

S-functions

"The S-parameters for nonlinear components"

- Measure, Model, Verify, Simulate -

An application in ICE

Outline

- Why S-functions? What is the impact?
- S-functions, the "S-parameters" for all nonlinear applications?
- S-functions: Key Benefits
- Theory: from S-parameters to S-functions
- Applicability and Assumptions of S-functions
- Confidence in S-functions
- S-function Extraction and Verification Tool
- Deployment of S-functions in ADS and MWO / VSS
- Strengths and Key Capabilities
- References
- Conclusion

Why S-parameters?

DESIGN

- Complete characterization of a component in linear mode of operation
 - Derive insertion loss, return loss, gain, ...
- S-parameters enable system-level interpretation of behavior of the component
 - Low pass filtering, high reflective, ...
- S-parameters enable design in conjunction with other circuits

TEST in Manufacturing

- S-parameters can be extracted for the designed circuit
- The S-parameters can be measured for the manufactured circuit and can be compared

S-parameters close the characterization, design and test loop

S-parameter Design- and Test-Cycle for Linear Applications

At the Foundry

Semiconductor Manufacturer

S-parameter Design- and Test-Cycle for Linear Applications

At the Semiconductor Manufacturer

Beyond S-parameters???

- **S-parameters**, the behavioural model for "linear" applications
 - Components in linear mode of operation only
 - Filters
 - Transistors under small signal of excitation
 - ...
 - Their success is based on its **uniform** approach for **linear** RF and microwave problems both to measure and to simulate
- What about components in nonlinear mode of operation?
 - No uniform approach for nonlinear RF and microwave problems
 - There is a lot of "trial and error" or "measure tweak"
 - S-parameters are used mainly during device modelling in conjunction with a lot of model expertise to go from small-signal to large-signal

"Trial-Error" Design- and Test-Cycle for "Nonlinear" Applications

At the Foundry

Semiconductor Manufacturer

"Trial-Error" Design- and Test-Cycle for "Nonlinear" Applications

S-Parameters

S-functions

The S-function Design- and Test-Cycle for Active Devices

At the Foundry

Semiconductor Manufacturer

(*) S-functions for different applications

© 2011

The S-function Design- and Test-Cycle for Active Devices

At the Semiconductor Manufacturer

Why S-functions? Adopting the S-parameter paradigm

DESIGN

- "Complete" characterization of a component in nonlinear mode of operation for specific applications under a relevant set of conditions
 - Derive "insertion loss", "return loss", "gain", "mismatch", conversion coefficients
- S-functions enable system-level interpretation of behaviour of the component
 - Power- dependent Low pass filtering, power conversions, ...
 - Ideal for dividers, multipliers and mixers
- S-functions enable design in conjunction with other circuits
 - When the signals are limited to the relevant set of conditions

TEST in Manufacturing

- S-functions can be extracted for the designed circuit
- The S-functions can be measured for the manufactured circuit and can be compared

S-functions close the characterization, design and test loop

S-Functions, the "S-parameters" for nonlinear applications?

- **S-Functions**, the behavioural model for nonlinear applications
 - Deal with a subset of nonlinear RF and microwave phenomena in a **uniform way** as a natural extension of S-parameters
 - Will not solve "all" nonlinear problems

• Can be used for test to compare with realizations in simulator

(*): Nonlinear behaviour determined by a small number (e.g. 2) of tones

S-Functions – Key Benefits

S-Functions are for nonlinear applications what S-parameters are for linear applications

- Simplify the use of HF components and circuits
 - Complement limited data sheets with more complete system-level models
 - Complement evaluation boards, enabling upfront more realistic simulations
- Improve and speed up the design and test process
 - Adequate replacement when classic models fail
 - Simulate with a behavioural model, optimized for your design problem
 - Same Look and Feel as S-parameters: measure, model, verify and simulate
 - Verify the realized circuit with S-functions against the simulation during test
- Shorter time to market for component manufacturers and buyers

