
Table of Contents

DIP052 User's Manual • 13005202-1.0.1

Introduction Chapter 1

Chapter Overview ……………….……………….…………………… 1-1
Introduction ……………….……………….…………………………… 1-1

Installing the DIP052 Chapter 2

Chapter Overview ……………….……………….……………………. 2-1
DIP052 Specifications ……………….……………….……………….. 2-1
Port Addresses ……………….……………….……………………….. 2-1
Interrupt Levels ……………….……………….……………………….. 2-2
DIP052 Connector Pin Out ……………….…………………………… 2-2
Network Adapter Jumpers ……………………………………………. 2-2
Jumper P1 ……………………………………….………….………….. 2-3
Jumper P2 ………….………….………….………….………………… 2-3
Fully Isolated Interface ………….………….………….……………… 2-3
Non-Isolated Interface ………….………….………….………………. 2-4

DRV051 Functions Chapter 3

Chapter Overview ……………….……………….…………………… 3-1
DOS Device Driver ……………….……………….………………….. 3-1
Header Files ……………….……………….…………………………. 3-1
DRV051 Error Codes ………….………….………….………….…… 3-1
Packet Management ………….………….………….………….……. 3-2
DRV051 Functions ………….………….………….………….……… 3-2

DRV052 Functions Chapter 4

Chapter Overview ……………….……………….…………………… 4-1
DN Functions ……………….……………….………….…………….. 4-1
CAN Functions ……………….……………….………………………. 4-8
VXD Functions ……….……………….………………………………. 4-10
Utility Functions ………….………….………….………….…………. 4-13
Error Codes ………….………….………….………….……………… 4-13
Visual Basic Function Prototypes ………….………….……………. 4-14

Obtaining Help Chapter 5

Chapter Overview ……………….……………….…………………… 5-1
Sources for Help ………………………………………………………. 5-1

Chapter 1

DIP052 User's Manual • 13005202-1.0.1

Introduction

Chapter Overview This chapter serves as an introduction to the DIP052.

For information on See Page

Introduction 1-1

Introduction The DIP052 provides a general purpose CAN bas interface for IBM PC/AT
(ISA) bus compatible systems. The unit relies on the Signetics 82C200
CAN interface component to provide access to the CAN network. The
hardware interface includes optical isolation for the CAN signals, reverse
polarity protection for the CAN bus power and signal lines and a circuit to
detect when the CAN bus power is removed.

The software interfaces to the DIP052 through an interrupt driven device
driver. Commands are available to configure both the PC specific interface
and the CAN network parameters.

Chapter 2

DIP052 User's Manual • 13005202-1.0.1

Installing the DIP052

Chapter Overview This chapter addresses the DIP052 Installation Requirements.

For information on See Page

DIP052 Specifications 2-1

Port Addresses 2-1

Interrupt Levels 2-2

DIP052 Connector Pin Out 2-2

Network Adapter Jumpers 2-2

Jumper P1 2-3

Jumper P2 2-3

Fully Isolated Interface 2-3

Non-Isolated Interface 2-4

The DIP052 PC to CAN adapter may be installed in an ISA compatible
Personal Computer. The module occupies 32 consecutive locations within
the processor I/O space. Prior to installation the user must set both the base
address and the interrupt level to be used by the adapter.

DIP052 Specifications
Size 8’’X4.5’’ (ISA Bus Compatible)
Power 5 Volt @ 100mA, 12 Volt @ 80mA bus power
Bus Interface Optical Isolation, ISO/DIS 11898
Bus Speed Up to 1 Mbit/sec, 120 nodes
Interrupt Levels 3,4,5,7,10,11,12,15 (user selectable)
I/O Addresses 200-21F, 280-29F, 300-31F, 380-39F

Port Addresses The DIP052 may be configured to one of 4 separate base addresses using
switch positions S9 and S10. Note that when setting the switch the down
position is ON and the up position is OFF.

SWITCH ADDRESS
S10 S9

OFF OFF 200H
OFF ON 280H
ON OFF 300H
ON ON 380H

2-2 Installing the DIP052

DIP052 User's Manual • 13005202-1.0.1

Interrupt Levels The DIP052 may be used in either POLLED or INTERRUPT mode,
depending on the support software used. POLLED mode provides lower
performance. DIP supplies INTERRUPT driven drivers.

