819), and 0x0 to <RBT> field in
the same register. Upon triggering the MRO command in the SDRAM Operation Register

(Table 457 p. 782), the DRAM controller samples the CS1_Mirror field in DDR3 Rank Control
Register (Table 496 p. 824) to see if rank1 was defined as populated by a mirrored DIMM.

If accessing a mirrored DIMM, the DRAM controller flips the values of A[3] and A[4] to 1 and O,
respectively, before driving the signals to the DIMM connector. On the mirrored DIMM itself, A[3]
from the DIMM connector is routed to A[4] on the DRAM and A[4] on the connector is routed to pin
A[3] on the DRAM, resulting in sending the right values to the appropriate location.

DRAM Clocking

The Coherency Fabric, DRAM controller and the DRAM clocks are all derived from the same PLL
that generates the CPU core clock (PCLK). The clocks are edge aligned, and the entire
Marvell®-to-DRAM path runs synchronously, enabling very low latency.

The DRAM controller drives the DRAM M_CLK_OUT[3:0] and M_CLK_OUTn[3:0] differential pairs,
satisfying the DRAM clock specifications. However, the driving strength of these 4 clock pairs is
limited.

Doc. No. MV-S107021-U0 Rev. A Copyright © 2014 Marvell

Page 198

Document Classification: Proprietary Information May 29, 2014, Preliminary



DRAM Controller
DRAM Address/Data Drive

When interfacing with registered DIMMSs, this limitation is not a problem. The DIMM contains a zero
delay clock buffer (DLL). When interfacing with multiple DRAM devices on a board, some topologies
may require a buffer for the device’s clock outputs, using an on board PLL.

The device, besides the CPU and DRAM interfaces, runs at a different clock domain (TCLK). Any
request for DRAM access from other masters than the CPUs over the device’s Mbus passes through
a synchronization logic on the way to and from the DRAM.

1217 DRAM Address/Data Drive

The DRAM clock is driven by the device’s M_CLK_OUT/M_CLK_OUTn differential pairs. All DRAM
address and control signals driven by the device (single data rate signals) are coupled to the falling
edge.

Typically, address and control signals should be driven with the rising edge of
EI M_CLK_OUT. However, under certain board topology and DRAM load, there may be a
hold time problem on these signals. In this case, use the falling edge configuration by
Note setting <AddrCntrIToClkSkew> field in the DRAM PHY Configuration Register
(Table 498 p. 825), or the 90 degree setting in the same field.

The front-end logic of the DRAM controller is responsible for correct drive of the double data rate
data with the M_DQS signals, as well as unpack of the data from DRAM.

During a write transaction, 128-bit wide data is pulled out of the write buffer and driven as 64-bit
DRAM on the bus. The first 64-bits are driven with the rising edge of M_CLK_OUT, and the second
64-bits are driven with falling edge of M_CLK_OUT.

The DRAM controller drives DQS (data strobe) along with the data. The DRAM specification
requires very accurate DQS timing in respect to the DRAM clock. The DRAM controller uses an
analog DLL (ADLL) block to achieve correct timing (shift DQ by 1/4 cycle).

For a 32-bit DRAM interface, 64-bit wide data is pulled out of the write buffer and driven as two 32-bit
data bits on the DRAM bus.

12.18 DRAM Read Data Sample

The front-end logic of the DRAM controller is responsible for correct sampling of the double data rate
data with M_DQS signals, as well as the pack of data from double data rate to single data rate.

According to the DRAM interface width, DRAM read data is latched by the received DQS (shifted by
approximately 1/4 cycle). The data bits that arrived on the first DRAM data beat, are sampled with
the rising of DQS, and the data that arrived on the following clock beat is sampled with the falling
edge of DQS.
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12.19

12.19.1

On-Die Termination (ODT)

The DDR mode support dynamic ON and OFF termination resistors within the DRAM 1/O buffers, as
well the DRAM controller I/O buffers. Figure 33 shows a schematic of a DRAM /O buffer.

Figure 33: DRAM |/O Buffer
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The DDR technology offers dynamic ODT to further enhance the signal integrity on the data bus.
The device fully supports ODT and dynamic ODT as described in the following sections.

The DRAM controller has 4 ODT signals (M_ODT[3:0]), shared among the 4 DRAM ranks. There is
another, internal ODT signal that controls the termination inside the device’s I/O buffers. The ODT
signals can dynamically turn the DRAM termination ON and OFF. This is useful for maintaining
proper signal integrity with minimum reflections on the lines, without needing any external
termination resistors.

The DRAM controller can also be configured to static termination configuration, rather than dynamic
termination per transaction.

DDR3 ODT

While configured to DDR3 mode, the R nominal (RZQ) value is fixed at 240 ohm. This results in
Rtt_ NOM ODT values of 20, 30, 40, 60, or 120 ohm that the device fully supports both on the DRAM
1/O buffers and the device’s I/O buffers.

For further improved write signaling, greater termination impedance of 60 or 120 ohm is preferred
during the write operation, while the preference during idle states is typically for 30 or 40 ohm
termination values. The DDR3 dynamic ODT (Rtt_WR) feature enables the DRAM to switch
between HIGH or LOW termination impedance without issuing a mode register set (MRS)
command.

If enabled through an MRS command, dynamic ODT causes the DRAM to switch termination from
Rtt_ NOM to Rtt. WR, while a write command is issued. The DRAM changes the termination value
back to Rtt_ NOM as soon as the write has completed. Rtt_WR may be used during write operations,
even if Rtt_NOM is disabled.
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EI As defined in the JEDEC specification, ODT applies only to DM, DQ, and DQS signals.
Note

The <Rtt_NOM>, <Rtt_NOM_6>, and <Rtt_NOM?9> fields in the DDR3 MR1 Register control the
termination values of Rtt_NOM during ODT operation or disable termination.

The <Rtt_WR> field in the DDR3 MR2 Register controls the termination values of Rtt_ WR during
dynamic ODT operation or disables dynamic termination.

Typically, when driving a signal and eliminating reflections, place a termination resistor at the end of
the line. When the device drives data on the DQ lines (write transactions), it is desired to turn ON the
termination on the DRAM. On the other hand, when the DRAM drives DQ signals (read
transactions), it is required to turn ON the termination inside the device’s I/O buffer.

In a multiple DRAM bank environment, termination topology is more complex, and requires some
board simulation. The device’s DRAM controller provides the full flexibility to select which of the
4 DRAM banks terminations to turn ON or OFF, per any read or write transaction to any of the

4 banks (refer to the device Design Guide).

As DDR3 DRAM cannot terminate and drive at the same time, do not operate ODT
EI during reads on the DRAM chip select that is driving the data. For example, do not set
the <ODTO_READ_CS3> field in register SODRAM ODT Control (Low) Register to a
value of 1, meaning M_ODT]IO0] is driven high while reading from M_CS[3].

12.20 DRAM Calibration

The DDR DRAM supports a sequence to calibrate the DRAM'’s output buffers and ODT values
through the ZQCL and ZQCS commands.

ZQCL is used to perform the initial calibration phase as part of the DRAM initialization process. This
command executes a thorough calibration process on the DRAM using the internal DRAM’s
calibration engine before setting the correct driving strength and ODT values on the DRAM 1/O
buffers. ZQCL may be used at any time and not only as part of the initialization sequence.

Note

ZQCS command is used as a periodic calibration update to compensate for voltage and temperature
variations on the DRAM. This command is able to perform relatively small updates to the current
calibrated values of the DRAM I/O buffers, and takes less time to complete than ZQCL.

The device’s DRAM controller supports both calibration commands. The DRAM controller issues a

ZQCL command on the DRAM if one of the following apply:

m  As part of the initialization sequence.

m  The software sets <Cmd> field in the SDRAM Operation Register (Table 457 p. 784) to 0x12.

m  The type of command defined for a periodic calibration sequence was set to ZQCL through field
<Auto ZQC select> in ZQC Configuration Register.

m  Periodically, when the <Auto ZQC Timing> counter in ZQC Configuration Register expires and
the <Auto ZQC Select> field in the same register is configured to the ZQCL type of calibration.
For more details about periodic calibration, see Section , Periodic Calibration.

Before issuing the ZQCL command on the bus, the DRAM controller automatically precharges all
open pages, unless the calibration is done upon exiting Self Refresh mode.
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The DRAM controller issues a ZQCS command on the DRAM if the following apply:

m  The DRAM controller issues a ZQCS command on the DRAM if the software sets the <Cmd>
field in the SDRAM Operation Register (Table 457 p. 784) to 0x13. The type of command
defined for a periodic calibration sequence was set to ZQCS through field <Auto ZQC Select> in
ZQC Configuration Register.

m  Upon exiting Self Refresh mode, if the option was enabled through the <SR Exit ZQCS> field in
ZQC Configuration Register. In this situation, the calibration process is completed in parallel to
the DRAM DLL lock time.

m  Periodically, when the <Auto ZQC Timing> counter in ZQC Configuration Register expires and
the <Auto ZQC Select> field in the same register is configured to the ZQCS type of calibration.
For more details about periodic calibration see Section , Periodic Calibration.

Before issuing the ZQCS command on the bus, the DRAM controller automatically precharges all
open pages.

Periodic Calibration

It is recommended that the system allow periodic calibration updates, to maintain the correct
behavior of the electrical interface and to minimize VT effects on signal integrity. The DRAM
controller supports automatic periodic calibration tuning on the DRAM interface. It utilizes a
programmable counter that, once it expires, issues a process of periodic calibrations. As part of this
sequence, the DRAM controller precharges all open pages, and issues either a ZQCL or ZQCS
command, according to the value of <Auto ZQC select> field in the ZQC Configuration Register
(Table 497 p. 825). The time period between two consecutive calibration periods is counted in Trefi
resolution (counts down in the refresh periods) and is configurable through the <Auto ZQC timing>
field in the same register. On each expiration of the counter, the DRAM controller issues a calibration
command on a populated DRAM rank (starting from the lowest number M_CSx that is populated).
Once calibration completes, the counter is reloaded and starts to count down again. On the next
expiration, the DRAM controller issues a calibration command on the next populated DRAM rank
and so on. Once all populated DRAM ranks are calibrated, the process starts again.
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1 3 NAND Flash Controller (NFC)

This section describes the device’s NAND Flash Controller (NFC).

described in this section.

The reference to 16b NAND Flash controller or 16B flag refers to the 16-bit bus
width mode (configured in the <DWIDTH_C> field or the <DWIDTH_M> field in the
Data Flash Control Register (NDCR) (Table 534 p. 858). These fields can be
configured either to:

¢ 0xO0 for an 8-bit bus

* 0x1 for a 16-bit bus

EI m MV78230/78x60 supports NAND Flash Controller (NFC) with hardware ECC, as

Note

The NFC is used to interface with an external NAND data flash memory. The usage model for the
NAND data flash memory is that of a Solid State Drive for the device. A flash file system (FFS)
performs tasks such as wear leveling, garbage collection, and bad-block replacement for the flash
media. The NFC accepts commands from the file system, controls the flash device, according to
these commands, and performs error control.