Remark: for the sake of intuitive explanation, mathematics is not 100% correct

© 2011

Simple model and "easy" to measure

Nonlinear
$$\longrightarrow B_m(nf_0) = F_{mn}(V_{DC}, f_0, |a_1(f_0)|)$$

Nonlinear $\longrightarrow I_{DC} = H(V_{DC}, f_0, |a_1(f_0)|)$

Simple model and "easy" to measure

 $B_{m}(n f_{0}) = F_{mn}(V_{DC}, f_{0}, |a_{1}(f_{0})|)$ $I_{DC} = H(V_{DC}, f_{0}, |a_{1}(f_{0})|)$

- AM-AM
- AM-PM
- Harmonic Distortion

But not useful in the real world

S-functions should be able to predict cascades

Input contains harmonics !!

- "Easy" to measure not in reality
 - Harmonic distortion of source
 - Imperfect match at input and output

© 2011

$$B_{m}(nf_{0}) = F_{mn}(V_{DC}, f_{0}, |a_{i}(jf_{0})|, \text{ all phase comb of } (a_{i}(jf_{0})))$$
$$I_{DC} = H(V_{DC}, f_{0}, |a_{i}(jf_{0})|, \text{ all phase comb of } (a_{i}(jf_{0})))$$

Huge number of combinations with sweeps in amplitude and phase

The intuitive approach

LINEAR

But with frequency conversion, like a mixer

The Mathematical Approach

 $B_{m}(nf_{0}) = F_{mn}(V_{DC}, f_{0}, |a_{i}(jf_{0})|, \text{ all phase comb of } (a_{i}(jf_{0})))$ $I_{DC} = H(V_{DC}, f_{0}, |a_{i}(jf_{0})|, \text{ all phase comb of } (a_{i}(jf_{0})))$

Linearization

The S-functions

$$I_{DC} = Sf_{0001}(V_{DC}, A_{11}, A_{21}) + Sf_{00ij}(V_{DC}, A_{11}, A_{21})A_{ij} + Sfc_{00ij}(V_{DC}, A_{11}, A_{21})A_{ij}^{*}$$

$$B_{mn} = Sf_{mn01}(V_{DC}, A_{11}, A_{21}) + Sf_{mnij}(V_{DC}, A_{11}, A_{21})A_{ij} + Sfc_{mnij}(V_{DC}, A_{11}, A_{21})A_{ij}^{*}$$

"LSOP"
"Tickle tone"

*Sf*_{*mnij*} m: output port n: frequency at output port i: input port j: frequency at input port i

LSOP: large-signal operating point

with j > 1 "Tickle tone" with $B_{mn} \equiv B_m (n f_0)$ with $A_{ii} \equiv A_i (j f_0)$

Sfc ???

Sfc ???

© 2011

Sfc ???

© 2011

Solve for the S-functions : $Sf_{mnij}(LSOP)$, $Sfc_{mnij}(LSOP)$

Select a new LSOP and repeat

Extract S-functions for a real device

- Measure incident and reflected waves for different tickle tones
- Model by solving for all Sf and Sfc
- Resulting into S-functions

S-functions for Real Devices with ZVxPlus

Extract S-functions for a simulated device

Assumptions of S-functions

Large-Signal Operating Point (LSOP) $a_1(f_0)$, $a_2(f_0)$ and v_{dc}

Tickle or probing tones $a_1(k f_0), a_2(l f_0)$ with $l, k \neq 0, 1$

The crucial question for S-functions

Mathematically well-defined

To what applications does it apply? $a_1(k f_0), a_2(l f_0)$ with l, k > 1 SMALL

20 dBc down from main tone

BUT

Applicability of S-functions

Components

- Transistors
- Amplifiers
- Dividers
- Multipliers

Prediction

- Harmonic distortion
- AM AM and AM PM
- Source-pull
- Load-pull
- Modulation behaviour (*)

NMDG

38

Intermodulation

^(*): The component is assumed to be pseudo-static

S-functions in ICE^(*)