The DIP052 supports 8 different interrupts through switch positions S1
through S8. Only 1 of these switches should be in the ON (Down) position.

Interrupts are a very scarce resource on heavily populated personal
computers. The following table shows the 'standard' use of interrupts for
AT and 386/486 machines.

Switch (On) Interrupt (Hex) Common Usage
S1 IRQ15 (0F) General I/O
S2 IRQ12 (0C) General I/O
S3 IRQ11 (0B) General I/O
S4 IRQ10 (0A) General I/O
S5 IRQ7 (07) LPT1
S6 IRQ5 (05) LPT2, Sound, CD card
S7 IRQ4 (04) Com1 and Com3
S8 IRQ3 (03) Com2 and Com4

The hexadecimal values in parenthesis are the corresponding interrupt level
to be coded in the MONITOR initialization files (DOS version).

DIP052 Connector Pin-Out The DIP052 pin-out for the DB9 connector is as follows:

DB-9 Pin
Number

Function

1 N.C.- do not connect to this pin
2 CANL
3 Bus --
4 N.C. – do not connect to this pin
5 PC GND – do not connect to this pin in isolated

systems
6 Shield Ground
7 CANH
8 N.C. – do not connect to this pin
9 Bus +

Network Adapter Jumpers The DIP052 is provided with an optically coupled CAN transceiver. To
support applications requiring alternate drivers two sets of dual row 10
position jumpers are provided. Jumper group P1 carries signals from the
CAN controller to the CAN transceiver circuit. Jumper group P2 carries
signals from the transceiver to the DB9 connector. Jumper P2-10 provides a
convenient 120Ω network termination resistor.

Installing the DIP052 2-3

DIP052 User's Manual • 13005202-1.0.1

Jumper P1 Unless a custom network driver is installed the jumper locations on P1
containing white silk screened lines should be installed.

CONNECTOR P1

 +5 o - o
 RX1 o - o
 RX0 o - o
 TX1 o o To opto-isolated transceiver
 TX0 o - o circuits.
 CLKOUT o o
 OPT1 o - o
 OPT2 o o
 OPT3 o o
 GND o – o

Jumper P2 Jumper group P2 connects the CAN transceiver circuit to the DB9
connector. Unless a custom network driver is installed the jumper locations
on P2 containing white silk screened lines should be installed. Additional
jumpers will be required to select the power option for the transceiver.

To provide full isolation between the CAN network and the PC the
transceiver circuit requires a separate power source. This is typically
provided by a network wide power supply carried on the BUS+ and
BUS_GND signals.

Fully Isolated Interface The following jumper options should be used when the BUS+ and
BUS_GND signals are to be used to power the transceiver.

Isolated P2

Internal Function DB-9 (Pin) Function

Xcvr Gnd o — o (3) Bus –
Unreg Pwr + o o (1) N.C.
PC +12 o o (8) N.C.
Xcvr GND o o (4) N.C.
PC GND o o (5) N.C.
Xcvr GND o — o (6) Bus –
Unreg Pwr + o — o (9) Bus +
Xcvr CAN H o — o (7) Can H
Xcvr CAN L o — o (2) Can L
120 Ohm Resistor o — o (-) 120 Ohm Terminating

Resistor

2-4 Installing the DIP052

DIP052 User's Manual • 13005202-1.0.1

Non-Isolated Interface The following jumper options should be used when the PC +12 power is
to be used to power the transceiver. Note that this configuration does not
provide galvanic isolation between the CAN network and the PC.
Installing the jumpers marked ‘?’ will connect the PC +12 volt and GND
supply to the DB9 connector. CARE SHOULD BE EXERCISED.

Non-Isolated P2

Internal Function DB-9 (Pin) Function

Xcvr GND (3) Bus –
Unreg Pwr + (1) N.C.
PC +12 (8) N.C.
Xcvr GND (4) N.C.
PC GND (5) N.C.
Xcvr GND (6) Bus –
Unreg Pwr + (9) Bus +
Xcvr CAN H (7) Can H
Xcvr CAN L (2) Can L
120 Ohm Resistor (-) 120 Ohm Terminating

Resistor

Chapter 3

DIP052 User's Manual • 13005202-1.0.1

DRV051 Functions

Chapter Overview This chapter addresses the DRV051 functions (DOS).