The NFC provides a glue-less interface to external data flash memory (SLC or MLC). The main NFC
clock is ND_CLK. ECC is calculated according to the ECC_CLK (2 x ND_CLK). These clocks are set
by configuring the <NandEccClkDivRatioFull> field in the Core Divider Clock Ratio Full0 Register
(Table 1477 p. 1545).

Data-flash devices use a multi-cycle addressing scheme, so the number of interface pins remains
the same for all memory densities.

m NF_IO[7:0] are used for sending command and addresses to the flash device, in both 8-bit and
16-bit NAND flash.

m  NF_IQ[7:0] are also used for data transfer with 8-bit devices. NF_10[15:0] are used for data
transfer with 16-bit devices.
The NFC controls these interface pins for the specific command placed in its command buffer.

The NAND Flash controller registers are located in Appendix A.4, NAND Flash Registers, on
page 856.

13.1 Features

Following are the major features integrated in this interface:

m  Supports 4 chips selects and 8-/16-bit interface to the data-flash device.

m  Supports 32/64/128/256-KB page block sizes.

m  Supports 512B, 2-KB, 4-KB, and 8-KB page sizes.

m  Computes Error Correction Code (ECC) and corrects single-bit errors and detects 2-bit errors
per page using Hamming ECC.

m  Computes ECC and corrects up to 16 errors per page (including spare, if enabled and parity bits
themselves) using BCH' ECC.

m  Supports programmable interface timing.

1. BCH = Bose-Chaudhuri-Hocquengham.

Copyright © 2014 Marvell Doc. No. MV-S107021-U0 Rev. A
May 29, 2014, Preliminary Document Classification: Proprietary Information Page 203



—

—
—

M ARVELL®

13.1.1

MV78230/78x60
Functional Specifications — Unrestricted

m  Supports enabling Interrupts to indicate page and command completion, bad blocks, bit errors,
flash-ready status and command, and data-write/read requests.

m  Supports boot from NAND Flash device on CSO.

The addressing is sufficiently flexible to enable any size NAND device, but any

EI The total storage that the NFC can access is limited by the number of chip select pins.

Note

configuration requiring more than four chip enable signals is not directly supported by
this controller.

NAND Single-Level Cell (SLC) and Multi-Level Cell (MLC)

The key high-level attributes for NAND devices are listed below.

Table 38: NAND Attribute Definitions

Attribute
Density

Interface Width

Interface Speed

NAND Cell Type
ECC

Page Size

“Spare” Area

Doc. No. MV-S107021-U0 Rev. A
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Definition

The total storage capacity of the NAND device, typically in units of Mbits or Gbits, also denoted
Mb or Gb. The true usable density may vary depending on file system overhead, garbage
collection policy, and bad blocks.

This controller supports a wide range of densities by virtue of its support for both 4-cycle and
5-cycle addresses, and by stacking NAND devices using multiple CS.

Number of bits for the data bus coming out of the NAND device. “Bare NAND” is available in two
widths, 8 and 16 bit.
This controller supports native widths.

This is specified differently depending on the nature of the specific interface. For bare NAND
devices, the interface is asynchronous and the interface speed is the read/write pulse cycle
time, which is specified in nanoseconds.

This controller supports varying interface speeds by enabling programmability into the timing
generation.

Single Level Cell (SLC) or Multi Level Cell (MLC).

Error Correction Coding. This indicates the recommended number of bits that should be
corrected by the ECC solution on the controller. Typically the controller would require the
capability to detect more errors than the minimum ECC requirement. Typically ECC
requirements are specified in the number of bits per 512B section, or alternatively as the
number of bits per page and this requirement can vary from vendor to vendor. The ECC
algorithm can be simple for single bit correction (e.g. Hamming code) or complex for multiple bit
correction (with manufacturers suggesting Reed-Solomon or Bose-Chaudhuri-Hochquenghem).

This is the number of bytes in a single chunk of the array that can be read or written with a single
command. The page size can be considered to be just the data area (and therefore be a power
of two in size), or can be the data area plus the “spare” area (therefore, cannot be a power of 2).
This controller supports a range of page sizes.

This is additional bits at the end of the page typically used for overhead functions. ECC
syndrome bits may be stored here or file system “meta data” may be here. The spare area is
considered out-of-band storage. Generally, there are 16B of spare per 512B of page size. MLC
NAND increases the needed overhead dedicated to the spare area because of the potentially
extreme ECC levels needed.
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Table 38: NAND Attribute Definitions (Continued)

Attribute

Definition

Garbage Collection NAND is written in pages (for example, 2048B) and pages are combined into erase blocks (for

Endurance

13.2

13.3

example, 64 pages in a block). New data can obsolete already written data where the old data
has not yet been erased. As the NAND fills up, the old obsolete data needs to be garbage
collected to make room. This typically involves moving the remaining “good” data in a block
being garbage collected to an erased block to make all blocks in an old erase block obsolete.
The old block is then erased (that is, garbage collected). The newly written block contains only
valid and current data.

NOTE: This is the number erase/program cycles that can reliably be supported by the device
over the complete lifetime of the device. Currently, for SLC devices this is ~100,000 and
for MLC devices this is ~10,000.

NAND Flash Interface

The NFC supports both 8- and 16-bit-wide data buses. Up to 4 chip selects (NF_CSn[3:0]) interface
to the flash devices. Up to five cycles of addresses can be sent on the NF_IO bus to address flash
devices interfaced, using these chip selects. The chip select to activate can be specified in the
command for the NFC.

The NAND I/O Pins can be shared with the Device Bus /O pins. This can be controlled through the
MPP configuration (see Appendix A.19, Multi-Purpose Ports (MPP) Registers, on page 1432) that is
controlled by the software, or using an enhanced arbiter. By default, the Hardware Arbiter mode is
enabled in the device.

NAND Flash Connectivity

To select which CS is used, set the <ADDR5> field in the NAND Controller Command Buffer 2
(NDCB2) Register (Table 545 p. 887) and the <CSEL> field in the NAND Controller Command
Buffer 0 (NDCBO) Register (Table 543 p. 883) as listed in Table 39.

To activate CS2 and CS3, write 1 to <NfCsExpansionEn> field in the SoC Device Multiplex Register
(Table 1433 p. 1513).

Table 39: Chip Select Assignment

Selected CS NDCB2 NDCBO
<ADDRS5> bit[7] <CSEL> bit[24]

CSo 0 0

CS1 0 1

CS2 1 0

CS3 1 1

A selection within the pair is made by decoding address bit[39]. This additional interface ability is
intended to support stacked NAND to increase the memory density.
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Different types of configuration are illustrated in the following figures.

Figure 34: Stacked Data Flash Memory System Example Using NF_CSn[0] and NF_CSn[1]
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Figure 35 shows dual chip select using NF_CSn[0] and NF_CSn[2].

Figure 35: Stacked Data Flash Memory System Example Using NF_CSn[0] and NF_CSn[2]
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Operation

NAND flash devices accept a variety of commands from the NFC to perform functions such as
program, erase, and different types of reads. This section provides information for configuring the
NFC to perform successful program, erase, and reads.

m  Error checking and correction (ECC)
m  Bad-block management support

The <CMD_XTYPE> field in the NAND Controller Command Buffer 0 (NDCBO) Register (Table 543
p. 881) field defines the type of command. The double-byte command <DBC> field in the register
indicates that the present command is a 2B command, where CMD1 and CMD2 are the commands
sent to the flash device in the CMD1-ADDR-CMD2 (or CMD1-ADDR-DATA-CMD?2 in case of
program commands) sequence. If the current command is a 1B command, only CMD1 and address
are sent, and the sequence would be CMD1-ADDR (or CMD1-ADDR-DATA in case of program
commands). The addressing (ADDR phase) is performed in multiple cycles, using pins NF_IO[7:0].
ADDR1 through ADDRS5 are the addresses sent in address cycles 1 through 5, respectively. The
CMD_CTRL field contains information about the number of address cycles, single/double CMD and
other information, as illustrated in Table 40. One command descriptor always corresponds to a
single- or double-byte NAND flash command.
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Table 40: Command Format

Command Format

Byte

7

6 5 4 3 2 1 0

ADDR4 ADDR3 ADDR2 ADDRH1 CMD_CTRL CMD2 CMD1

ADDR7 ADDRG6 NDLENCNT Status Status Page ADDR5

Mask Cmd. Count

Having <CMD1> field and <CMD2> field in the NAND Controller Command Buffer 0 (NDCBO)
Register (Table 543 p. 885) in the command gives users the flexibility to choose the appropriate
commands because the commands can vary widely between flash vendors and for different product
families for the same vendor. This format also supports future additions to the command set as long
as the command, address, and data sequence remains the same. The type of command is defined
using the <CMD_XTYPE> field in the NAND Controller Command Buffer 0 (NDCBO) Register
(Table 543 p. 881). The chip select to be asserted for the NAND flash access is specified by CSEL
bit. The <AUTO_RS> specifies whether an automatic status check must be performed by the NFC
after the command completion.

The following interrupts should be enabled by clearing the appropriate mask bits in the Data Flash
Control Register (NDCR) (Table 534 p. 857).

m  Write-data request interrupt
m  Read-data request interrupt
m  Write-command request interrupt

In this mode, the <ND_RUN?> field in the Data Flash Control Register (NDCR) (Table 534 p. 858)
must be set after configuring the data-flash registers, and software responds to a write-command
request interrupt by writing the command to the command buffer (NDCBx). NDCBx should be written
only after receiving a write-command request. If the command is a write (single page or multi page),
the write-data request interrupt is activated, and software writes data corresponding to a page to the
data controller data buffer (NDDB). For multi-page writes, the write-data request interrupt gets
activated multiple times, requesting software attention for a page of data each time. Similarly for
read operations, the read-data request interrupt is activated after reading a page of data from the
flash device, and the device responds to this interrupt by emptying the data buffer.

For read ID and read status commands, software reads 8B from NDDB, because the NFC allocates
one buffer entry (8B) to hold the read data for these commands. Valid data is aligned to the LSB;
users should discard non-valid bytes, for example, for a 5B read-ID command, bytes 0 through 4 are
valid while bytes 5 through 7 should be ignored.

Status Register (NDSR) (Table 537 p. 871) corresponding to the above-mentioned
interrupts to perform write/read data and write commands.

