

Second Generation Bandwidth Engine® IC Breaks 4.5 Billion Accesses/sec

Michael J. Miller VP, Technology Innovation & System Applications

The Vision: Fast, Intelligent Access Architecture

Bandwidth Engine 2 Architecture & Family Sampling Now

- Parallel Array Architecture ... Performance up to:
 - 16 outstanding transactions
 - 4.5G Accesses per second
 - 192 Gbps full duplex throughput
 - ~12ns deterministic read latency
 - 2.7ns Random cycle time (tRC)
- GigaChip Interface ... 90% Efficient Transport Protocol
 - Up to sixteen low latency SerDes lanes (8G to 15G)
- High Reliability ...70X better SER than 6T-SRAM
 - Full ECC support; 72bit array and macro datapath operations

and Compression

- CRC protected and self recovering GigaChip Interface
- SEU resistant 1T-SRAM Memory core: < 10 FIT/Mb

Pandwidth Engina

Bit Safe™ Self Test and Self Repair Option

		Ва	inawiath Engine –	Z ⁱⁱⁱⁱ Generation
Applications	BE1 - MSR576	MSR620	MSR820	MSR720
Lookup, LPM, Hash		Highest sing	s Rate	
Statistics	Onboard ALU		Onboard ALU+	
Buffer – up to 80% efficient		Per cycle Burst,	Write Broadcast	
Metering, Dual Ops		Fixed Macro		
Semaphore, Link List			Atomic Ops	
State, Queuing, Link List				Dual Port w/ Data Coherency, 36 bit word access

Functional Design

Bandwidth Engine MSR720 Architecture

MSR720: Bandwidth Engine 2 – Access

- Simultaneous Read & Write @ same address
 - ... treat each partition as a single bank
 - ... >>2x the access performance of QDR SRAM
 - 4.5GA: 3 billion reads/sec, 1.5B 36b write/sec
 - 72b & 36b words each access
 - 12 ns read latency pin to pin
 - 2.7ns tRC cycle time
 - 8.5W @ 12.5G system power
 - ... 90% efficient transport protocol
 - Up to Sixteen 15G serial lanes (2 links of 8 lanes)
- High Density
 - ... 576Mbit 1T-SRAM ® memory core
 - 19mm x 19mm package 1mm pitch
- High Reliability
 - ... 70X better SER than 6T-based SRAM
 - Memory core: < 10 FIT/Mb native</p>
 - Interface: < 1 FIT</p>
 - Bit Safe™ Self Test and Self Repair Option

MSR720: Basic 'Dual Port' Operation

Flat Partition Mode:

- Double the effective bandwidth in worst case:
 - Bank Conflict Resolution (BCR) function allows for simultaneous Read and Write of the same bank
 - Implements dual port behavior with single port banks
- Guarantees data coherency
- 3 billion accesses / sec @ 15G

	Scheduling Balanced R:W									
Bala	Balanced R:W Controller									
Frame		Input	(RX)		Frame	Output (TX)				
Fra	Partition	CMDARX	CMD	BRX	Fra	QATX	QATX			
1	0/1	RDFP WRFP	RDFP	WRFP	16	RDFP	RDFP			
2	0/1	WD W		'D	17					
3	2/3	RDFP WRFP	RDFP	WRFP	18	RDFP	RDFP			
4	2/3	WD	WD		19					
15G										
1.50 GA Write										
1.50 GA Read										
3.00 GA Total										

"BCR" Implemented w/Delayed Write Cache Conceptual Block Diagram

Up to 4 Accesses Per Partition In One Cycle 3 Accesses Sustained Throughput

The MSR720 supports Bank Aware commands.

 This can be used to improve the data read performance on the interface, however bypasses the BCR logic

- Useful for unified memory applications combining dual port SRAM performance of "buffers" or "state" tables and read-only "lookup" tables
- The two address ranges cannot overlap.

MSR720 supports 36b write operations: WRFP and WRBA

- Useful for small word size tables (pointers)
- Increases write performance

Mapping Ports and Banks

MSR720 Access Scheduling

Flat Partition guarantees no bank conflict between read and write to any address, even in the same cycle

Nati	Native BE Controller (36b WRITES)								
Frame		Input (RX)				Frame	Output (TX)]
Fra	Partition	CME	DARX CMDBRX		Fra	QATX	QATX		
1	⊣ 0/1	RDFP	RDBA	RDFP	RDBA	16	RDFP	RDFP	
2		WRFP	WD	WRFP	WD	17	RDBA	RDBA	-
3	→ 2/3	RDFP	RDBA	RDFP	RDBA	18	RDFP	RDFP	
4		WRFP	WD	WRFP	WD	19	RDBA	RDBA	
15G									
	1.50 GA Read BA								
	1.50	GA Wr	ite (36	b) FP					
	1.50	GA Read FP							
4.50 GA Total									