For information on See Page

DOS Device Driver 3-1

Header Files 3-1

DRV051 Error Codes 3-1

Packet Management 3-2

DRV051 Functions 3-2

DOS Device Driver The DIP052 uses the Signetics 82C200 Can controller. The controller is I/O
mapped and requires 32 consecutive addresses. The base address is defined
by the CanPort variable set during initialization. Until the port is configured
all functions will return an E_NOTCONFIG error code.

A DOS based interrupt handler is provided in Microsoft compatible C
SOURCE code to provide an example of using the DIP052. The driver
code provided consists of the following files:

DRV051.C Source code for interface routines
DRV051.H Header file

HEADER FILES DRV051.H defines the function prototypes and various constants. It should
be included in any module making access to the DRV051 interface.

ERROR CODES All user interface functions will return status information in the form of an
unsigned int. The following are possible error codes.

E_OK 0x00 - No error detected
E_TIMEOUT 0xffff - Timed out due to lack of response
E_NOTCONFIG 0xfffe - DIP052 has not been configured
E_BUSY 0xfffd - DIP052 controller not available
E_EMPTY 0xfffc - No messages in receive queue
E_FULL 0xfffb - Transmit queue is full
E_PRESENT 0xfffa - DIP052 not present at specified port
E_LENGTH 0xfff9 - length parameter incorrect

3-2 DRV051 Functions

DIP052 User's Manual • 13005202-1.0.1

PACKET MANAGEMENT CAN bus traffic is buffered in memory queues. The receive queue is 128
bytes in length. The transmit queue is 32 bytes. Packets received are
transferred to the receive queue by the internal interrupt routine and the user
Receive function transfers the packet information from the queue to user
buffers.

Messages to be transmitted are transferred directly to the DIP052 CAN
adapter if possible. If the CAN controller is busy the user message(s) will
be queued in the transmit buffer.
Auxiliary functions allow retrieving the entire DIP052 register set as well
as reading the DIP052 status register and setting the control and command
registers.

DRV051 FUNCTIONS The following functions are available to application DOS programs.

CanConfig - configure CAN network interface
CanRecv - accept incoming CAN messages
CanXmit - send CAN messages
CanStatus - return status register (80C200)
CanControl - send control byte to 80C200
CanCommand - send command byte to 80C200
CanDump - return all 80C200 registers
GetAll - return all registers and FIFO content

CanConfig

sts = CanConfig(port_address, interrupt_level, config)

unsigned int sts;
int port_address;
int interrupt_level;
unsigned char config[6];

The DRV051 interface must be advised to the port, interrupt and internal
controller conditions to be used.

The port address must not conflict with other I/O devices. The
recommended value is 0x300.

The intlevel specifies what hardware interrupt level to use. The interrupt
driver does not allow sharing interrupts between devices. A recommended
level is 5 (printer LPT2).

The 6 byte configuration array consists of the following UNSIGNED
CHAR fields:

DRV051 Functions 3-3

DIP052 User's Manual • 13005202-1.0.1

accept_code Message IDENTIFIER(s) to be recognized by this node.
Defines which message packets received by the controller
will be accepted, subject to mask_code operation.

mask_code MASK value which will be applied to accept_code and
Message IDENTIFIER when qualifying message
acceptance. The mask_code value is 'AND'ed with both
the incoming message IDENTIFIER and the accept_code.
Setting a bit within the mask_code informs the controller
to ignore the corresponding bit in the accept_code. A
mask_code of 0xFF will allow the controller to receive all
packets.

Bus Time 0 Baud rate multiplier and jitter correction control bits.
(Refer to 80C200 specific register information).

Bus Time 1 Data bit sampling control. (Refer to 80C200 specific
register information).

Output cfg The control register used to determine drive levels for the
80C200 output drivers. Refer to the 80C200 specific
register information. For standard hardware configurations
use a value of DEF_NORMAL_CFG.

Clock control The 80C200 generates a separate auxiliary clock output
which may be used in specialized hardware configurations.
For standard hardware use a value of 0.