Note m  Make sure to clear the WRDREQ/RDDREQ status bits by writing to NDSR before
accessing the NDDB. This will prevent missing WRDREQ/RDDREQ interrupts for
subsequent pages during multi-page PROGRAM and multi-page READ cycles.

m  If you are issuing a command with the next-command (NC) bit set, the next
command should not be read ID or read status because of difficulties with servicing
interrupts. Read ID and read status commands are too short for the interrupt
service routine to finish servicing the first command completed interrupt in time to
acknowledge the second command completed interrupt, and therefore, the second
interrupt will go undetected.

EI m  Even if interrupts are not enabled, software can poll bits in the NAND Controller
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Error Checking and Correction (ECC)

Error-detection code/error-correction code (EDC/ECC) is required in the NFC to detect and correct
errors occurring in the flash device due to bit flipping (Bit flipping occurs when a bit is either
reversed, or is reported reversed). ECC is computed when write data is transferred from data buffer
to the NAND flash. After completing the write, the computed ECC bytes are written to the spare area
of the flash. Table 41 shows the available spare area and spare-area bytes used for storing the ECC
for different page sizes. When ECC is enabled, the number of spare area bytes required for use by
ECC are shown in the middle column of Table 41. These bytes are not available for use by the
system software and cannot be written to or read from.

In addition, the number of bytes read from and written to the NAND that pass through the data FIFO
must be a multiple of eight.

Enable ECC only for Program page or Read page operations. Therefore, for Read-ID
| §| | and Read-status operations disable ECC mode.

Note To interleave Read-ID with other operations, the control and the command registers
have to be reconfigured for the Read-ID, and therefore, ECC setting can be disabled.

For example, if the page size is 512B with ECC and the spare area enabled, bytes 0 through 511 are
written with data and the first 8B of the spare area (bytes 512 through 519) are written with spare
data (file-system-dependent information). Next, 6B of spare area (bytes 520 through 525) are used
by the NFC to write the ECC data. The remaining 2B cannot be written and any data read must be
ignored.

When the read operation is completed, ECC bytes are read from the spare area, and any bit errors
are computed and corrected. Depending on the ECC mode, the NFC uses Hamming code to correct
1-bit random error in a page and detects 2-bit errors or a BCH algorithm to correct multiple bit errors.
Interrupts can be enabled to get information about single-bit and 2-bit errors.

When the 16-bit NFC flag is set to ON, there is an interaction between the ganging configuration and
the ECC option available:

m  Ganging of 512B page size devices is only supported with the Hamming ECC engine
m  Ganging of 2048B (or 4096B) page size devices is only supported with the BCH ECC engine.

Table 41: Spare Area Used for ECC

NAND Flash Typical Spare Number of Number of Number of
Page Size Area in NAND Spare Area Spare Area Inaccessible
(Bytes) Flash (Bytes) Bytes Used Bytes Used Bytes

for Hamming for BCH ECC

ECC

512 16 0 N/A 0
512 16 6 N/A 2
2048 64 0 0 0
2048 64 24 0 0
2048 64 0 30 2
4096 128 48 0

4096 128 0 60 4
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13.4.2

Hamming Code for ECC

During a page write, data is split into even and odd streams before computing the ECC. This data
split lessens the error-correcting requirement on the ECC algorithm to 1 bit. If D;; represents thejth bit
of the ith byte, Table 42 and Table 43 show the data streams used for ECC computation for an 8-bit
wide data bus. When the 16-bit NFC flag is set to ON, for NAND flash device that are 16-bits wide,
the lower and upper bytes are treated as successive bytes of read data. However, where two 8-bit
devices are interfaced through a single chip select, the ECC computations are performed
independently on the upper and lower bytes of the data bus. Figure 36 illustrates the computation of
partial parities (indicated in Figure 36 by Px for odd numbered bits and Px’ for even numbered bits)
for a 256B data stream. ECC is computed separately for each data stream and is written to the spare
area of the flash device. The ECC algorithm can correct 1 bit of random error in a chunk of 256B,
de-interleaved from 512B. Each of the odd and even data streams are 256B long, and the computed
ECC for this data stream occupies 3B. Therefore, 6B of ECC data are written for a NAND flash with
page size of 512B. These bytes are stored into the spare byte location in the NAND flash memory,
as indicated in Table 44, using the same notation for partial parity bits as in Figure 36. The same
ECC computation process is employed four times for a page size of 2048B, resulting in 24B of ECC.
Hamming ECC is not supported in the 4-KB logical page size. Therefore, for a 4-KB logical page use
BCH ECC.

Table 42: Even Data Stream

Bit 7 6 5 4 3 2 1 0

Di+16 Di+14 Di+12 Di+10 Dis Di4 Di2 Dio

Table 43: Odd Data Stream
Bit 7 6 5 4 3 2 1 0

Div17 Di+15 Di+13 Di+1 1 Di7 Dis Di3 Di4
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Figure 36: ECC Code Generation
Parity Generation (for 256 Byte Input)
1byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 m
2byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 @ -
3"byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 @ P1024'
4"byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 @ P16

253" byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 m
254" byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | BitO m - P1024
255" byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 @

@ P16

256" byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | BitO

) o) o ) o o
RN R
SRR

In Table 44 p refers to the partial parity bit for the first 256B and P is the partial parity for the second
256B. The “first” and “second” are not consecutive by address, but interleaved by bit:

m  The “first” 256 being composed of the even bits.
m  The “second” 256 being composed of the odd bits.

Table 44: ECC Byte Placement

Bit 7 6 5 4 3 2 1 0
Byte 0 P8' p8' p4' p4' p2' p2' p1' p1'
Byte 1 p128' p128' p64' p64' p32' p32' p16' p16'
Byte 2 P1 P1 p1024' p1024' p512' p512' p256' p256'
Byte 3 P16 P16 P8 P8 P4 P4 P2 P2
Byte 4 P256 P256 P128 P128 P64 P64 P32 P32
Byte 5 0 0 0 0 P1024 P1024 P512 P512

During a page read, the read data is again split into odd and even streams. The associated ECC
data is read and compared with the computed ECC from the received data stream. If a 1-bit error is
detected in a data stream, it is corrected. For two errors in any or both of the data streams, the ECC
algorithm detects this scenario and flags a 2-bit error condition.
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13.4.3

The ECC logic is initialized at the end of every 512B (256B per data stream) of transfer.

Figure 37: Hamming Error Detection Process

Generate ECC code during
program operation

Generate New ECC code during
data read

|

Original ECC code XORed with
new generated ECC code

'

XOR results in all No
bits equal to zero

iYes

No error Error detected

BCH Error Correction

BCH is an acronym for Bose, Ray-Chaudhuri, Hocquengham, three individuals who collectively
developed the mathematical background for multilevel, cyclic, error-correcting, variable-length digital
codes. There are three parameters which define BCH codes: symbol size, field length and correction
power.

For this purpose, the symbol is, of course, a binary digit. While this may seem obvious it is
somewhat unfortunate because the NAND Flash interface is byte parallel whereas the BCH
algorithm is inherently bit serial.

The mathematics of BCH is based on operations on Galois fields where the size of the field is (2™ -1)
symbols (bits). Since BCH error correction is not intended for small block NAND flash devices, the
field is chosen to cover all 2048B in a large block page, plus any spare bytes that are defined. There
are 16,384 bits in 2048 bytes, but when you add in the ECC bits and the spare bits (which are also
protected), the next larger power of two (minus one) is required that results in 32,767 bits. Therefore,
the BCH parameter for the field size “m” is 15. The inherent capability of a BCH algorithm means
that the ECC corrects any combination of n errors in 2™ -1 bits.

The NAND flash manufacturers, for reasons dating back to small block NAND flash, specified the
ECC requirements for MLC as the number-of-bits-of-correction per 512B sector. The statistics for the
bit error rate (BER)" for each NAND flash cell for MLC is uniform and the division of those statistics
into 512B sectors is arbitrary. For BCH, the number of correctable bits is the parameter ‘t'.

1. The term BER is defined as the probability of error in any one bit.
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For example, if the requirement is for 8 bits of correction per 512B sector, the implication is that there
is a requirement of 32-bits per 2-KB page. However, there is no way to prevent 9 of those bits from
being in the first sector, or 10, or 11, or any combination up to the maximum of 32, it is solely a
function of the probabilities and possible combinations.

After a massive combinational analysis where all possibilities of 32 bits of errors distributed over four
512B sectors, it was discovered that fewer total bits of correction, when designed to cover the entire
page, give better results than dividing the page into arbitrary chunks. It turns out that 16-bits of
correction per page gives better coding gain (that is, an increase in effective BER) than four 8-bit,
512B sector correction.

The trade-off is that the amount of hardware is approximately proportional to (m*t) so increasing t
and m simultaneously (more bits of correction over a larger field) significantly increases the number
of gates. However, the BCH algorithm is highly sensitive to the particular values of m and t, and all of
the polynomials used are chosen specifically for each choice. This means that a generic or
programmable BCH engine is not a practical alternative so a choice has to be made as to how far
into the future one wishes to be able to intercept MLC BER rates.

Page Allocation

There are three potential types of data in a page, the main data, the so-called spare data, and the
ECC. In addition, in certain common cases, some bytes are simply inaccessible. The layout of this
data depends on the programming of <PAGE_SZ>, <SPARE_EN>, and <ECC_EN> in the Data
Flash Control Register (NDCR) (Table 534 p. 857), and <BCH_EN> in the NAND ECC Control
(NDECCCTRL) Register (Table 540 p. 878). The following table shows how bytes are allocated in
the page, according to the various page sizes. Because of the 64-bit data buffer, the size of any area
must be evenly divisible by 8B, so certain combinations result in unusable spare bytes. Unusable
bytes must be programmed to zero in data blocks.

For small block devices, there can be a single Hamming 6B ECC, and its location depends on the
spare usage. For small block devices, there is a maximum of 16B of spare area. Since the BCH ECC
produces a 30B syndrome, BCH cannot be used for small block NAND flash.

Table 45: Small Block Page Allocation

PAGE_SZ == 0b00 (512 SPARE_EN == FALSE ECC_EN == FALSE BCH_EN == don’t care
bytes)
0 511 512 527
512B Data Inaccessible
PAGE_SZ == 0b00 (512 SPARE_EN == TRUE ECC_EN == FALSE BCH_EN == don’t care
bytes)
0 511 512 527
512B Data 16B Spare
PAGE_SZ == 0b00 (512 SPARE_EN == FALSE ECC_EN == TRUE BCH_EN == FALSE
bytes)
0 511 512 517 518 527
512B Data Hamming ECC Inaccessible
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Table 45: Small Block Page Allocation (Continued)

PAGE_SZ == 0b00 (512 SPARE_EN == TRUE

bytes)

ECC_EN == TRUE

511

512B Data

BCH_EN == FALSE

512 519 | 520 525 526,
527
8B Unprotected Spare Hamming ECC Inaccessible

For large block devices, there can be four concatenated 6B Hamming ECC syndromes or a single
30B BCH syndrome. The location of the ECC depends on the spare usage.