- Sweepable Large-Signal Operating Point (LSOP)
- Auto or user-defined tickle signal level
- From simple push-the-button solution to access to expert-level details
- Visualization of component behaviour during data collection
- Easy model verification (no EDA tool required)
- Sanity checks included
- Easy export to and integration in Agilent[™] ADS and AWR[™] MWO
- Support for mismatched environments
- Harmonics generated by RF sources don't cause any problem
- Simple output prediction does not require EDA tool
- Export to and integration in other EDA tools on request
- Possible to extend the LSOP variables, e.g. temperature

Confidence in S-functions

- Constantness of LSOP
 - All Sf, and Sfc are assumed to be extracted at fixed LSOP
 - e.g. variation in DC drain voltage due to changing current violates this assumption
- Interpolation capability of all Sf, and Sfc
 - LSOP interleaving verification measurements
- Linearity assumption of tickle tones
 - Model verification for different amplitude and phases of tickle tones

Confidence in S-functions through Verification

© 2011

ADS: Agilent Technologies Advanced Design Systems design software MWO: AWR Corporation's Microwave Office design software

S-functions for Real and Simulated Components / Circuits

S-functions Verification – Constantness of LSOP

Filt	S-functions Tool - Untitled * Project Tools Help /isualization Verification LSOP Constantness Report Data File: Extraction Data Data Selection Select LSOP Excitation Port: Frequency (Hz): Phase: All All All	lect LSOP variable Variation on drain bias voltage
an	/ariation on fixed input power	Sector tools Tool - Untitled * Project Tools Help Visualization Verification LSOP Constantness Report Data File: Extraction Data Data Selection Excitation Port Frequency (Hz): Phase: View View View Selection Selection Selection View Selection Selection

S-functions Verification – Interpolation Capability

verify interpolation of b_2 using independent set of measurements

S-functions Verification – Linearity Assumption of Tickle Tones

ICEBreaker – Option S-function Verification Tool

Compare Datasets

- Measured Data
- Realistic Sweep Plan
- Under multi-harmonic Load-Pull

Using S-function

- Derived Quantities
- Incident / Reflected Waves
- Voltage and Current
- Absolute Error
- Relative Error

Generation of "S-function Predicted Dataset" in ICEBreaker

Absolute Comparisons with S-function Predictions

Relative Comparisons with S-function Predictions

Case Study^(*): EPA120B-100P

- EPA120B-100P
 - high efficiency heterojunction power FET
 - power output: + 29.0dBm typ.
 - power gain: 11.5dB typ. @ 12 GHz

Real Device

			•																													
•			•				·			·						•	•	·	·	•	·	·	•					·				·
•		÷ 4	• •				·			Г		1.1	1																			
		ш								Т	- F	.	L																			
	-									Т	- - -		L																			
		ь								Т	. F	١	L																			
		14	s .							Ŀ	D-4	-																				
		Ga/	sFE	Τ.							MES	EED.	010 C 41	iei																		
		FET	1		+						NFE	T=ves	2	в	stato	-			Eds	=1	28	e ti	3	60	=1	.11		٠w	Рп	axe		
		Mod	el=N	νES	HE	IM.	١.				PFE	T=ño		. R	n≓0.	4.0	m		Crf	=1e	-11	F		NĚ	1.8).		.A	UPa	I an	ns≓	
		Tem	9= N=•								Beta	2=0		, R	⊨1 N	10hi	n -		Rds	s=1)	75	Qhr	ŋ.	A	i=							
		Trise	۲ 2=.								Rds)=		E Fo	≈0 <i>.</i> 5				Gst	wd:	•			h	axe							
											Vout	D≡2 N	<u>(</u>	_ G	scap				Gar	eve				m	elt-							
											- VOSC - Taura	10= :2 nm		. 8	gs=∠ ad=0	<u>۲</u>	14.1		Gdr	W G				En	um o=	ai=r	10					
	•			•	•		•	•		•	Gan	zpse mæ1	1.6	B	gu−o nd=	De-			R1=	1.1	ώα	hm		R	<u> </u>			·		·	·	·
											Thor	n=27		Ğ	dcap	=			R2=	÷Ö (. P=	÷							
	•			•	•			•		•	disto	= `		Β	# 0.2	65	Ohm	ń.	\bi	÷0,1	85	•		ΪC=	•	•		•		•	·	
•	•	• •	•	•	•	•	·	•	•	•	A0=I	0.354	•	`₽	g=0.3	55	0hn	ń,	Vbr	÷1e	<u>6</u> ۱	ν.	•	ιŵΥ	ģi	ud=	·	•	•	·	·	·
•	•	• •	•	•	•	•	·	•	·	·	AIT	0.32		: R	⊊0.1 ×	75	Ohm	n	Уr-		2	2	•	w	ards	57	•	·	•	·	•	·
•	•	• •	•	•	•	•	•	•	•	•	- A2=-	0.124	<u>.</u>	- 10 14	I=U:1	301	4.	•	2	le-l	14)	Α.	•		ng e		•	•	•	·	•	•
•	•	• •	•	•	•	•	·	•	•	·	Mate	л СПас	× .	- 44 10	=0.0	23 1	ц́н.,	·	Xe is	à	·	·	•	- m k	d sn	≥r nano	1	·	•	•	•	·
•	•	• •	•	•	•	•	·	•	•	•			•			- v		•	Ser.	Υ.	·	•	•		upin		•	·	•	•	•	·
•	·	• •	•	•	·	·	·	•	·	·	• •	·	•	•	• •	·	·	·	·	·	·	·	·	·	·	•	·	·	·	•	•	·