The Bus Time 0 and Bus Time 1 parameters are specific to the 80C200
controller and defines both the transmission speed and bit jittering
adjustment capability. The drv051.h file includes predefined parameters for
125, 250, 500 and 1000 kbit/second networks.

DEF_SPD125_0 0x03
DEF_SPD125_1 0x1c
DEF_SPD250_0 0x01
DEF_SPD250_1 0x1c
DEF_SPD500_0 0x00
DEF_SPD500_1 0x1c
DEF_SPD1000_0 0x00
DEF_SPD1000_1 0x14

The routine will return E_OK (0) if a controller is found. It will return
E_TIMEOUT if the DIP052 fails to respond in .1 second and E_PRESENT
if the controller is not found at the specified address.

3-4 DRV051 Functions

DIP052 User's Manual • 13005202-1.0.1

CanRecv

sts = CanRecv(Iptr, Lptr, Bptr)

unsigned int sts;
unsigned int *Iptr;
int *Lptr;
unsigned char *Bptr;

The CanRecv() function is used to receive messages from the CAN
network.

If the DIP052 has not been configured the routine will return an
E_NOTCONFIG error. If no message is available the routine will return
an E_EMPTY error.

The Iptr must be a pointer to an integer which will contain the packet
identifier of the received message.

The Lptr points to an integer, which will contain the number of message
bytes received. If the packet is a Remote Frame (RTR bit set high) then the
length variable is set to 0x10 and no message bytes will be transferred. If
the RTR bit is cleared the length variable will be set to the actual number of
bytes received in the packet (0x00 - 0x08).

The Bptr points to an unsigned char array to receive the packet data. The
CAN specification limits the packet data length to 8 bytes and it is
recommended that all receive buffers be at least 8 bytes since it is not
possible to pre-determine the length of incoming packets.

CanXmit

sts = CanXmit(Id, Len, Bptr)

unsigned int sts;
unsigned int Id;
int Len;
unsigned char *Bptr;

The CanXmit() function will transmit a packet on the CAN network.

If the DIP052 has not been configured the routine will return an
E_NOTCONFIG error. If no space is available in the message queue the
routine will return an E_FULL error. If an invalid Len parameter is
specified the routine returns an E_LENGTH error status.

The Id must contain the packet identifier (11 bits).

DRV051 Functions 3-5

DIP052 User's Manual • 13005202-1.0.1

The Len integer contains the number of message bytes to be transmitted. If
the packet is a Remote Frame (RTR bit set high) then the length variable
must be set to 0x10 and no message bytes will be transferred.

If the RTR bit is be cleared the length variable must be set to the actual
number of bytes to be transmitted the packet (0x00 - 0x08).

The Bptr points to an unsigned char array which contains the packet data.
The CAN specification limits the packet data length to 8 bytes.

CanDump

sts = CanDump(Bptr)

unsigned int sts;
unsigned char *Bptr;

The CanDump() function will read all 32 registers from the 80C200 into the
user supplied buffer. When accessing the internal registers of the 80C200 it
is necessary to reset the device. Any pending messages will be lost.

Refer to the 80C200 data sheet for the register map.

Register 31 is not used by the 80C200 and instead contains the DIP052
status word which reflects the 2 user assigned status bits, the current
interrupt status bit and the cable present status bit.

CanStatus

sts = CanStatus(void)

unsigned int sts;

The CanStatus() function will return the status word of the 80C200. If the
DIP052 port has not been configured the routine returns an
E_NOTCONFIG.

Note that the status value will be in the range 0-0xff. The error codes will
be in the range 0xff00 - 0xffff. Refer to the 80C200 data sheet for status
register bit assignments.

3-6 DRV051 Functions

DIP052 User's Manual • 13005202-1.0.1

CanCommand

sts = CanCommand(Cmd)

unsigned int sts;
unsigned int Cmd;

The CanCommand() function will write the user specified Cmd byte to the
80C200 command register. Refer to the 80C200 data sheet for the possible
command values.

The routine will return E_NOTCONFIG if the DIP052 port has not been
configured.