Table 46: Large Block Page Allocation

PAGE_SZ == 0b01 SPARE_EN == FALSE ECC_EN == FALSE BCH_EN == don’t care
(2048B)
0 2047 2048 2111
2048B Data Inaccessible
PAGE_SZ == 0b01 SPARE_EN == TRUE ECC_EN == FALSE BCH_EN == don’t care
(2048B)
0 2047 2048 2111
2048B Data 64B Spare Data
PAGE_SZ == 0b01 SPARE_EN == FALSE ECC_EN == TRUE BCH_EN == FALSE
(2048B)
0 2047 2048 2071 2072 2111
2048B Data (4) Hamming ECC Inaccessible
PAGE_SZ == 0b01 SPARE_EN == TRUE ECC_EN == TRUE BCH_EN == FALSE
(2048B)
0 2047 2048 2087 2088 2111
2048B Data 40B Spare Data (4) Hamming ECC
PAGE_SZ == 0b01 SPARE_EN == FALSE ECC_EN == TRUE BCH_EN == TRUE
(2048B)
0 2047 2048 2077 2078 2111
2048B Data BCH ECC Inaccessible
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Table 46: Large Block Page Allocation (Continued)
PAGE_SZ == 0b01 SPARE_EN == TRUE ECC_EN == TRUE BCH_EN == TRUE
(2048B)
0 2047 2048 2079 2080 2109 2110,
2111
2048B Data 32B Spare Data BCH ECC Inaccess
ible

It is expected that all NAND Flash devices require ECC, so all examples include some type of ECC.
The total number of bytes in a 4-KB page is unspecified as the size of the spare area has not been
standardized.

For 4-KB pages of type SLC or MLC with 4-bit BCH, always use 2-KB chunks packed
| §| | together in some manner. The same applies to 8-KB chunks.

Note For the BCH ECC examples, the BCH ECC must be padded with two zero bytes to
maintain the 8B alignment.

If 4-KB pages scale, there would be 4096B of main area and a spare area of 128B. It is expected
that there will be more than 128B of spare area (due to MLC requirements), but these additional
bytes will not be accessible by the NFC.

Table 47: 4-KB Physical or Logical Page Allocation Using 2-KB Chunks

PAGE_SZ == 0b01 SPARE_EN == FALSE ECC_EN == TRUE BCH_EN == FALSE
(2048B)
0 2047 2048 2071 2072 4119 4120 4143 4144...
2KB Data (4) 6B Hamming ECC 2KB Data (4) 6B Hamming ECC Inaccessible
PAGE_SZ == 0b01 SPARE_EN == FALSE ECC_EN == TRUE BCH_EN == TRUE
(2048B)
0 2047 2048 2077 2078 4125 4126 4155 4156...
2KB Data 30B BCHECC 2KB Data 30B BCH ECC Inaccessible
PAGE_SZ == 0b01 SPARE_EN == TRUE ECC_EN == TRUE BCH_EN == FALSE
(2048B)
0 2047 2048, 2088, 2112 4159 4160, 4200, (4224...)
2087 211 4199 4223
2KB Data 40B Spare (4) 6B 2KB Data 40B Spare (4) 6B Inaccessible
Hamming Hamming
ECC ECC
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Table 47: 4-KB Physical or Logical Page Allocation Using 2-KB Chunks (Continued)

PAGE_SZ == 0b01 SPARE_EN == TRUE ECC_EN == TRUE BCH_EN == TRUE
(2048B)
0 2047 2048 - 2080- 2110 4157 4158 - 4190 - (4220...)
2079 2109 4189 4219
2KB Data 32B Spare 30B 2KB Data 32B Spare 30B Inaccessible
BCH ECC BCH ECC

13.4.5

The drawback in this case is that essentially the entire currently defined spare area would be
consumed with ECC bytes, and for each 2-KB page, there would be four “wasted” bytes.

This can be extended yet again by using BCH on a 512B sector, again wasting 4B per syndrome.
For this to operate, there would need to be a doubling of the spare area from 64B per 2-KB page to
at least 120B per 2-KB page.

The same logic applies to 4-KB pages.

Command Semantics

The command semantics are defined in the NAND Controller Command Buffer 0 (NDCBO) Register
(Table 543 p. 881). This register defines how each NAND command type is to proceed, and how or if
it may be overlapped. There are eight basic semantics: Read, Program, Erase, Read ID, Read
Status and Reset, Naked Command and Naked Address. The semantics differ in the sequence of
operations and in the count of operations. However, each semantic runs as a continuous operation.
Read and Program semantics can be decomposed into their “naked” segments, and Program and
Erase semantics allow overlap of commands to a different chip select.
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Figure 38: Erase Semantic Flowchart
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13.4.6

m  Read ID Semantic The Read ID semantic is very similar to the Read semantic, only the
length is fixed by a a different field to be either 2 or 4B. There is no
concept of spare or ECC, but the flowchart is very similar, and therefore, is
not replicated.

m  Read Status The Read Status semantic is very similar to the Read semantic, only the
Semantic length is fixed to 1B. There is no concept of spare or ECC, but the
flowchart is very similar and therefore, is not replicated.

m  Reset Semantic The Reset semantic issues a single command (CMD1) to the NAND,
regardless of the programming of other command block parameters (such
as NDCBO0.DBC). Address bytes have no meaning, regardless of the
address count. There is no data transfer regardless of any length settings.

Figure 39: Reset Semantic Flowchart

Assert CSNDCBO.CSEL]

v

Write NDCB0.CMD1

Bad Block Management Support

The NFC performs a status check after each program/erase operation to determine if the transaction
was successful. This status check can be disabled by clearing the NAND Controller Command
Buffer 0 (NDCBO) Register (Table 543 p. 881). If a status check returns an error, as indicated by a 1
in the LSB of the status-read data, a bad-block-detect interrupt (if enabled) is sent out. The Bad
Block registers (see Table 533, Summary Map Table for the NAND Flash Registers, on page 856)
can be read to determine the address of the bad block. The OS file system software marks the
detected bad block as non-valid.
m  If a bad-block error is encountered at the end of a page program, additional transactions to that
block are aborted.

m  If the error occurs during a page program in block A, software transfers other valid pages in
block A to another unassigned block B and marks block A as non-valid.
m  [f an error occurs during a block erase, software is expected to mark the block as non-valid.

Command Execution When Bad Blocks are Detected

When a bad block is detected, the behavior of the NFC remains the same, regardless of whether
commands are executed sequentially or in parallel. The command without a bad-block detection
completes, but the command that resulted in bad-block detection does not execute. (If it is a
program command, it must be executed again after the command descriptors have been
reprogrammed to process the bad-block scenario.) As a result of a bad-block detection, the
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ND_RUN bit in NDCR is cleared after the command buffer is emptied. Resume the operation by
setting ND_RUN after modifying the command-descriptor.

Usage Examples

The following tables show how the application processor interacts with the NFC to schedule
operations. These tables only document the use model. Each table shows resources in columns and
steps in rows and the tables are intended to show how the hardware resources are used in
sequence and in time. The right most column is the time equation (that is, how to compute the time
taken for this step).

For each of the tables Table 48 through Table 51, time increases as one moves down the rows,
although the time taken for each row is not constant. In most instances, the time equation column
defines the time taken by each step. Each column describes the activities executed by the various
hardware segments that make up the system.

Table 48 shows the sequence for reading a 2-KB page from a MLC device with BCH enabled.

Table 48: Read 2 KB MLC Page

Application NAND Flash NAND Flash Data Buffer BCH Decoder Time
Processor and Registers I/F Pins Equation
System Bus and Control
Read command
control block from
memory
Read commands Write “NAND
from memory Read” command
sequence to
NDCBO
Read Data Move Read cmd 1 twC
control block from
memory
Stall 5-cycle 5*tWC
address
Read cmd 2 twC
Busy tR
Reset
Read data Write NAND flash Compute 2048*tRC
data into Buffer syndrome
Read spare Write NAND flash (64-ECC)*tRC
Spare into Buffer
Read ECC ECC*tRC
Load BMA
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Table 48: Read 2 KB MLC Page (Continued)

Application NAND Flash NAND Flash Data Buffer BCH Decoder Time
Processor and Registers I/F Pins Equation
System Bus and Control
Read data block Read data block Read bufferdatato = Compute ECC
from memory from NDDB system bus bits with Chien
search
Interrupt

Table 49 shows the sequence for reading a 4-KB page from a MLC device with BCH enabled.
Because the buffer is not large enough to contain the entire page, the data is read from the NAND
flash in 2-KB chunks.

Table 49: Read 4 KB MLC Page

Application NAND Flash NAND Flash Data Buffer BCH Decoder Time
Processor and Registers and I/F Pins Equation
System Bus Control

Read Command
control block from
memory

Read commands Write “NAND

from memory Read” command
sequence to
NDCBO
Read Data Move Read cmd 1 twC
control block from
memory
Stall 5-cycle address 5*tWC
Read cmd 2 twC
Busy tR
Reset
Read data Write NAND Compute 2048*tRC
flash data into syndrome
Buffer
Read spare Write NAND (64-ECC)*tRC
flash Spare into
Buffer
Read ECC ECC*tRC
Load BMA
Compute BMA
Load Chien
search
Read data block Read data block Read buffer data | Compute ECC
from memory from NDDB to system bus bits with Chien
search
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Table 49: Read 4 KB MLC Page (Continued)

Application
Processor and
System Bus

Read Command
control block from
memory

Read commands
from memory

Read Data Move
control block from
memory

Stall

Read data block
from memory

NAND Flash NAND Flash Data Buffer
Registers and I/F Pins
Control
Write “Naked
Read” command
sequence to
NDCBO
Read data Write NAND
flash data into
Buffer
Read spare Write NAND
flash Spare into
Buffer
Read ECC

Read data block
from NDDB

Interrupt

Read data block

NAND Flash Controller (NFC)

Operation
BCH Decoder Time
Equation
Reset
Compute 2048*tRC
syndrome
(64-ECC)*tRC
ECC*RC
Load BMA

Compute BMA

Load Chien
search

Compute ECC
bits with Chien
search

Table 50 shows the sequence for writing a 2 KB page to a MLC device with BCH enabled.
Table 50: Program (Write) 2 KB MLC Page

Application
Processor and
System Bus

Read Command
control block from
memory

Read commands
from memory

Copyright © 2014 Marvell
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NAND Flash NAND Flash Data Buffer
Registers and I/F Pins

Control

Write “NAND

Write” command
sequence to
NDCBO
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Table 50: Program (Write) 2 KB MLC Page (Continued)

Application
Processor and
System Bus

Read Data Move
control block from
memory

Read data block
from memory

NAND Flash NAND Flash

Registers and I/F Pins

Control

Write data block to

NDDB
Write cmd 1
5-cycle address
Write data
Write spare
Write ECC
Write cmd 2

Busy

Interrupt

Data Buffer

Write system bus
data to Buffer

Read data from
buffer to NAND
flash

Read Spare from
buffer to NAND
flash

BCH Time
Encoder Equation
twC
Reset 5*tWC
Compute 2048*tWC
Compute (64-ECC)*tWC
Read Stall ECC*twC
twC
tPROG

Table 51 shows the sequence for writing a 4 KB page to a MLC device with BCH enabled.