Virtual Device

^(*): all results in this slide set are based on S-function extraction and deployment for this device

Data Collection with ZVxPlus

51 JNMDG

Expert Details If Desired @ Data Collection

S-functions Extraction

🌞 S-functions demo - Model Visualization

NMDG 53

S-functions Verifications – Residual Error

amplitude of complex error for measured and predicted b, using extraction data

NMDG

54

S-functions Verification – Interpolation Capability

verify interpolation of b_2 using independent set of measurements

S-functions Verifications – Constantness LSOP

Fil	S-functions Tool - Untitled * Project Tools Help Visualization Verification LSOP Constantness Report Data File: Extraction Data Data Selection Select Port: Frequency (Hz): Phase: All All All Viswfor a LSOP variable	lect LSOP variable Tion: Variation on drain bias voltage
an	d value -8.39 -8.40 -8.405 -8.415 -8.425 -8.43 -8.435 -8.44 -8.425 -8.43 -8.435 -8.44 -8.435 -8.44 -8.435 -8.44 -8.435 -8.44 -8.435 -8.445 -8.435 -8.445 -8.455 -8.445 -8.455 -8.445 -8.455 -8.5555 -8.555 -8.555 -8.555 -8.555 -8.5555 -8.5555 -8.	S-functions Tool - Untilled * Project Tools Help Visualization Verification LSOP Constantness Report Data Selection Selection Excitation Port: Frequency (Hz): Phase: View View 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 5.003 6.003 6.003 7.00

S-functions in ADS

<u>Acknowledgement:</u> With the support from Agilent Technologies providing ADS licensing

S-functions Useage in Agilent ADS

S-functions Verification in ADS - Schematic

- Example: Harmonic Balance simulation with measured a1 and a2 spectra
- Excitation: Sweeping through a subset of LSOP points + tickle tones

Access to measured data using DAC

Sweeping through subset of LSOP and tickle tones

S-functions Verification in ADS - Frequency Domain

Frequency = 2 GHz, VDC1= -1.3 V, VDC2= +2.0 V

Measurements at <u>different</u> input powers than those which were used for S-functions model extraction!