CanControl

sts = CanControl(Cntr)

unsigned int sts;
unsigned int Cntr;

The CanControl() function will write the user specified Cntr byte to the
80C200 control register. Refer to the 80C200 data sheet for the possible
control values.

The routine will return E_NOTCONFIG if the DIP052 port has not been
configured.

If the interrupt is due to a Transmit Complete the function checks if
additional messages are available from the transmit queue. If so, the oldest
message is copied from the buffer to the 80C200 transmission registers.

An ERROR or OVERRUN condition is cleared.

Chapter 4

DIP052 User's Manual • 13005202-1.0.1

DRV052 Functions

Chapter Overview This chapter addresses the DRV052 functions (Windows).

For information on See Page

DN Functions 4-1

CAN Functions 4-8

VXD Functions 4-10

Utility Functions 4-13

Error Codes 4-13

Visual Basic Function Prototypes 4-14

DN Functions These functions allow the user to send DeviceNet commands:

• DNAllocate
• DNFree
• DNReset
• DNGetAttribute
• DNSetAttribute

DNAllocate

This function allows the user to create a M/S connection with a
node within the DeviceNet network.

Function Prototype:

long DNAllocate (unsigned short int node, unsigned short int conn,
unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to allocate. The
value ranges from 0 to 63.

conn Connection to be established with the node. (Explicit =1,
Poll= 2, Strobe= 4, etc).

buf Pointer to an array of bytes for a response from
DNAllocate. The size of the array must be 150.

4-2 DRV052 Functions

DIP052 User's Manual • 13005202-1.0.1

C Declaration:

long rts;
int node;
int conn;
unsigned char buf[150];

rts = DNAllocate(node,conn,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim node As Integer
Dim conn As Integer
Dim buf(150) as Byte

rts =DNAllocate(node,conn,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of CAN message
buf[6],.... Message from node

Comments:

This function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon as it is received.

DRV052 Functions 4-3

DIP052 User's Manual • 13005202-1.0.1

DNFree

This function allows the user to free M/S connection with a node
within the DeviceNet network.

Function Prototype:

long DNFree (unsigned short int node, unsigned short int conn,
unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to free. The value
ranges from 0 to 63.

conn Connection to be established with the node. (Explicit =1,
Poll= 2, Strobe= 4).

buf Pointer to an array of bytes for function DNFree. The size
of the array must be 150.

C Declaration:

long rts;
int node;
int conn;
unsigned char buf[150];

rts = DNFree(node,conn,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim node As Integer
Dim conn As Integer
Dim buf(150) as byte

rts =DNFree(node,conn,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node

4-4 DRV052 Functions

DIP052 User's Manual • 13005202-1.0.1

buf[4],[5] Size of CAN message
buf[6],.... Message from node

Comments:

The function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon it is received.

DNReset

This function allows the user to reset the node.

Function Prototype:

long DNReset (unsigned short int node, unsigned short int clss,
unsigned short int inst, unsigned short int rlen, unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to reset. The
value ranges from 0 to 63.

clss Class to be accessed.

inst Instance to be accessed.

rlen Number of characters send in *buf. Set to 0 if no
data is to be sent.

buf On entry, buf has data to be sent to the node. On
exit, buf has data response from DNReset. The size
of the array must be 150.

C Declaration:

long rts;
int clss;
int inst;
int rlen;
unsigned char buf[150];

rts = DNReset(node,clss,inst,rlen,&buf);

DRV052 Functions 4-5

DIP052 User's Manual • 13005202-1.0.1

Visual Basic Declaration:

Dim rts As Long ' return value
Dim clss As Integer
Dim inst as Integer
Dim rlen as Integer
Dim buf(150) as byte

rts =DNReset(node,clss,inst,rlen,buf(0))

Return Data:
*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of message
buf[6],.... Message from node

Comments:

The function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon it is received.

DNGetAttribute

This function supports DeviceNet Service GET_SINGLE.

Function Prototype:

long DNGetAttribute (unsigned short int node, unsigned short int clss,
unsigned short int inst, unsigned short int attr, unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to reset. The
value ranges from 0 to 63.

clss Class to be accessed.

inst Instance to be accessed.