Native BE Controller (72b WRITES)									
Frame		Input (RX)				Frame	ပို့ Output (TX)		
Fra	Partition	CME	ARX	CME	BRX	Fra	QATX	QATX	
1	0/1	RDFP	RDBA	RDFP	RDBA	16	RDFP	RDFP	
2	0/1	WRFP	WDL	WRFP	WDL	17	RDBA	RDBA	
3	2/3	RDFP	RDBA	RDFP	RDBA	18	RDFP	RDFP	
4	2/3	WRFP	WDL	WRFP	WDL	19	RDBA	RDBA	
1	0/1	RDFP	RDBA	RDFP	RDBA	16	RDFP	RDFP	
2	0/1	WRFP	WDU	WRFP	WDU	17	RDBA	RDBA	
3	2/2	RDFP	RDBA	RDFP	RDBA	18	RDFP	RDFP	
4	2/3	WRFP	WDU	WRFP	WDU	19	RDBA	RDBA	
15G									
	1.50 GA Read BA								
	0.75	GA Wri	1	<u>\</u>	WDL = Lower 36b data				
	1.50	GA Rea			WD	U = Upper 3	6b data		
3.75 GA Total									

Partition Access Restrictions								
Frame		RX						
Fra	Partition	GCI-A	GCI-B					
1	0/1	P0	P1					
2	0/1	PU	P1					
3	2/2	P2	Р3					
4	2/3	PZ	5					

MSR 720 : Breaking 4.5GA

Note: Datasheet comparison - 1 access = 72 bits

- FP Access is arbitrated by BCR.
- BA Access is to/from array only. Must be bank aware.

Get More Done With The Same Amount of I/O

Bandwidth Engine 2 Architecture & Family

- Parallel Array Architecture ... Performance up to:
 - 16 outstanding transactions
 - 4.5G Accesses per second
 - 192 Gbps full duplex throughput
 - ~12ns deterministic read latency
 - 2.7ns Random cycle time (tRC)
- ❖ GigaChip Interface ... 90% Efficient Transport Protocol
 - Up to sixteen low latency SerDes lanes (8G to 15G)
- High Reliability ...70X better SER than 6T-SRAM
 - Full ECC support; 72bit array and macro datapath operations
 - CRC protected and self recovering GigaChip Interface
 - SEU resistant 1T-SRAM Memory core: < 10 FIT/Mb

Daniela della Caratica

Bit Safe[™] Self Test and Self Repair Option

		Ba	andwidth Engine – 2	nd Generation	
Applications	BE1 - MSR576	MSR620	MSR820	MSR720	
Lookup, LPM, Hash		Highest sin	le component Acces	Rate	
Statistics	Onboard ALU		Onboard ALU+		
Buffer – up to 80% efficient		Per cycle Burst,	Write Broadcast		
Metering, Dual Ops			Fixed Macro		
Semaphore, Link List			Atomic Ops		
State, Queuing, Link List				Dual Port w/ Data Coherency, 36 bit word access	

Dual Counter: 5 Stage Pipeline

Includes Index Compare Logic (not illustrated) for Data Forwarding:

- In case of an index match, data is forwarded in the pipeline
- Prevents stale data in the pipeline
- Similar pipeline for Split Counter
- End-to-End ECC Protection
- 16 ns to completion

MSR820 – Metering Capabilities

- Individual Flow Programmability
 - Meter Type
 - Flow Rates
 - Thresholds
- 8M Two Color Flows
- 4M Three Color Flows
- Line Rate 4x100G

Single Rate Three Color Meter

Basic Meter (Two Color)

Two Rate Three Color Meter

MSR820 – Bandwidth Engine 2 – Intelligent Memory Macros <u>Leverages I/O</u>

Second Generation Bandwidth Engine Architecture

- Up to 4.5 billion external memory accesses per second w/16 SerDes Lanes
- Macros support up to 6 billion internal accesses per second w/8 SerDes Lane
- Macros execute Atomically: Stats, Metering, Read & Set, Test & Set

Supports: 4 x 100GE ports w/ Stats + Metering over 8 lanes

Intelligent Offload, Fire Forward Architecture

Physical Design

Conceptual Timing & Data Access Control

BE 1: Read Latency of 15.9ns vs. BE2: Read Latency of ~12.5ns

MSR720 Layout

QDR like
Dual Port
Performance
for 1.10x
vs
3x die area
cost

Thank you

Michael J. Miller mmiller@mosys.com