Table 51:

Application
Processor and
System Bus

Read Command
control block from
memory

Read commands
from memory

Read Command
control block from
memory

Read commands
from memory

Program (Write) 4 KB MLC Page

NAND Flash
Registers and
Control

NAND Flash
I/F Pins

Write “NAND
Write dispatch”
command
sequence to
NDCBO

Write cmd 1

5-cycle address

Write “Naked
Write” command
sequence to
NDCBO
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Table 51: Program (Write) 4 KB MLC Page (Continued)

Application
Processor and
System Bus

Read Data Move
control block from
memory

Read data block
from memory

Read Command
control block from
memory

Read commands
from memory

Read Data Move
control block from
memory

Read data block
from memory

Read Command
control block from
memory

Read commands
from memory
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NAND Flash NAND Flash

Registers and I/F Pins

Control

Write 2KB data

block to NDDB
Write data
Write spare
Write ECC

Write “Naked

Write” command

sequence to

NDCBO

Write 2KB data

block to NDDB
Write data
Write spare
Write ECC

Write “NAND
Write dispatch”
command
sequence to
NDCBO

Data Buffer

Write system bus
data to Buffer

Read data from
buffer to NAND
flash

Read spare data
from buffer to
NAND flash

Write system bus
data to Buffer

Read data from
buffer to NAND
flash

Read spare data
from buffer to
NAND flash
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Encoder

Reset

Compute

Compute

Read Stall

Reset

Compute

Compute

Read Stall

Operation

Time
Equation

2048*tWC

(64-ECC)*tWC

ECC*tWC

2048*twWC

(64-ECC)*WC

ECC*WC
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Table 51: Program (Write) 4 KB MLC Page (Continued)

Application NAND Flash NAND Flash Data Buffer BCH Time
Processor and Registers and I/F Pins Encoder Equation
System Bus Control
Write cmd 2 twC
Busy tPROG
Interrupt

13.5

13.5.1

13.5.1.1

Usage Models

With the introduction of the new semantics and the so-called “naked” semantics, the use of these
command sequences to achieve any given goal may not be obvious. This section presents each

basic command in sequence and shows how it may be used to construct the range of command

sequences each command type can support.

Programming the Timing Registers

The two timing registers allow for considerable flexibility in control over interface timing. NAND flash
device datasheets contain a large number of timing parameters, but not all of them are equally
important.

The contents of the fields for each parameter are the number of NFC clocks (plus one). The
granularity of the NFC clock is in ND_CLK periods (denoted as t(ND_CLK)). This means that all
timing parameters are in increments of t(ND_CLK).

tWP, tWH (and tWC)

NAND flash datasheets have 3 components to any write cycle:

m  The total cycle time (tWC)

m  The active portion of the write (tWP, when NF_WEn is asserted)

m  The hold portion of the write (tWH, when NF_WERn is not asserted and holding for the next tWP)

The value of tWC is not necessarily the sum of tWP and tWH as it is possible that tWC > tWP+tWH.
When programming these two parameters make sure that (NDTROCSO0.tWP_NFC+1) * t(ND_CLK)
is greater than or equal to the tWP parameter in the NAND flash datasheet. The same holds true for
tWH. But in addition, it must to be verified that (NDTROCSO0.tWP_NFC+NDTROCSO0.tWH_NFC+2) *
t(ND_CLK) is greater than the NAND flash datasheet value for tWC. It is entirely possible that
NDTROCSO0.tWP_NFC and/or NDTROCSO0.tWH_NFC will need to be artificially increased to meet
tWC, and if this is the case, refer to the AC timing in the device Hardware Specifications to
determine the preferred parameter. If the output data valid time is critically aligned to the rising edge
of NF_WEn, increase tWP_NFC, and if the data hold time to the NAND flash is critical, increase
tWH_NFC.

It should be noted that these parameters effect the timing between NF_WEn edges of all write cycles
of the same class. For example, a write cycle is composed of a command cycle, 5 address cycles,
{page_size} data cycles and a command cycle. These parameters effect the relative write timings of
the address cycles and data cycles, but the transition between command, address, and data may be
effected by other timing parameters.

Figure 40 provides a timing example for these parameters. For the purpose of illustration, both
tWP_NFC and tWH_NFC are set to 1, meaning that each portion of the pulse is two NFC clocks in
length.
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Figure 40: tWC Timing Example
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The NFC clock (ND_CLK) is the internal clock for the NFC controller. NF_WEn and Data are also
internally generated relative to the rising edge of NFC clock. There is I/O delay between the internal
representations of NF_WEn and Data due to propagation through the 1/0 cell and capacitive loading
on the wires. However, since all signals are unidirectional (that is, being sent to the NAND flash
device only), the only AC timing considerations that require analysis is the potential for a differential
skew between NF_WEn and the data (which may occur because of the possibility of different
capacitive loads on the two signals). This differential skew is only important if tWP and/or tWH are
critically timed, according to the AC parameters in the device Hardware Specifications and the
NAND flash device datasheet.

| ;I | When the BCH ECC is used, NDTROCSO0.tWP_NFC + NDTROCSO0.tWH_NFC + 2 must

Not be greater than or equal to 4 NFC clock (ND_CLK) cycles.
ote

13.5.1.2 tRP, tRH (and tRC)
NAND flash datasheets have three components to any read cycle:
m  The total cycle time (tRC)
m  The active portion of the read (tRP, when NF_REn is asserted)
m  The hold portion of the read (tRH, when NF_REn is not asserted and holding for the next tRP).

The value of tRC is not necessarily the sum of tRP and tRH, as it is possible that tRC > tRP+tRH.
When programming these two parameters make sure that (NDTROCSO0.tRP_NFC+1) * t{(ND_CLK) is
greater than or equal to the tRP parameter in the NAND flash datasheet. The same holds true for
tRH. But in addition, it must be verified that (NDTROCS0.tRP_NFC+NDTROCSO0.tRH_NFC+2) *
t(ND_CLK) is greater than the NAND flash datasheet value for tRC. It is entirely possible that
NDTROCSO0.tRP_NFC or NDTROCSO0.tRH_NFC will need to be artificially increased to meet tRC. If
this is the case, refer to the AC timing in the device Hardware Specifications to determine the
preferred parameter. If the access time from the NAND flash is critical, increase the
NDTROCSO0.tRP_NFC value, and if the hold time to the NFC is critical, increase the
NDTROCSO0.tRH_NFC value. In addition, there is skew between the internal NFC clock and I/O pad
that drives NF_REn. This skew effectively adds to tRP because NF_REn is “seen” by the NAND
flash chip “late”. In addition, data presented to the NFC by the NAND chip has to go through 1/O
buffers, and this increases both the access and the hold time.

If NDTROCSO0.Rd_Cnt_Del is selected by NDTROCSO0.SelCntr, the sample clock is a fixed integer
count from the rising edge of the NFC clock (ND_CLK) that generates the falling edge of NF_REn.
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Figure 41 shows this alternative sample mechanism. In this figure, it is assumed that the I/O delays
from the NFC to and from the NAND flash device place the Data window one full NFC clock cycle
after the rising edge of NF_REn. This requires that NDTROCS0.Rd_Cnt_Del have the value of 2.

In Figure 41, the NFC clock is shown twice only to simplify the figure.

Figure 41: tRC Timing Example Using Cnt_Del

NFC Clock

(ND_CLK)
Generated # P NDTROCSO0.tRP_NFC + 1

internal to DFC
# F—NDTROCSO.tRP_NFC +1

# F—Output I/0 Pad Delay + Wiring Delay

NAND PAD \—,—\—,7
REn /

NAND tREA# F # }4— NAND tRHZ
As seen by

13.5.1.3

: Produced by
NAND device F— Dat Data + 1
NAND device {__pata a1 >
Input I/0 Pad Delay + Wiring Delay# F
As seen by NFC < Data > { Data+1 >

NFC Samples Data
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NFC clock

must be greater than or equal to 4 NFC clock (ND_CLK) cycles.

Since the NOR/NAND hardware arbiter is always enabled by default, the software
must add a value of 3 to the <Rd_Cnt_Del> field in the NAND Interface Timing
Parameter 0 Register (NDTROCSO0) (Table 535 p. 865) to compensate on internal
sampling stages.

EI = When the BCH ECC is used, NDTROCSO0.tRP_NFC + NDTROCSO0.tRH_NFC + 2

Note

tCS

The NDTROCSO0.tCS_NFC parameter is used in four distinct contexts, only one of which is to
address the NAND flash tCS parameter. The tCS parameter on NAND flash datasheets specifies the
time between the assertion of chip select and the rising edge of NF_WEn. For the NFC, the
specification of tWP specifies a portion of the tCS, because NF_WEn is asserted at a different time
than NF_CSn. For this reason, the NDTROCSO0.tCS_NFC parameter actually specifies the positive
difference between the value specified by NDTROCSO0.tWP and the value needed for tCS.

For example, where the NAND device tWP specification is 15 ns and the tCS specification is 30 ns,
and the NFC clock period (t(ND_CLK)) is 5 ns. NDTROCSO0.tWP must be set to the value 2 so that
(2+1) * 5 = 15 ns, which meets the tWP NAND flash specification. NDTROCSO0.tCS must be set to a
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value that makes up the difference between 15 and 30. Since this means an additional 15 ns is
required, and this value is obtained by setting tCS to the value of 2 so that (2 + 1) *5 =15 ns. The
NAND flash requirement (15) is met in this case, since 15 + 15 = 30 ns.

In addition there are two other parameters tCLS and tALS that are the CLE and ALE setup times,
respectively, to the rising edge of NF_WEn. The NDTROCSO0.tCS parameter is also used to specify
these values, again as the positive difference between tWP and tCLS and/or tALS, whichever is
larger.

The last usage of this parameter is to meet the data valid time from CS when NDCR.FORCE_CSX is
true. The NAND flash devices have a parameter tCEA that is the data access time from the
activating edge of NF_CSn. The read data is valid tCEA, after falling edge of NF_CSn and tREA
after the falling edge of NF_REn. The NDTROCSO0.tCS parameter is used to specify tCEA again as
the positive difference between tREA (which is related to tRP) and tCEA.