4-6 DRV052 Functions

DIP052 User's Manual • 13005202-1.0.1

attr Attribute to be accessed.

buf On exit, buf has data response from
DNGetAttribute. The size of the array must be 150.

C Declaration:

long rts;
int clss;
int inst;
int attr;
unsigned char buf[150];

rts = DNGetAttribute(node,clss,inst,attr,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim clss As Integer
Dim inst as Integer
Dim attr as Integer
Dim buf(150) as byte

rts =DNGetAttribute(node,clss,inst,attr,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of message
buf[6],.... Message from node

Comments:

The function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon it is received.

DRV052 Functions 4-7

DIP052 User's Manual • 13005202-1.0.1

DNSetAttribute

This function supports DeviceNet Service SET_SINGLE.

Function Prototype:

long DNSetAttribute(unsigned short int node, unsigned short int
clss, unsigned short int inst, unsigned short int attr, unsigned short
int rlen, unsigned char *buf)

Parameters:

node DeviceNet node that the user wants to reset. The
value ranges from 0 to 63.

clss Class to be accessed.

inst Instance to be accessed.

attr Attribute to be accessed.

rlen Number of characters send in *buf. Set to 0 if no
data is to be sent.

buf On entry, buf has the data to be sent to the node. On
exit, buf has data response from DNSetAttribute.
The size of the array must be 150.

C Declaration:

long rts;
int clss;
int inst;
int attr;
int rlen;
unsigned char buf[150];

rts = DNSetAttribute(node,clss,inst,attr,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim clss As Integer
Dim inst as Integer
Dim attr as Integer
Dim int as Integer
Dim buf(150) as byte

4-8 DRV052 Functions

DIP052 User's Manual • 13005202-1.0.1

rts =DNSetAttribute(node,clss,inst,attr,rlen,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of message
buf[6],.... Message from node

Comments:

The function returns a non-zero value for Error. See Error Codes
for details. The function waits 100ms for a response. If callback is
implemented then the response is made available to the user as
soon it is received.

CAN functions These functions allow the user to receive and transmit generic
CAN messages.

CANRcv

This function will read a message from the VXD. If no messages
are available an Error code is generated.

Function Prototype:

long CANRcv (unsigned short int *radd, unsigned short int *rlen,
unsigned char *buf)

Parameters:

radd 11-bit identifier.

rlen Number of characters received.

buf On exit, data response from CANRcv. The size of
the array must be 150.

C Declaration:

long rts;
int radd;

DRV052 Functions 4-9

DIP052 User's Manual • 13005202-1.0.1

int rlen;
unsigned char buf[150];

rts = CANRcv(radd,rlen,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim radd As Integer
Dim rlen as Integer
Dim buf(150) as byte

rts =CANRcv(radd,rlen,buf(0))

Return Data:

*buf returns the following data

buf[0],[1] Error code (0 for successful response)

Ignore the rest of the packet if an Error code is received.

buf[2],[3] Receive Id from node
buf[4],[5] Size of message
buf[6],.... Message from node

Comment:

The function returns a non-zero value for Error. See Error Codes
for details.

CANXmit

This function will write a message to the VXD.

Function Prototype:

long CANXmit (unsigned short int xadd, unsigned short int xlen,
unsigned char *buf);

Parameters:

radd 11-bit identifier.

xlen Number of characters received. This value must be
less or equal to 8.

4-10 DRV052 Functions

DIP052 User's Manual • 13005202-1.0.1

buf On entry, data to be sent to the node.

C Declaration:

long rts;
int xadd;
int xlen;
unsigned char buf[150];

rts = CANXmit(xadd,xlen,&buf);

Visual Basic Declaration:

Dim rts As Long ' return value
Dim xadd As Integer
Dim xlen as Integer
Dim buf(150) as byte

rts =CANXmit(xadd,xlen,buf(0))

Return Value:
NONE

VXD functions LoadVXD

This function loads the proper driver for the DIP052 and DIP065.
The DRV052.DLL can be used on Windows 95 and NT operating
system.

Function Prototype:

long LoadVXD (unsigned short int Port, unsigned short int IRQ,
 unsigned char *Config);

The port_address must not conflict with other I/O devices. The
recommended value is 0x300H. The port_address is set by using the
DIPswitch on the DIP052.

