MegaMeet 2008

Bowling & Grippo

MegaSquirt and MegaSquirt Logo are trademarks of BG Soflex, LLC.

MegaSquirt and MegaSquirt Logo are trademarks of BG Soflex, LLC.

If you strike a child with a stick, the child will cry...

Who should we blame?

- The Automotive Environment is perhaps the most hostile environment:
 - Temperature Extremes (-50 C to 150 C)
 - Vibration
 - Electrical Noise Spikes/Undervoltage/Overvoltage
- ∠ By far the most challenging is Electrical Noise.
- ✓ All Automotive Electronics are Affected by Noise:
 - Electronics have protective circuits for noise and out-of-range voltages.
 - Reaction of a particular device depends on many factors
 - No two installations are alike, even for same vehicle types
 - Use should protect their electronics (baby) from noise (stick) the best way possible.
 - Simple solutions go a long way.....

- Sources of Vehicle Electrical Noise Radiated Noise
 - Ignition primary currents and secondary voltages
 - Injectors
 - Electric motors (starter, wiper, heater)
- Sources of Electrical Supply Noise
 - Charging (alternator)
 - Electric motors (starter, etc)
 - Resistance/Inductance in wiring
- ✓ Noise Can Occur When:
 - Starting (radiated and voltage-drop, a.k.a. "IR Drop")
 - Running (injector/ignition/solenoids)
 - Activating Accessories (heater, headlights, wiper)

Radiated Noise Source

Radiated Noise Source

Radiated Noise Source

Ignition Wires Can Radiate Noise!

Detecting Radiated Noise

Simple Transistor AM Radio Makes an Excellent Noise Sniffer!

Listen for the buzz...

High-Current Noise Sources

High-Current Noise Sources

Resistance in wiring can cause <u>Voltage Drops</u>

Voltage Drop = Current x Resistance

- The voltage drop across a wire is equal to the resistance of the wire multiplied by the current flowing thru the wire – a.k.a. "IR Drop"
- ✓ High current sources include:
 - Starter
 - Charging System
 - Headlights
 - Horn
 - Heater/Wipers
- Solution Use a voltmeter to determine the voltage drop...

Remember this rule!

Total Voltage = Sum of Voltage Drops

- The sum of all of the voltage drops equals the battery (potential) voltage.
- Very useful relationship in determining where a voltage offset is occurring.
- The use of these two rules together is POWERFUL!

Remember this rule!

Step 1 - Determine battery voltage during cranking

Call this Vtotal

Step 2 – Measure wire voltage drop while cranking

Call this Vwire

Step 3 – Measure starter voltage drop while cranking

Call this Vstarter

Step 4 – Measure ground voltage drop while cranking

Call this Vgnd

Example Analysis: Vtotal = 10.0 volts

Vwire = 1.5 volts Vstarter = 8.0 volts Vgnd = 0.5 volts

Vwire + Vstarter + Vgnd ~= Vtotal

Vwire and Vgnd should be as low as possible!

- In some cases the source of the noise cannot be eliminated or even located...
- The V3 MegaSquirt has built-in noise-protection circuitry – however there are some instances where more noise resistance is required
- Simple changes in wiring strategy can go a long way:
 - Sensor ground returns separate from high-power grounds
 - Multiple ground wires from MS to engine block
 - Tach input leads physically separated from high-current wires

Run Sensors on Separate Ground Return Path to MS:

resulting in noise and inaccuracies......

Run Multiple Engine Grounds Back to MegaSquirt:

Each wire acts as a series resistor/inductor. Multiple wires act like resistors/inductors in parallel....

High-Current Ground Plane

5-V Ground Plane

- When multiple low-impedance injector are used on MegaSquirt, the PWM switchmode current limiting can introduce noise on the +12V battery rail.
- Voltage transients from PWM caused by "IR" voltage drops in vehicle +12 volt supply wiring
- ✓ Solutions include:
 - Improving vehicle wiring for +12V source to injectors and MS board to reduce resistance
 - Board modification to provide separate return for flyback currents
 - External shunt and storage capacitance on +12V vehicle supply.

Injector Activated (ON)

will cause voltage drop.....

Injector PWM Flyback

Cut this trace (+12V) and bring it out separate, return directly back to injector +12V

Connect capacitor and resistor in series with injector bank (snubber) Starting values are 0.1uf and 100 ohm, adjust...

MegaSquirt Fast Idle PWM

- The fast idle driver transistor was originally designed for on-off operation. However, the use of the output for PWM idle valve operation is quite popular!
- The driver transistor grounds are not optimal on the V3 board for PWM use, but there are a few user-changes that can improve this.
- The transistor overcurrent circuit can cause issues with PWM idle valve use due to activation during flyback.

These grounds should go to the High-Power Groundplane....

MegaSquirt Fast Idle PWM

- There are hundreds of different VR sensor configurations, each generating outputs of wildly different voltages/currents.
- The V3 VR circuit was designed with some adjustability for different sensor signals.
- However, there are some situations where the signal needs to be "pruned" a bit:
 - Voltage amplitude
 - Current
 - Irregular signals
- Here is a background on the VR circuit operation:

- ✓ Here are some proven VR circuit tweaks:
 - Increase series resistance R45 from 1K to up to 10K
 - Increase capacitance C31 up to 0.1 (Note this will cause a phase shift for high toothcount wheels at high RPM)
 - Resets from VR can be cured by supplying separate VR return ground back directly back to C31 (next slide...)
 - Provide hysteresis capacitor (later slide)

Bring VR return signal back to C1 or Q22 ground to localize ground circulation currents for VR circuit.