The actual value needed for the NDTROCSO0.tCS parameter is the maximum of whichever values are
needed to satisfy tCS, tCLS, tALS, and tCEA (when NDCR.FORCE_CSX is true).

Figure 42 is representative of all of the timing possibilities but not accurate logically as address,
command, and data cycles occur at different times and of course it cannot be the case that both
NF_REn and NF_WERn are simultaneously asserted.

Figure 42: tCS Timing Example
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13.5.1.4

13.5.1.5

13.5.1.6

13.5.1.7

13.5.2

tCH

NAND flash devices have timing parameters that specify the hold time of the control signals
(NF_CS, NF_CLE, NF_ALE) relative to the rising edge of NF_WEn. They are tCH, tCLH and tALH.
There is no specific usage of the NDTROCSO0.tCH value in isolation as the actual constraint is the
maximum of tCH, tCLH, tALH, and tWH.

The NDTROCSO.tCH value is set to be the larger of the NAND flash tCH, tCLH, and tALH. The
actual hold time implemented by the NFC is the maximum of NDTROCSO0.tCH or NDTROCSO0.tWH.

tADL

For program operations, the tADL parameter specifies the time between the rising edge of NF_WEn
of the last address cycle and the rising edge of NF_WEn of the first data cycle. There are internal
delays between the last address cycle and the first write cycle. In addition, a maximum value of
NDTROCSO0.tWH_NFC or NDTROCSO0.tCH_NFC is part of the data cycle. The
NDTROCSO0.tADL_NFC field in the NAND Interface Timing Parameter 0 Register (NDTROCSO0)
(Table 535 p. 865) must be set to the difference between the NAND's device tADL requirement and
the Max(NDTROCSO0.tWH_NFC,NDTROCSO0.tCH_NFC) * t(ND_CLK) ns.

tAR and tWHR

The tAR parameter is the setup time between the falling edge of NF_ALE and the falling edge of
NF_REn for a read cycle. The only time the NFC encounters this case is for a Read ID where this
timing parameter must be met between the Read ID address and the first ID data value.

The tWHR parameter is the write hold time between the rising edge of NF_WEn and the falling edge
of NF_REn specifically for status reads.

To the NFC, a Read ID is similar to a status read and different from a page read, because neither a
Read ID nor a status read cycle wait for RBn.

The parameters must be set to one less than the total required time (in NFC clock units).

tR

There are multiple ways in which the tR parameter is used. The most obvious is of course to match
the NAND flash device tR parameter. If NDTR1CS0.WAIT_MODE is false, a read will wait the time
specified in NDTR1CS0.tR_NFC and then proceed to generate read data cycles. In this case, it is
important that tR be programmed to meet or exceed the actual NAND flash device tR parameter. If
NDTR1CS0.WAIT_MODE is true, a read will wait at least the time specified in NDTR1CS0.tR, and
then may continue to wait until NDSR.RDYx actually asserts. In this case, NDTR1CS0.tR_NFC must
be programmed to meet or exceed the NAND flash device tWB parameter that is the delay between
the rising edge of NF_WEn and the falling edge of NF_RBn.

There is a case that is described in more detail in overlapped program operations where one can
use the tR value to simply act as a delay. A “naked read” waits for tR and then perform zero or more
data cycles. The key is the zero, because if NDCBO.LEN_OVRD is true and NDCB3.NDLENCNT is
set to zero a “zero length naked read” will act as a simple timing delay. This solves a particular
problem with overlapped multi-plane, multi-device writes, as described in Section 13.5.5, Program
(Write) Usage, on page 233.

Entering a First Command

There are two operations to be performed to enter a first command:

m  The NFC must be started (that is, NDCR.ND_RUN must be set)

m A three or four word command must be written to the command FIFO at NDCBO.

If the NFC is idle, these operations can be performed in either sequence. If the ND_RUN is set first,
the software should wait until NDSR.WRCMDREQ is TRUE. If the NFC is idle, the command buffer
will be ready for a command immediately, and the first test should return TRUE. However, it should
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never be assumed that (in ND_RUN mode) the NFC is ready for a command unless
NDSR.WRCMDREQ is TRUE. Once WRCMDREQ is TRUE, it must be cleared in NDSR.

If the NFC is idle, the NDCB FIFO can be first written with the command and then NDCR.ND_RUN
set. In this case the software does not wait for NDSR.WRCMDREQ before writing the NDCB FIFO.
If the command FIFO contains a command and NDCR.ND_RUN is set, the command immediately
begins to sequence its execution. For a write type command, NDSR.WRDREQ will set indicating
that the NFC is ready for and awaiting data to be written to NDDB. For any other command, the
command begins to sequence on the DFI, and for read type commands, NDSR.RDREQ will be set
later, after data has been written into NDDB (see Figure 43).

m A dark line signifies an event caused by a processor operation

m A narrow line indicates an internal NFC state

m  Acircle on a vertical edge indicates an event that causes a state change (where
the arrow indicates the cause-effect relation)

m  Acircle on a horizontal line indicates a sampling operation (where the arrow
indicates the reason for the sample).

EI In Figure 43 through Figure 46:

Note

These diagrams indicate the sequence of operations and events, and are not intended
to convey absolute time.

Figure 43: First Command Event Causality Diagram
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What happens next depends on the actual command. A reset or erase command will wait for
NDSR.CMDD, because there is no data transfer. A read (Read ID, Status) command will wait for
NDSR.DTREQ to indicate that data is ready to be read. After reading all data, it should be true that
NDSR.CMDD is also set. A program command will wait for NDSR.WRDREQ to indicate that data is
ready to be written, and then will wait for NDSR.CMDD.

It is not necessary for software to poll the status register to observe status state changes, a software
program may be interrupt driven. What follows is representative of a polled software driven usage
model presented for the purpose of example and is not intended to be canonical.
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13.5.3

Reset Usage

A reset semantic is a single command cycle followed by NDSR.RDYXx sensing. For this semantic,
the value of the following commands are Don’t Care:

= NDCB0.CMD2 = NDCBO0.ADDR_CYC = NDCBO0.DBC,
s NDCBO.ST_ROW_EN = NDCBO.LEN_OVRD = NDCB0.CMD_XTYPE
= NDCB1 = NDCB2 m  or optionally NDCB3

However, it would be preferable to leave all of these fields as zero. For a reset semantic the only
fields that matter are:

= NDCB0.CMD1 m  NDTR1CS0.tR_NFC = NDTR1CSO0.WAIT_MODE

NDCBO0.AUTO_RS should be false.

As is true of any semantic, it is not required that a reset semantic actually issue a reset command.
So long as the desired operation is a single command cycle followed by NDSR.RDYx sensing, the
semantic can be useful.

An example of a non-reset use of this reset semantic would be:
1. Issue a Naked Command cycle of 0x00 (that is, NDBCO0.CMD_TYPE == 0b110).

2. Issue a 5-beat Naked Address cycle (that is, NDBCO.CMD_TYPE == 0b111 and NDCB{1,2}
contains Address).

3. Issue a Reset command of 0x30.
4. Issue a Naked Read (that is, NDBC0.CMD_TYPE == 0b000 and CMD_XTYPE == 0b001).

This sequence of four commands has the same effect as a “Monolithic Read”. The Naked Command
issues the first read command cycle (0x00), the Naked Address issues the 5-cycles of read address,
the Reset command issues the Read Commit command cycle (0x30) and waits for NDSR.RDYx.
The last command actually reads the data from the NAND and requests that NDDB be emptied.
While this is a contrived example, it should illustrate the point that semantics can be strung together
in novel ways, as they are needed.

The implementation uses the NDTR1CS0.tR_NFC timing value and NDTR1CS0.WAIT_MODE to
wait for NDSR.RDYx.

The busy time for a Reset command can vary considerably, from microseconds to milliseconds,
depending on the exact circumstances and individual NAND flash devices. The NDTR1CS0.tR_NFC
register has a limited dynamic range since it is only 16 bits, and can only measure 420 ps, at the
maximum value. To implement the reset in the initial platform case, set the NDTR1CS0.tR_NFC
register to a value greater than the value listed in the NAND flash datasheet for tWB (the time from
the rising edge of NF_WEn to the falling edge of NF_RBn) and set NDTR1CSO0.WAIT_MODE. The
software should wait for CMDD to become true. When CMDD becomes true, if NDSR.RDYx has
been set, there is a NAND flash present, because it cycled NF_RBn, and if NDSR.RDYx has not
been set, a NAND flash is not present in that chip enable position. In this way, the NFC is
guaranteed to execute the Reset command to completion, in the NAND present case and is
guaranteed to correctly sense the absence of a NAND flash device.

It is possible that the NF_RBn is not available. In this case, the state of NF_RBn is not reliable and
cannot be used to determine the end of the Reset command. In this case, if
NDTR1CS0.WAIT_MODE is reset, tR does not have enough dynamic range, and if
NDTR1CS0.WAIT_MODE is set, the NFC may lock while waiting for a NDSR.RDYx indication that it
will never receive. For this reason, a NDTR1CS0.PRESCALE has been added that extends the
dynamic range of the NDTR1CSO0.tR_NFC value by 16. When NDTR1CS0.PRESCALE is used, the
effective range of the NDTR1CSO0.tR_NFC register is increased to 6.72 ms. If a Reset instruction
based discovery is required on platforms where NF_RBnx is connected to something other than a
NAND flash device, it will be necessary to set NDTR1CS0.tR_NFC to its maximum value and to also
set NDTR1CS0.PRESCALE. This causes the Reset command to always take 6.7 ms, but it also
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guarantees that there will not be a lockup. In this case, the state of NDSR.RDYx may or may not be
a reliable indication of the presence of the NAND flash, as it depends on exactly what the NF_RBn
pin is connected to and whether or not it is possible for that pin to assert a positive edge during the
Reset command (see Figure 44).

Figure 44: Reset Command Event Causality Diagram
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Read ID Usage

A Read ID semantic is a CMD1 command cycle, 0—7 address cycles, a
max(NDTR1CS0.tAR,NDTR1CS0.tWHR) timing wait and 0—7 data cycles. There is no RBn wait.
Required fields are:

= NDCB0.CMD1
= NDCBO0.ADDR_CYC and
m  Either NDCR.RD_ID_CNT or NDCBO.LEN_OVRD and NDCB3.NDLENCNT

The following fields are Don’t Care but should be set to zero:

m  NDCB0.CMD_XTYPE

= NDCBO0.ST_ROW_EN

= NDCB0.DBC

= NDCB0.CMD2

NDCBO0.AUTO_RS should be false. The number of required ADDR fields in NDCB{1,2} are a
function of the ADDR_CYC value.

