

Beyond S-parameters The ZVxPlus

An extension kit for Rohde and Schwarz ZVA and ZVT

Outline

- The WHY and HOW of "Large Signal Network Analysis"
 - Introduction to Large Signal Network Analysis (LSNA)
 - The VNA Evolution, VNA vs LSNA measurement
 - How to upgrade from a VNA to a LSNA? Theory of Operation
 - What about calibration?
- The NM300 ZVxPlus
 - Hardware and specifications
 - Software The Integrated Component Characterisation Environment (ICE)

Outline

- The WHY and HOW of "Large Signal Network Analysis"
 - Introduction to Large Signal Network Analysis (LSNA)
 - The VNA Evolution, VNA vs LSNA measurement
 - How to upgrade from a VNA to a LSNA? Theory of Operation
 - What about calibration?
- The NM300 ZVxPlus
 - Hardware and specifications
 - Software The Integrated Component Characterisation Environment (ICE)

The Market Trend

- RF and HF Components and Circuits = "More for Less"
 - Higher efficiency (power & bandwidth)
 - More complex (circuits & modulation schemes)
 - Smaller, cheaper, shorter time to market
- Nonlinear behaviour of components can no longer be ignored
- Interaction between instruments and devices may lead to wrong conclusions
- Existing characterisation techniques are no longer sufficient

Growing need to characterise the nonlinear behaviour of components in time and frequency domain at DUT reference plane

Existing Characterisation Techniques

- Existing approaches
 - Power Measurements
 - Spectrum Analysis Compression TOI
 - Vector Signal Analysis EVM
 - AM-AM and AM-PM
 - Source- and Load-pull

- The problem
 - "Limited visibility"
 - Lacking the basic information to gain insight
 - Difficult to perform a step by step diagnostics
 - Instrument component interaction
 - Impact on (assumed) excitations
 - Impact on results and specifications
 - Different setups
 - Different skill sets
 - Different calibration techniques

The New Characterisation Technique

- "Large-Signal Network Analysis" is
 - Measuring the "complete" behaviour of a device under test
 i.e. the v and i (or a and b) at all DUT ports at the same moment
 - Accurately
 - Under almost realistic conditions
 - Excitation and mismatch
 - Using a single connection
 - · Including small-signal analysis

Key Benefits

- Deal with the "More for Less" market trend
 - for diodes, transistors, amplifiers, multipliers, dividers, ...
- Better More complete
 - better characterisation = improved and "LSNA-certified" models and design kits
 - better large-signal models = better design
 - better design = reduction of the number of design cycles
 - testing under realistic conditions: excitations & mismatch conditions
- Faster
 - single connection for small- and large-signal characterisation
 - measuring basic information, i.e. PAE, Pin, Pout, ... are simple derived quantities
- At reduced cost
 - applicable from device to system level
 - from R&D to T&M

The VNA Evolution

VNA Evolution: From Small-Signal To Large-Signal

(*) Commercial available FET

The VNA Evolution: Small-Signal Network Analysis

NMDG

One VNA Measurement

Measuring:

$$\frac{b_1(f_0)}{a_1(f_0)}, \frac{b_2(f_0)}{a_1(f_0)}, \frac{a_2(f_0)}{a_1(f_0)}$$

S-parameters

Forward Measurement

Reverse Measurement

$$b_1 = S_{11} a_1 + S_{12} a_2$$
$$b_2 = S_{21} a_1 + S_{22} a_2$$

S-parameters

Mathematics
[Linear Model]
[SUPERPOSITION]

Behavioural Model

S-parameters

 $P_{\rm in} = -20 \, \mathrm{dBm}$

"Noisy" S-parameters ???

$P_{\rm in} = 0 \, \mathrm{dBm}$

The VNA Evolution: Large-Signal Characterisation

NMDG

Harmonic Characterisation in Power

 P_{in} : from -25 to 0 dBm at $f_0 = 2.059 \text{ GHz}$

Trc2 b2 dB Mag 10 dB / Ref 0 dBm Mem3[Trc2] b2 dB Mag 10 dB / Ref 0 dBm Mem4[Trc2] b2 dB Mag 10 dB / Ref 0 dBm **PCal** 2 of 2 (Max) --10- $2f_0$ --20--30---60-- -70-Ch2 H3 Start -25 dBm Freq 2.059 GHz Stop 0 dBm

Harmonic Characterisation in Frequency

 f_0 : from 0.19 to 17.99 GHz at $P_{in} = -5 \text{dBm}$

NMDG

Harmonic Characterisation in Power

Harmonic Distortion of Source

The VNA Evolution: Large Signal Network Analysis

NMDG

One LSNA Measurement

$$a_{1}(k f_{0}), b_{1}(k f_{0}), a_{2}(k f_{0}), b_{2}(k f_{0})$$

Measuring:

OR

$$v_{1}(k f_{0})$$
 , $i_{1}(k f_{0})$, $v_{2}(k f_{0})$, $i_{2}(k f_{0})$

???-parameters

Forward Measurement

Another Forward Measurement

$$b_1 = F(a_1, a_2) b_2 = G(a_1, a_2)$$

2)

???-parameters

Mathematics
[Many possible Nonlinear Models]
[NO SUPERPOSITION]

Behavioural Model [VALIDITY]

Block Diagram of a Large-Signal Network Analyser

Measuring Fundamental and Harmonics with a VNA

Network Analyser

NMDG

Time Domain measurement with a VNA

#1

#2

#3

#4

Measuring Fundamental and Harmonics with a VNA

Network Analyser

VNA as LSNA: Theory of Operation

phase consistency between harmonics in

phase consistency between receivers
by simultaneous measurement
one frequency at the time

Synchronized Measurements with VNA as LSNA

#1

#2

#3

#4

References

- U. LOTT, "Measurement of Magnitude and Phase of Harmonics Generated in Nonlinear Microwave Two-Ports", *IEEE Transaction on Microwave Theory and Techniques*, vol. 37, n°10, October 1989, pp. 1506-1511
- D. BARATAUD, et al., "Measurements of time domain voltage/current waveforms at R.F. And microwave frequencies, based on the use of a Vector Network Analyzer, for the characterization of nonlinear devices. Application to high efficiency power amplifiers and frequency multipliers optimization", *IEEE Transactions on Instrumentation and Measurement*, vol. 47, n°5, October 1998, pp.1259-1264

Calibration Techniques

- Step 1: Relative Calibration Technique
 - Same as the regular VNA calibration
 - Traceable to standards
- Step 2: Power calibration |K|
 - Power meter and sensor
 - Characterization of power distortion
 - Traceable to standards
- Step 3: Phase calibration $\,oldsymbol{\Phi}(K)$
 - Phase reference generator
 - Characterization of phase distortion
 - Traceable to NIST standard

Remark: On-wafer and fixture calibration require additional steps

Outline

- The WHY and HOW of "Large Signal Network Analysis"
 - Introduction to Large Signal Network Analysis (LSNA)
 - The VNA Evolution, VNA vs LSNA measurement
 - How to upgrade from a VNA to a LSNA? Theory of Operation
 - What about calibration?
- The NM300 ZVxPlus
 - Hardware and specifications
 - Software The Integrated Component Characterisation Environment (ICE)

NM3xx ZVxPlus

ZVxPlus

4-port ZVA or ZVT +

- direct gen. & rec. access (B16)
- frequency conversion (K4)
- meas. rec. step att. (opt.) (B3x)

Hardware

- synchroniser
- harmonic phase ref.

Software

- configuration
- absolute calibration
- measurements

Key Capabilities

- Connectorised and on wafer calibration and measurement
- Fundamental and Harmonics in amplitude and phase
- Incident and Reflected Waves or Voltages and Currents
- Frequency and Time Domain
- Over range detection and range adaptation
- Support for power applications
- 3D Dynamic load-line, mapping DC and HF conditions
- Derived measurement quantities
- Custom integration with Source and Load-pull

NMDG

Blockdiagram of standard ZVxPlus

33 NMDG

ZVxPlus Parts

ZVxPlus Details

NM300 600MHz-20GHz Kit includes:

- 1x NM400 Synchronizer 600MHz-20GHz, enabling the reconstruction of time waveforms
- 1x NM200 Harmonic Phase Reference Drive Box +
 1x NM210 Harmonic Phase Reference Wand 600MHz-20GHz, supporting the required phase calibration
- 1x NM301 3.5mm Connection Kit, including cables and adapters
- 1x ICE 2009A Software License
- One year warranty and support

ZVxPlus Options

Adapter Kits

 NM300-10 2.4mm to 3.5mm Adapter Option for NM301, required for R&S[®]ZVA50

Attenuator Kits, required *per port* when corresponding internal step attenuator is missing (option B31 and/or B32)

- NM300-20 20GHz attenuator option for R&S®ZVT20 / R&S®ZVA24
- NM300-40A 20GHz attenuator option for R&S[®]ZVA40 or
 NM300-40B 40GHz attenuator option for R&S[®]ZVA40
- NM300-50A 20GHz attenuator option for R&S[®]ZVA50 or
 NM300-50B 50GHz attenuator option for R&S[®]ZVA50

NM300 ZVxPlus: Specifications

based on a 4-port R&S®ZVA24	Value	Remarks:
Frequency range	600 MHz – 20 GHz	limited by phase calibration
Minimal frequency grid spacing	600 MHz	
Power level *	+10 dBm	@ Test port
Absolute phase uncertainty **		1 σ @ 20 GHz
using second internal source	0.6°	independent of IF BW, due to phase variations between the internal sources
using external source (locked to 10 MHz)	6 °	@ 100 Hz IF BW, highly dependent on external source