SWITCH ADDRESS
S10 S9 Port
OFF OFF 200H
OFF ON 280H
ON OFF 300H
ON ON 380H

DRV052 Functions 4-11

DIP052 User's Manual • 13005202-1.0.1

The interrupt_level specifies what hardware interrupt level to use.
The interrupt driver does not allow sharing interrupts between
devices. A recommended level is 5 (printer LPT2). The
interrupt_level is set by using the DIPswitch on the DIP052.

 Switch (On) Interrupt (Hex) Common Usage
S1 IRQ15 (0F) General I/O
S2 IRQ12 (0C) General I/O
S3 IRQ11 (OB) General I/O
S4 IRQ10 (0A) General I/O
S5 IRQ7 (07) LPT1
S6 IRQ5 (05) LPT2, Sound, CD card
S7 IRQ4 (04) Com1 and Com3
S8 IRQ3 (03) Com2 and Com4

The 10-byte configuration array consists of the following
UNSIGNED CHAR fields:

Config[0] Do not use. Internal use.
Config[1] Do not use. Internal use.
Config[2] Do not use. Internal use.
Config[3] Do not use. Internal use.

Config[4] accept_code.
accept_code Message IDENTIFIER(s) to be recognized by

this node. Defines which message packets
received by the controller will be accepted,
subject to mask_code operation. (Basically,
node address of DIP052)

Config[5] mask_code.
mask_code MASK value which will be applied to

accept_code and Message IDENTIFIER
when qualifying message acceptance. The
mask_code value is 'AND'ed with both the
incoming message IDENTIFIER and the
accept_code. Setting a bit within the
mask_code informs the controller to ignore
the corresponding bit in the accept_code. A
mask_code of 0xFF will allow the controller
to receive all packets.

Config[6] Bus Time 0
Bus Time 0 Baud rate multiplier and jitter correction

control bits. (Refer to 80C200 specific
register information).

4-12 DRV052 Functions

DIP052 User's Manual • 13005202-1.0.1

Config[7] Bus Time 1
Bus Time 1 Data bit sampling control. (Refer to 80C200

specific register information).

To set up the data rate to 125kb use:
Bus Time 0 DEF_SPD125_0 0x03
Bus Time 1 DEF_SPD125_1 0x1c

To set up the data rate to 250kb use:
Bus Time 0 DEF_SPD250_0 0x01
Bus Time 1 DEF_SPD250_1 0x1c

To set up the data rate to 500kb use:
Bus Time 0 DEF_SPD500_0 0x00
Bus Time 1 DEF_SPD500_1 0x1c

To set up the data rate to 1000kb use:
Bus Time 0 DEF_SPD1000_0 0x00
Bus Time 1 DEF_SPD1000_1 0x14

Config[8] Output cfg
Output cfg The control register used to determine drive

levels for the 80C200 output drivers. Refer to
the 80C200 specific register information. For
standard hardware configurations use a value
of DEF_NORMAL_CFG = 0xfa.

Config[9] Counter reg
Counter reg 0x4e.

Port 0x200, 0x280, 0x300, 0x380 for DIP052.
IRQ 5, 7, 9, 10, 11, 12, 14, 15. Ignored for DIP052.
Config As described above.

Note: On NT Port and IRQ are ignored, Config is
processed.

UnloadVXD

This function unloads the proper driver for the DIP052 and
DIP065. The DRV052.DLL can be used on Windows 95 and NT
operating system.

Function Prototype:

long UnloadVXD();

DRV052 Functions 4-13

DIP052 User's Manual • 13005202-1.0.1

RegisterCB

This function registers a callback function within the DLL. This
allows the user to be notified when a CAN transaction has
occurred.

Function Prototype:

long RegisterCB(unsigned short int mode);

mode 1 = A CAN transaction has been sent.
2 = A CAN transaction has been received.
0xffff = Notified everything.

Utility functions These functions allow the user to make some simple conversion
between data types.