The most obvious use for a Read ID is to read the NAND ID. In addition, for NAND flash devices that
are ONFI compliant, the Read ID can be used to determine this compliance. In the normal ID case,
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there is a single 0x00 address cycle and either 2, 4, or 5 data cycles. For the ONFI ID case, the
address cycle is set to 0x20, and there will be 4 data cycles: O, N, F, and 1.

Another possible usage model for the Read ID is for block unlock commands on NAND flash devices
that support the lock, lock-tight, and unlock region commands. The unlock command is typically a
command cycle followed by three block address cycles to specify the start of the unlocked region,
followed by another command cycle with three block address cycles to specify the end of the
unlocked region. There should be no data cycles; so to use this semantic as a unlock region
command would require that the NDCR.RD_ID_CNT field be set to zero.

There are certain NAND flash devices (or NAND flash device specifications) that have
command-address sequences where the single command is a function, and the single address is
like an argument for the function. These sequences can be generated as a Read ID with
NDCR.RD_ID_CNT set to zero.

m  The address cycle count and data cycle counts are now allowed to be zero. If there
EI are zero address cycles specified, no address cycles are generated, and NF_ALE
does not assert. If there are zero data cycles specified, no data cycles are
Note generated. Previously the minimum value for either of these fields was defined to
be 1, but if these either or both of these fields were set to zero, a minimum of 1
cycle of each type would have been generated.
m  For Read ID commands, the software must disable ECC. Clear the <ECC_EN>
field in the Data Flash Control Register (NDCR) (Table 534 p. 857) and the
<BCH_EN-> field in the NAND ECC Control (NDECCCTRL) Register (Table 540
p. 879).

Figure 45: Read ID Command Event Causality Diagram
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13.5.5 Program (Write) Usage

The program command can be implemented in a number of ways, there are rules for overlapping
operations. Now there is support for larger pages and ganging, and, in general, the issues with
program operations have become more complex.

A program is a program command, address, write data, and program commit sequence. A write
completes its operation in the NFC once the program commit command is issued (that is,
NDSR.CMDD sets). It is possible to overlap another program or erase command with a previous
program or erase command if NDCBO.NC is true, NDCB0.RDY_BYP is false, and the second
program or erase is to a different chip select. A first program or erase command starts by setting
NDCR.RUN, waiting for NDSR.WRTCMDREQ, and writing NDCBx with the program command
values. Since this is a program, data is required, so next wait for NDSR.WRDREQ. Once the data
has been written, the program cycle is sequenced to the NAND flash device. After the command has
been sequenced to the NAND flash device, NDSR.CMDDx is set to indicate that the NFC is ready
for another command. If NDCBO.NC is true, the NFC sets NDSR.WRCMDREQ and waits for the
processor to write in a second command. If the chip selects of the 2 operations specify the same
NAND flash device and NDCB0.RDY_BYP is false, the second command stalls while waiting for
NDSR.RDYx. If the chip selects of the 2 operations are different and the second command is a write
or erase, the NFC continues to process the command, assuming that the RDY indication of this
other chip is not also indicating busy.

After the NAND flash has finished the program cycle, it will assert NF_RBn to indicate ready.
NDSR.RDYx sets on the rising edge of NF_RBn.

Figure 46 shows an event causality diagram where a program command is being entered, and
optionally if NDCBO.NC is set, a second command is entered for overlap.
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Figure 46: Write Command Event Causality Diagram
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Programming Larger Pages

To support larger page sizes, the program command needs to be broken into two commands, using
Naked semantics or otherwise known as <CMD_XTYPE> field in the NAND Controller Command
Buffer 0 (NDCBO) Register (Table 543 p. 881).

The data transfer portion of the program command is at most 2112 bytes (or 2110 bytes with BCH).

To program a 4 KB page device, the software can do one of the following:
Option 1
1. Issue the initial command or command dispatch: <CMD_XTYPE> = 110.
2. Issue Naked write command: <CMD_XTYPE> = 101.

and

Transfer up to 2112 bytes.
3. Issue a second Naked write command

and

Transfer another 2112 bytes.
4. Issue the final command: <CMD_XTYPE> = b011.

Option 2

1. Issue the initial command or command dispatch with write: <CMD_XTYPE> = 100.
and

Transfer the command, address, 2112 bytes data.

2. Issue Naked write command <CMD_XTYPE> = 101.
and
Transfer another 2112 bytes.

3. Issue the final command <CMD_XTYPE> = 011.

Option 3
1. Issue the initial command or command dispatch with a write: <CMD_XTYPE> = 100.
and

Transfer the command, address, 2112 bytes of data.

2. Issue Naked write with final command: <CMD_XTYPE> = 001.
and
Transfer another 2112 bytes, as well as the final confirm command.

The data transfer portion of the program command is at most 2112 (or 2110 with BCH) bytes. To
support larger page sizes, the program command must be broken into two commands using “naked”
semantics:

m A first program command can issue the program command, address and 2112B of write data.
m A second program command can issue 2112B of write data and the commit command.
The program is composed of two commands, but the total data transfer will support 4-KB page sizes.

In the event that 4-KB page NAND flash devices are ganged to create a logical 8-KB page, this may
be supported by:

m A first program command that issues the program command, the address and 2112B of write
data.

m A second program command can issue 2112B of write data.
m A third program command can issue 2112B of write data.
m A fourth program command can issue 2112B of write data and the commit command.

Naked data writes can be performed to enable any page size. The only caveat is that the data format
always has the ECC associated with each data chunk (up to 2 KB).
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Read Usage
The Read command can be implemented in a number of ways and it has supports for larger pages
and ganging, and in general the issues with read operations have become more complex.

A Read semantic is an initial command, address, confirm, or commit command (only for devices that
support double byte reads), NAND device pulling RBn Low followed by data transfer. A Read
command is considered complete in the NFC only after the read data in the NAND Controller Data
Buffer (NDDB) Register (Table 542 p. 880) is read by the CPU.

Reading Larger Pages

To support larger page sizes, the read command needs to be broken down using Extended
semantics or Naked semantics.

To read a 4 KB page, software can preform the following steps:
1. Issue command dispatch: <CMD_XTYPE> = 110.
2. Issue a naked read command: <CMD_XTYPE> = 101).

and
Read 2 KB bytes.

3. Finally issue a second naked read.
and
Read the second 2 KB chunk.

|§ | | m  After every 2 KB read from the device the NAND Controller Data Buffer (NDDB)
Register needs to be drained.

Note m  To support even larger page sizes, software must perform multiple 2 KB reads.

Naked Command and Naked Address

There are cases where the command and address sequences are not standard or represent new

features. In this case, the NFC may not have built-in commands to perform the function(s).

m  The ability to issue a naked command means that any NFC operation that depends on CLE
being true can be issued.

m  The naked address semantic means any sequence of ALE cycles (from 1 to 7) can be issued.

m A naked read cycle can read between zero and 2176B as can a naked write.

In this way, sequences of CLE cycles, ALE cycles, and data cycles can strung together in an almost

arbitrary sequence. The only limitation is that the chip select for the NAND flash device will cycle

between each operation. The primary purpose of these new semantics is to support new features,
particularly the command sequences associated with logical block accessed NAND flash device.
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1 4 Device Bus Controller

This section describes the Device Bus controller. The Device Bus controller is a generic local bus
controller that enables the device to interface with off-the-shelf NOR type flashes, SRAMs and
custom FPGAs. It describes the different connectivity options of the interface, the various
programmable timing parameters and the interface signaling.

The Device Bus registers are located in Appendix A.5, Device Bus Registers, on page 889.

Figure 47 presents the Device Bus Controller block diagram.

Figure 47: Device Bus Controller Block Diagram
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14.1 Features

The Device Bus includes the following features:

32-bit multiplexed address/data bus

Supports different types of standard memory devices such as Flash and ROM
5 chip selects with programmable timing

Optional external wait-state support

8/16/32-bit width device support

Up to 128B burst per a single device bus access

Synchronous device bus support

14.2 Functional Description

The Device Bus controller supports up to 5 banks of devices. Each bank supports up to 512 MB of
address space, and has its own timing parameter register. The bank width can be programmed to 8,
16, or 32 bits. The bank timing parameters can be programmed to support different device types (for
example, Flash, ROM, I/O Controllers).

The 5 chip selects are typically separated into 4 individual chip selects (DEV_CSn[3:0]) and 1 chip
select for a boot device (DEV_BOOTCSn). The only difference between the boot device bank and
any of the other banks is that, by default, the CPU core boots from the boot device and its default

width is sampled at reset.

The Device Bus controller supports a multiplexed address/data bus. External latches should be used
to latch the address (up to 512 MB of address space). The interface supports up to 128B transfer per
a single device access.

Multi Purpose Pins (see the “Pin Multiplexing” section in the device Hardware
Specifications).

m When used as 8-bit interface, DEV_AD[15:9] and DEV_WEn[1] can also be used
for pins multiplexing.

EI m When used as 16-bit interface, DEV_D[23:16] and DEV_WERNn[3:2] can be used as

Note

Figure 48 provides the connectivity of devices using 2 external latches over the Device Bus.
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Figure 48: Device Bus Connectivity (Using 2 External Latches)
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Figure 49 provides the connectivity over the Device bus for devices using a single external latch with
address space of up to 512 KB.

Figure 49: Device Bus Connectivity for up to 512 KB Address Space
(Using a Single External Latch)
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Address Multiplexing

Figure 50 provides a diagram of the address multiplexing.

m  There are 2 address phases (ALE[1:0]) followed by data phase.

m  This figure is for 32-bit devices. For 16-bit or an 8-bit devices. the address is shifted right.

EI In some of the figures that follow, the signal names appear without the DEV__ prefix.

Note

Figure 50: Address Multiplexing
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DEV_OEn and DEV_WERn are inactive (high) when the Device bus in idle (that is,
from DEV_CSn de-assertion at the end of a transaction until the next transaction
DEV_ALE[1] assertion).

If the <OEWE_shared> field in the Device Bus Interface Control Register

(Table 552 p. 893) is cleared to 0, DEV_OEn and DEV_WEn are kept inactive from
DEV_CSn de-assertion at the end of a transaction until next transaction’s
DEV_CSn assertion. This means that for a two latch scheme (see Figure 50),
<OEWE_shared> must be 0x0. To support boot from Device in the desired
configuration, <OEWE_shared> is sampled at reset.
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14.4

Device Bus Timing

14.4.1 Device Bus Address Phase Timing

As described, a transaction address phase consists of two parts—latching of low address bits

followed by latching of high address bits.