circles – measurements solid lines - simulations

S-functions Verification in ADS - Time Domain

Frequency = 2 GHz, VDC1= -1.3 V, VDC2= +2.0 V, Pa1 = +10.0 dBm

circles – measurements solid lines - simulations

S-functions in ADS – Modulation Prediction - Schematic

Frequency = 2 GHz, VDC1= -1.37 V, VDC2= +4.0 V, Pa1 = +0.0 dBm – Class C

S-functions in ADS – Modulation Prediction - Display

Frequency = 2 GHz, VDC1= -1.37 V, VDC2= +4.0 V, Pa1 = +0.0 dBm – Class C

S-functions in ADS – Source-Pull - Schematic

Frequency = 2 GHz, VDC1= -1.37 V, VDC2= +4.0 V, Pav = +1.0 dBm - Class C

S-functions in ADS – Source-Pull - Schematic

Frequency = 2 GHz, VDC1= -1.37 V, VDC2= +4.0 V, Pav = +1.0 dBm - Class C

65

& NMDG

S-functions in MWO

<u>Acknowledgement:</u> With the support from AWR providing MWO / VSS licensing

S-functions Usage in AWR MWO

2D and 3D package data

S-functions Verification in MWO - Frequency Domain

S-functions Verification in MWO - Time Domain

S-functions in MWO – Modulation Prediction - Schematic

S-functions in MWO – Load-Pull

S-functions Strengths

- S-functions are completely public
- S-functions are transparent
- S-functions are connected into ADS and MWO and can be connected in other tools on request, e.g. Matlab
- S-functions are closely integrated with load-pull in general and especially with tuners from Focus Microwave
- S-functions extraction tool has a verification capability for LSOP constantness and interpolation capability, investigating quality of model, without needing a simulation tool
- The source- and load-pull software ICEBreaker from NMDG allows Sfunction verification, related to the linearity assumption
- Customers can explore the capabilities of S-functions via NMDG services

S-Functions - Key Capabilities

Natural extension of S-parameters

- Reduce to S-parameters for small-signal excitation
- S-parameters are cascadeable, S-Functions are cascadeable too
- e.g. Transistors, amplifiers, dividers, multipliers
- Predict harmonic behaviour of components under different impedances
 - Source Pull
 - Load Pull
 - Harmonic distortion, Waveforms
- Predict modulation behaviour of components under different impedances
 - When no long-term memory effects
- Valid for multi-ports, applicable to differential components

References

- F. Verbeyst and M. Vanden Bossche, "VIOMAP, the S-parameter equivalent for weakly nonlinear RF and microwave devices", published in the *Microwave Symposium Digest of IEEE 1994 MTT-S International* and published in the *1994 Special Symposium Issue of the MTT Transactions*, vol. 42, no. 12, pp. 2531 – 2535.
- F. Verbeyst and M. Vanden Bossche, "VIOMAP, 16QAM and Spectral Regrowth: Enhanced Prediction and Predistortion based on Two-Tone Black-Box Model Extraction", published in the *Proceedings of the 45th ARFTG Conference*, Orlando, June 1995 and winner of the "Best Conference Paper Award".
- J. Verspecht and P. Van Esch, "Accurately characterizating of hard nonlinear behaviour of microwave components by the Nonlinear Network Measurement System: introducing the nonlinear scattering function," *Proc. International Workshop on Integrated Nonlinear Microwave and Millimiterwave Circuits* (INMMiC), October 1998, pp.17-26.
- J. Verspecht, "Scattering functions for nonlinear behavioral modeling in the frequency domain," *IEEE MTT-S Int. Microwave Symp. Workshop*, June 2003.
- J. Verspecht and D.E. Root "Polyharmonic Distortion Modeling," *IEEE Microwave Magazine*, vol.7 no.3, June 2006, pp.44-57.
- D.E. Root, J. Horn, L. Betts, C. Gillease, and J. Verspecht, "X-Parameters: The new paradigm for measurement, modeling, and design of nonlinear RF and microwave components," *Microwave Engineering Europe*, December 2008, pp. 16-21.

Conclusion

- S-functions are a natural extension to S-parameters for nonlinear behaviour
- S-functions aren't much more complex than S-parameters
- S-functions are accurate when assumptions are not violated
 - Linearity assumption
- S-function extraction is supported on R&S network analysers
- S-functions can be coupled into ADS and MWO
- S-functions can be used to compress or hide specifics of nonlinear circuits in ADS and MWO

For more information

info@nmdg.be www.nmdg.be

Send your device or circuit to NMDG ...

... and NMDG sends you the S-functions

Please contact NMDG at info@nmdg.be