^{*} Power extension possible using optional step attenuators or external attenuators achieving maximum allowable power of +27 dBm with standard test set

<u>Notes:</u> when additive noise is dominant, the phase standard deviation can be linked to the dBm standard deviation using the following:

$$\sigma_{Phase(x)_{deg}} = \frac{180}{\pi} \frac{\ln(10)}{20} \sigma_{dBm(x)} \approx 6.6 \sigma_{dBm(x)}$$

^{**} Using one R&S®ZVA internal source to drive Synchroniser @ 600MHz

Customisation and Options

Core: ZVx and ZVxPlus

<u>Customisable:</u> required and supplied by customer or at additional cost

Optional: depending on characterisation needs, supplied by customer or at additional cost

BlockDiagram of customised ZVxPlus for Power Applications

(*): impact on phase noise (**): optional step attenuator option

More than waveforms

- Large-Signal Component Characterisation, Design and Test is MORE than showing waveforms alone
- Therefore, NMDG developed a evolutionary platform resonating with customer needs

ICE

The Integrated Component Characterisation Environment

ICE: Integrated Component Characterization Environment

DC **Receivers** CW Stimuli Tuner **ICE** Calibration **Technology** "Real-Time" and Complete Stimulus - Response Characterization **Active Components and Circuits**

> Diode, Transistor, Divider, Multiplier Characterization

Model Verification and Tuning Real-time Component Characterization and Tuning

. .

DC Meters

VNA

LSNA

What is ICE?

- A Graphical User Interface environment
- Centred around complete characterisation of active RF / HF components and circuits in a "stimulus – response" sense using only one connection
- Bringing together the necessary hardware and software for proper component characterisation in its different aspects
- Providing a unified calibration and measurement approach across different types of receivers
- Supporting different types of test signals and impedance environments
- Allowing application development and deployment independent of hardware specifics
- Usable and scalable from R&D into test, reducing the cost of test

ICE: Key Benefits

Easy:

- Easy controls for different types of instruments
- Easy calibration wizards for connectorised and on wafer calibration
- Step by step wizard to create your customised setup
- Easy to use displays for voltage / current and wave quantities in different domains at any port of a device
- Easy to configure displays combining different variables into one display

Fast:

- "Fire and go" ... ready to measure in seconds thanks to preconfigured setups
- Real-time feedback on device performance while tuning stimuli

Accurate:

 Absolute DC and RF calibration methods for both connectorised and on-wafer components eliminating systematic errors up to the level of the component

NMDG

ICE Displays

Basic Display

Advanced Display

Derived Quantities

Classical Measurement Setup

DC Analyser (v1dc,i1dc,v2dc,i2dc)

ICE Environment

DC Analyser ICE - ComponentCharacterizati Workspace Edit View Tools Windo 4 4 6 6 · 4 4 · 7 # 0 @ @ · · · NGMO - Analyzer - Front F DUT - Basic Display 4 2 1 Derived Quantities > Display Corrections Meas Plane (- i2) 250m -100m 601m -200m 200m 160.59m -300m -400m R - 7 × 9 B R B -500m ◆ Dynamic Loadine _800m -700m 500p in 1.5n Time (s) Time (s) -200m 280m (+ Z2) (- b2) 260m 240m 220m -600n ⊙ Single ○ Continuous 200m 180m ZVA24_4P - RF Analyzer - Front Panel _ O X Frequency (Hz) 160m 140m Frequency Grid Ranging Corrections Display OVERRANGE 120m Ranging Mode: NoRanging 100m Autorange -1.3 DUT - Derived Quantities _ O × Force Calibration Ranges Conservative Mode 60m Settings - 1GHz Port Ranges Quantity Unit Port 2 Vp/Ap V **PDELin** · -2.523147 dBm ∨ Quantities 44.9671237249674 A 22 J ZVA 24_4P - Source - Front P... 🔳 🗖 🔀 🔰 NGMO - Source1 - Front Panel NGMO - Source2 - Front Panel B: 59.6 - Dutput Output Frequency Fixed Gain Output Level -600m Output Level 5 Dutput Level Channel 1 Channel 2 OH Polarity: Reversed Polarity: Normal Mode and Limits. Mode and Limits. ⊙ Single ○ t Reset Dutput Disable Output Disable Reset Warnings and Errors (Q) d **RF Analyser DC Source 1 DC Source 2 RF Source**

Applications with ICE

47 NMDG

Conclusion

- With an incremental investment on a suitable R&S ZVA or ZVT, it is possible to characterise devices with one single connection
 - in small-signal behaviour with S-parameters
 - in large-signal harmonic behaviour under realistic conditions with complete input and output waveforms
- The accurate and complete large-signal harmonic measurements enable new insights in component behaviour, leading faster to
 - better semiconductor technologies
 - better models and design kits
 - better designs
 - faster ways of testing, possibly in non-50 Ohm environments

For more information info@nmdg.be

www.nmdg.be