In an optimal utilization configuration, each of these parts is 2 TCLK cycles long, with DEV_ALE

asserted after 1 cycle. This timing results in 1 TCLK cycle setup time and 1 TCLK cycle hold time of

address in respect to ALE fall. Since DEV_ALE is loaded with a single latch device, while DEV_AD
might be heavily loaded, the actual setup time can become shorter and not sufficient. To solve this
issue, the device implements the <Addr2ALE> field in the Device Bus Interface Control Register

(Table 552 p. 893) to define the number of cycles in which the address is steady before any ALE

assertions.

| ;] | Since the NOR/NAND hardware arbiter is always enabled by default, the actual setup
Not time is 8 clock cycles longer than configured in the <Add2ALE>.
ote
14.4.2 Device Bus Read Timing Parameters

To allow flexible interfacing to slow and fast devices, the interface can be programmed with different

timing parameters for each Device bus chip select.

TurnOff The <TurnOff> parameter defines the number of TCLK cycles that
the device does not drive the AD bus after the completion of a Device
read. This prevents contentions on the Device bus after a read cycle
from a slow device. The actual number of TCLK cycles from
DEV_CSn de-assertion to next DEV_ALE[1] negation is <TurnOff> -
<RdHold>.

The minimum setting for this parameter is <RdHold>+2.

Acc2First The <Acc2First> parameter defines the number of TCLK cycles from
the negation of ALE[0] to the cycle that the first read data is sampled
by the device. When the maximum configurable value does not meet
the requirements, DEV_READYn can be used to further delay the
sample (see Section 14.6, READYn Support, on page 248).

The number of TCLK cycles is <Acc2First>-2*<Addr2Ale>-1.
The minimum setting of this parameter is 2 *
<Addr2Ale>+2+<RdSetup>+2.
NOTE: When interfacing a synchronous device, set to a value greater
than <Acc2Next> + 4.
Doc. No. MV-S107021-U0 Rev. A Copyright © 2014 Marvell

Page 242

Document Classification: Proprietary Information May 29, 2014, Preliminary



Acc2Next

CS<n>Setup (n = [3:0])

RdSetup

RdHold

RdHoldADERn

Copyright © 2014 Marvell

Device Bus Controller
Device Bus Timing

The <Acc2Next> parameter defines the number of TCLK cycles
between the cycle that samples data N to the cycle that samples data
N+1 (in burst accesses). When the maximum configurable value
does not meet the requirements, DEV_READYn can be used to
further delay the sample (see Section 14.6, READYn Support,

on page 248).

The minimum setting for this parameter is 0x2

NOTE: When interfacing a synchronous device, set to the same
value as
<Tclk Divide Value>-2 (see the in the Device Bus Sync
Control Register (Table 554 p. 894)).

The <CS<n>Setup> parameter defines the number of TCLK cycles
between address stable point and CS assertion (see the General
Purpose 1 Register (Table 1443 p. 1517)). If cleared (default),
DEV_CSn assertion will be done on the same TCLK cycle as setting
of DEV_A[2:0]. If set, DEV_A[2:0] will be stable 4 TCLK cycles before
DEV_CSn assertion.

NOTE: When enabling the <CS<n>Setup> parameter and running
with a small value for ALE2Wr, DEV_WEn asserts before the
CS. Therefore, add the restriction:
(ALE2Wr >= 2*(Addr2ALE+1) + 4).

The <RdSetup> parameter defines the number of TCLK cycles
between the end of the address phase and DEV_OEn assertion. If
cleared to O (default), DEV_CSn assertion, DEV_OEn assertion, and
DEV_A[2:0] setting will be occur on the same cycle.

To assure compliancy with other timing configurations:

1. Set <RdSetup> to a value smaller than
<Acc2First>-2*<ALE2Addr>-2.

2. If <CsSetup> is enabled, set <RdSetup> to a value which is
greater or equal to 4.

NOTE: RdSetup < ALE2Wr.

The <RdHold> parameter defines the number of TCLK cycles
between the last data sample to the de-assertion of DEV_CSn. If
cleared to 0 (default), DEV_OEn and DEV_CSn are de-asserted at
the same cycle (the cycle of the last data sample).

The <RdHold> parameter has no affect on DEV_OEn de-assertion.
DEV_OEn is always de-asserted the next cycle after last data
sampled.

Also, the <RdHold> parameter has no affect on <TurnOff> parameter.
Set <RdHold> to a value smaller than <TurnOff>.

Setting the <RdHoldADEN> field in the General Purpose 1 Register
(Table 1443 p. 1517) forces DEV_A[2:0] to remain stable until the
de-assertion of DEV_CSn.
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Figure 51 shows a device read timing parameters example.

Figure 51: Read Parameters Example
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14.4.3 Device Bus Write Timing Parameters

To allow flexible interfacing to slow and fast devices, the interface can be programmed with different
timing parameters.

ALE2Wr The <ALE2Wr> field in the DEV_CSn[n] WriteParameters Register
(n=0-3) (Table 551 p. 892) defines a guaranteed gap between
address phase and DEV_WEn assertion. The number of cycles from
DEV_ALE[0] negation to DEV_WERn assertion will be at
least<ALE2Wr>-2*<Addr2ALE>-3.

The minimum setting of this parameter is 2*(<Addr2ALE>+1)+2.
NOTE: RdSetup < ALE2Wr.

WrLow The <WrLow> field in the DEV_CSn[n] WriteParameters Register
(n=0-3) (Table 551 p. 892) defines the number of TCLK cycles that
DEV_WEn is active (low). Extend this parameter by extending the
READYn pin (see Section 14.6, READYn Support, on page 248).
DEV_A[2:0] and Data are kept valid as long as DEV_WEn is active.
This parameter defines the setup time of address and data to
DEV_WEn rise. The minimum setting of this parameter is 0x1.

WrHigh The <WrHigh> field in the DEV_CSn[n] WriteParameters Register
(n=0-3) (Table 551 p. 892) defines the number of TCLK cycles that
DEV_WEn is kept inactive (high) between data beats of a burst write.
DEV_A[2:0] and Data are kept valid (do not toggle) for <WrHigh>-1
periods. This parameter defines the hold time of address and data
after DEV_WEn rise. The minimum setting of this parameter is 0x1.

If setting <WrHigh> to 1, DEV_A[2:0] and write data are toggled on
the same cycle DEV_WERn toggles from High to Low.
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Figure 52 shows a device write timing parameters example.

Figure 52: Write Parameters Example
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The Device bus is typically used for interfacing asynchronous devices that do not require clock input.
However, it can also be used to interface synchronous devices. The MV78230/78x60 can drive this
clock on the DEV_CLK_OUT pin.

DEV_CLK_OUT reflects the internal core clock (TCLK). It can be configured to drive a divided TCLK

via the <Tclk Divide Value> field in the Device Bus Sync Control Register (Table 554 p. 895). This
can be useful for interfacing synchronous devices that can not run as fast as TCLK frequency.

Device bus signals are driven and sampled on the rising edge of the core clock (TCLK),
even when the chip is configured to drive a divided TCLK on DEV_CLK_OUT pin.

Note On odd divider values, the duty cycle of the driven clock will not be 50%.

Interacting with a Synchronous Device

When DEV_CLK_OUT is used for interacting with a synchronous device the timing parameters

configurations must correlate to the required clock frequency. In particular, the following restrictions

must hold:

m  <Acc2First> must be greater than <Acc2Next> + 4.

m  In case of a burst read, DEV_READYn can be used to delay the sampling point of the first data
(that is, it can extend <Acc2First>) but it cannot be used to delay the sampling point of the
following phases (that is, it cannot extend <Acc2Next>).

m <WrLow> + <WrHigh> must equal <Tclk Divide Value>.
<ALE2Wr> must be greater than <Tclk Divide Value>.

14.4.4 Device Bus Transaction Timing Summary
The following section summarizes the Device Bus configuration options presented in Section 14.4.1,
Device Bus Address Phase Timing, on page 242 through Section 14.4.3, Device Bus Write Timing
Parameters, on page 244. It provides additional clarification due to inherited dependencies between
the defined timing configurations.
The section contains diagrams and tables that provide a method for defining the required minimal
durations of non-connected gaps based on system requirements and then applies the configurations
to meet these requirements.
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14.4.4.1 Read Transaction Timing
Read Timing Gaps
Figure 53 provides a diagram of the Read timing for the NOR interface.
Figure 53: NOR Interface Read Timing Diagram
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Table 52 provides a description of the timing segments and the possible range of values that can be
configured to achieve a guaranteed minimal gap.
Table 52: Read Timing Parameters
Label Description Minimum
TO Number of TCLK cycles from first address phase stable cycle to DEV_ALE[1] negation 1,2,3
T Number of TCLK cycles from DEV_ALE[1] negation in which the address remains stable 1
T2 Number of TCLK cycles from the second address phase stable cycle to DEV_ALE[0] negation 1,2,3
T3 Number of TCLK cycles from DEV_ALE[0] negation in which the address remains stable 1
T4 Number of TCLK cycles from the end of the address phase to assertion of DEV_CSn 0,4
T5 Number of TCLK cycles from DEV_CSn assertion to DEV_OEn assertion 0,1..30
T6 Number of TCLK cycles from DEV_OEn assertion to the cycle in which the first data is sampled  1,2..30
T7 Number of TCLK cycles from DEV_A[2:0] toggle to the cycle in which the corresponding datais  1,2..63
sampled
T8 Number of TCLK cycles from DEV_OEn de-assertion to DEV_CSn de-assertion 0,1..31
T9 Number of TCLK cycles from DEV_ALE[1:0] release until the first cycle of the address phase of  1,2..30
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the following transaction

Read Timing Configurations

Given a set of values for TO-T9 with in the configuration as defined in Table 52, the following

expressions provide the required configuration:

m  <Addr2ALE>=TO0-1=T2-1

m  <CsDelay> = If (T4==0), <CsDelay> = 0x0, otherwise <CsDelay> = 0x1
m  <RdSetup>=T4 +T5

m <Acc2First>=TO+1+T2+1+T4+T5+T6

<Acc2Next> =T7
<RdHold> =T8
<TurnOff>=T9 + T8
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Ready Support
An inactive Ready signal delays Acc2First (gap T6) or Acc2Next (gap T7).

Write Transaction Timing

Write Timing Gaps
Figure 54 provides a diagram of the Write timing for the NOR interface.

Figure 54: NOR Interface Write Timing Diagram
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Table 53 provides description of the timing segments and the possible range of values that can be
configured to achieve a guaranteed minimal gap.
Table 53: Write Timing Parameters
Label Description Minimum
TO Number of TCLK cycles from the first address phase stable cycle to DEV_ALE[1] negation 1,2,3
T Number of TCLK cycles from DEV_ALE[1] negation in which the address remains stable 1
T2 Number of TCLK cycles from the second address phase stable cycle to DEV_ALE[0] negation 1,2,3
T3 Number of TCLK cycles from DEV_ALE[Q] negation in whic