The first set of functions converts bytes into integers, longs or
floats by pointing to an element of the array.

unsigned short int Byte2Int (unsigned char *bData);
long Byte2Long (unsigned char *bData);
float Byte2Float (unsigned char *bData);

The second set of functions converts integers, longs or floats into
bytes. These functions return 0.

long Int2Byte (unsigned short int *Param1, unsigned char
*bData);
long Long2Byte (unsigned long *Param1, unsigned char *bData);
long Float2Byte (float *Param1, unsigned char *bData);

Error Codes All user interface functions will return status information in the form of an
unsigned long. The following are possible error codes.

E_OK 0x00 - No error detected.
E_TIMEOUT 0xffff - Timed out due to lack of response.
E_NOTCONFIG 0xfffe - DIP052 has not been configured.
E_BUSY 0xfffd - DIP052 controller not available.
E_EMPTY 0xfffc - No messages in receive queue.
E_FULL 0xfffb - Transmit queue is full.
E_PRESENT 0xfffa - DIP052 not present at specified port.
E_LENGTH 0xfff9 - length parameter incorrect.
E_PRESENT 0xfff8 - Unable to determine OS.
E_LENGTH 0xfff7 - Generic error.
E_LENGTH 0xfff5 - COM port is in used by another

device.

4-14 DRV052 Functions

DIP052 User's Manual • 13005202-1.0.1

Visual Basic
Function Prototypes The following section describes the declaration under Visual Basic.

Function Prototypes and Declaration:

Declare Function DNAllocate Lib "drv052.dll" (ByVal node As
Integer, ByVal conn As Integer, rbuf As Any) As Long

Declare Function DNFree Lib "drv052.dll" (ByVal node As
Integer, ByVal conn As Integer, rbuf As Any) As Long

Declare Function DNReset Lib "drv052.dll" (ByVal node As
Integer, ByVal cls As Integer, ByVal inst As Integer, ByVal rlen
As Integer, rbuf As Any) As Long

Declare Function DNGetAttribute Lib "drv052.dll" (ByVal node
As Integer, ByVal cls As Integer, ByVal inst As Integer, ByVal
attr As Integer, rbuf As Any) As Long

Declare Function DNSetAttribute Lib "drv052.dll" (ByVal node
As Integer, ByVal cls As Integer, ByVal inst As Integer, ByVal
attr As Integer, ByVal rlen As Integer, rbuf As Any) As Long

Declare Function CANRcv Lib "drv052.dll" (radd As Integer, rlen
As Integer, rbuf As Any) As Long

Declare Function CANXmit Lib "drv052.dll" (ByVal radd As
Integer, ByVal rlen As Integer, rbuf As Any) As Long

Declare Function LoadVXD Lib "drv052.dll" (ByVal port As
Integer, ByVal Irq As Integer, config As Any) As Long

Declare Function UnloadVXD Lib "drv052.dll" () As Long

Declare Function RegisterCB Lib "drv052.dll" (ByVal mode As
Integer) As Long

Declare Function Byte2Int Lib "drv052.dll" (xbuf As Any) As
Integer

Declare Function Byte2Long Lib "drv052.dll" (xbuf As Any) As
Long

Declare Function Byte2Float Lib "drv052.dll" (xbuf As Any) As
Single

DRV052 Functions 4-15

DIP052 User's Manual • 13005202-1.0.1

Declare Function Int2Byte Lib "drv052.dll" (par1 As Integer, xbuf
As Any) As Long

Declare Function Long2Byte Lib "drv052.dll" (par1 As Long, xbuf
As Any) As Long

Declare Function Float2Byte Lib "drv052.dll" (par1 As Single,
xbuf As Any) As Long

Chapter 5

DIP052 User's Manual • 13005202-1.0.1

Obtaining Help

Chapter Overview This chapter will focus on obtaining help with the product.

For information on See Page

Sources for Help 5-1

Sources for Help Sources for obtaining help are listed below.

⌦ Visit the DIP Web Site at http://www.dipinc.com.
The newest updates and revisions to the software as well as the
documentation will be posted there.

⌦ Send a request for information through e-mail to
info@dipinc.com. If the question is related to sales or
marketing, send your e-mail to sales@dipinc.com.

⌦ Reach us by telephone at (909) 686-4211.

⌦ Fax us at (909) 686-4122.

⌦ Send us Postal Mail at:

DIP, Inc.
1860 Chicago Ave. Suite I-5
Riverside, CA 92507
USA

